

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	42-SDIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f32aj2b6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

10.5.2 Main Features	87
	87
10.5.3 General Description	87
10.5.4 Functional Description	89
10.5.5 Low Power Modes	96
10.5.6 Interrupts	96
10.5.7 Register Description	97
10.6 10-BIT A/D CONVERTER (ADC)	. 103
10.6.1 Introduction	. 103
10.6.2 Main Features	. 103
10.6.3 Functional Description	. 104
10.6.4 Low Power Modes	. 104
10.6.5 Interrupts	. 104
	105
	107
	. 107
11.1.1 Inherent	. 108
11.1.2 Immediate	108
11.1.3 DIFECT	100
11 1 5 Indirect (Short Long)	108
11 1.6 Indirect Indexed (Short Long)	109
11.1.7 Relative mode (Direct, Indirect)	. 109
11.2 INSTRUCTION GROUPS	. 110
12 ELECTRICAL CHARACTERISTICS	. 113
12.1 PARAMETER CONDITIONS	. 113
12.1.1 Minimum and Maximum values	. 113
12.1.2 Typical values	. 113
12.1.3 Typical curves	. 113
	•
12.1.4 Loading capacitor	. 113
12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.1.5 Pin input voltage 12.1.5 Pin input voltage	. 113 . 113
12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS	. 113 . 113 . 114
12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics	. 113 . 113 . 114 . 114
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 	. 113 . 113 . 114 . 114 . 114 . 114
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 	. 113 . 113 . 114 . 114 . 114 . 114 . 115
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 	. 113 . 113 . 114 . 114 . 114 . 114 . 115 . 115
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 	. 113 . 113 . 114 . 114 . 114 . 115 . 115 . 115
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 	 113 113 114 114 114 115 115 115 115 116
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 	 113 113 114 114 114 115 115 115 115 116 116
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 	 113 113 114 114 114 115 115 115 115 116 116 116 118
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 	 113 113 114 114 114 115 115 115 115 116 116 118 119
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 	 113 113 114 114 114 115 115 115 115 116 116 116 118 119 120
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 12.5.1 General Timings 	 113 113 114 114 114 114 115 115 115 115 116 116 116 116 118 119 120 120
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 12.5.1 General Timings 12.5.2 External Clock Source 12.5 Current Consumption 	 113 113 114 114 114 115 115 115 115 116 116 118 119 120 120 120
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 12.5.1 General Timings 12.5.2 External Clock Source 12.5.3 Crystal and Ceramic Resonator Oscillators 12.5 A PLL Characteristics 	 113 113 114 114 114 115 115 115 115 116 116 116 116 118 119 120 120 120 121 122
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 12.5.1 General Timings 12.5.2 External Clock Source 12.5.3 Crystal and Ceramic Resonator Oscillators 12.6 MEMORY CHABACTERISTICS 	 113 113 114 114 114 115 115 115 115 115 116 116 116 118 119 120 120 120 121 123 124

57

CENTRAL PROCESSING UNIT (Cont'd)

Condition Code Register (CC)

Read/Write

Reset Value: 111x1xxx

The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Arithmetic Management Bits

Bit $4 = \mathbf{H}$ Half carry.

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.

0: No half carry has occurred.

1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 2 = N Negative.

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It's a copy of the result 7^{th} bit.

0: The result of the last operation is positive or null.

- 1: The result of the last operation is negative
- (i.e. the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

Bit 1 = **Z** Zero.

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

0: The result of the last operation is different from zero.

1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = C Carry/borrow.

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.

0: No overflow or underflow has occurred.

1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

Interrupt Management Bits

Bit 5,3 = 11, 10 Interrupt

The combination of the I1 and I0 bits gives the current interrupt software priority.

Interrupt Software Priority	11	10
Level 0 (main)	1	0
Level 1	0	1
Level 2	0	0
Level 3 (= interrupt disable)	1	1

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more details.

RESET SEQUENCE MANAGER (Cont'd)

The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.

6.3.3 External Power-On RESET

To start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V_{DD} is over the minimum level specified for the selected f_{OSC} frequency.

A proper reset signal for a slow rising V_{DD} supply can generally be provided by an external RC network connected to the RESET pin.

6.3.4 Internal Watchdog RESET

The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 14.

Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least $t_{w(RSTL)out}$.

Figure 14. RESET Sequences

I/O PORTS (Cont'd)

Notes:

- 1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR register will read the alternate function output status.
- When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate function reads the pin status given by the DR register content.

I/O PORTS (Cont'd)

9.5.1 I/O Port Implementation

The I/O port register configurations are summarised as follows.

Standard Ports

PA5:4, PC7:0, PD5:0, PE1:0, PF7:6, 4

MODE	DDR	OR
floating input	0	0
pull-up input	0	1
open drain output	1	0
push-pull output	1	1

Interrupt Ports

PB4, PB2:0, PF1:0 (with pull-up)

MODE	DDR	OR
floating input	0	0
pull-up interrupt input	0	1
open drain output	1	0
push-pull output	1	1

Table 12. Port Configuration

PA3, PB3, PF2 (without pull-up)

MODE	DDR	OR
floating input	0	0
floating interrupt input	0	1
open drain output	1	0
push-pull output	1	1

True Open Drain Ports PA7:6

MODE	DDR
floating input	0
open drain (high sink ports)	1

Dort	Din nomo	Bin name Input			tput
Port	Pin name	OR = 0	OR = 1	OR = 0	OR = 1
	PA7:6	fl	pating	true op	en-drain
Port A	PA5:4	floating	pull-up	open drain	push-pull
	PA3	floating	floating interrupt	open drain	push-pull
Port P	PB3	floating	floating interrupt	open drain	push-pull
FUILE	PB4, PB2:0	floating	pull-up interrupt	open drain	push-pull
Port C	PC7:0	floating	pull-up	open drain	push-pull
Port D	PD5:0	floating	pull-up	open drain	push-pull
Port E	PE1:0	floating	pull-up	open drain	push-pull
	PF7:6, 4	floating	pull-up	open drain	push-pull
Port F	PF2	floating	floating interrupt	open drain	push-pull
	PF1:0	floating	pull-up interrupt	open drain	push-pull

10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC)

The Main Clock Controller consists of three different functions:

- a programmable CPU clock prescaler
- a clock-out signal to supply external devices
- a real time clock timer with interrupt capability

Each function can be used independently and simultaneously.

10.2.1 Programmable CPU Clock Prescaler

The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal peripherals. It manages SLOW power saving mode (See Section 8.2 SLOW MODE for more details).

The prescaler selects the f_{CPU} main clock frequency and is controlled by three bits in the MCCSR register: CP[1:0] and SMS.

10.2.2 Clock-out Capability

47/

The clock-out capability is an alternate function of an I/O port pin that outputs a f_{OSC2} clock to drive

external devices. It is controlled by the MCO bit in the MCCSR register.

CAUTION: When selected, the clock out pin suspends the clock during ACTIVE-HALT mode.

10.2.3 Real Time Clock Timer (RTC)

The counter of the real time clock timer allows an interrupt to be generated based on an accurate real time clock. Four different time bases depending directly on f_{OSC2} are available. The whole functionality is controlled by four bits of the MCC-SR register: TB[1:0], OIE and OIF.

When the RTC interrupt is enabled (OIE bit set), the ST7 enters ACTIVE-HALT mode when the HALT instruction is executed. See Section 8.4 AC-TIVE-HALT AND HALT MODES for more details.

10.2.4 Beeper

The beep function is controlled by the MCCBCR register. It can output three selectable frequencies on the BEEP pin (I/O port alternate function).

Figure 32. Main Clock Controller (MCC/RTC) Block Diagram

10.3 16-BIT TIMER

10.3.1 Introduction

The timer consists of a 16-bit free-running counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two input signals (*input capture*) or generation of up to two output waveforms (*output compare* and *PWM*).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the CPU clock prescaler.

Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and do not share any resources. They are synchronized after a MCU reset as long as the timer clock frequencies are not modified.

This description covers one or two 16-bit timers. In ST7 devices with two timers, register names are prefixed with TA (Timer A) or TB (Timer B).

10.3.2 Main Features

- Programmable prescaler: f_{CPU} divided by 2, 4 or 8.
- Overflow status flag and maskable interrupt
- External clock input (must be at least 4 times slower than the CPU clock speed) with the choice of active edge
- 1 or 2 Output Compare functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated programmable signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- 1 or 2 Input Capture functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated active edge selection signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- Pulse width modulation mode (PWM)
- One pulse mode
- Reduced Power Mode
- 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)*

The Block Diagram is shown in Figure 33.

*Note: Some timer pins may not be available (not bonded) in some ST7 devices. Refer to the device pin out description.

When reading an input signal on a non-bonded pin, the value will always be '1'.

10.3.3 Functional Description

10.3.3.1 Counter

The main block of the Programmable Timer is a 16-bit free running upcounter and its associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called high & low.

Counter Register (CR):

- Counter High Register (CHR) is the most significant byte (MS Byte).
- Counter Low Register (CLR) is the least significant byte (LS Byte).

Alternate Counter Register (ACR)

- Alternate Counter High Register (ACHR) is the most significant byte (MS Byte).
- Alternate Counter Low Register (ACLR) is the least significant byte (LS Byte).

These two read-only 16-bit registers contain the same value but with the difference that reading the ACLR register does not clear the TOF bit (Timer overflow flag), located in the Status register, (SR), (see note at the end of paragraph titled 16-bit read sequence).

Writing in the CLR register or ACLR register resets the free running counter to the FFFCh value.

Both counters have a reset value of FFFCh (this is the only value which is reloaded in the 16-bit timer). The reset value of both counters is also FFFCh in One Pulse mode and PWM mode.

The timer clock depends on the clock control bits of the CR2 register, as illustrated in Table 16 Clock Control Bits. The value in the counter register repeats every 131072, 262144 or 524288 CPU clock cycles depending on the CC[1:0] bits.

The timer frequency can be $f_{CPU}/2$, $f_{CPU}/4$, $f_{CPU}/8$ or an external frequency.

Caution: In Flash devices, Timer A functionality has the following restrictions:

- TAOC2HR and TAOC2LR registers are write only
- Input Capture 2 is not implemented
- The corresponding interrupts cannot be used (ICF2, OCF2 forced by hardware to zero)

16-BIT TIMER (Cont'd)

ALTERNATE COUNTER HIGH REGISTER (ACHR) Read Only

Reset Value: 1111 1111 (FFh)

This is an 8-bit register that contains the high part of the counter value.

ALTERNATE COUNTER LOW REGISTER (ACLR) Read Only

Reset Value: 1111 1100 (FCh)

This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after an access to CSR register does not clear the TOF bit in the CSR register.

7				0
MSB				LSB

INPUT CAPTURE 2 HIGH REGISTER (IC2HR) Read Only

Reset Value: Undefined

This is an 8-bit read only register that contains the high part of the counter value (transferred by the Input Capture 2 event).

INPUT CAPTURE 2 LOW REGISTER (IC2LR)

Read Only

Reset Value: Undefined

This is an 8-bit read only register that contains the low part of the counter value (transferred by the Input Capture 2 event).

7				0
MSB				LSB

16-BIT TIMER (Cont'd)

57

Table 17. 16-Bit Timer Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
Timer A: 32	CR1	ICIE	OCIE	TOIE	FOLV2	FOLV1	OLVL2	IEDG1	OLVL1
Timer B: 42	Reset Value	0	0	0	0	0	0	0	0
Timer A: 31	CR2	OC1E	OC2E	OPM	PWM	CC1	CC0	IEDG2	EXEDG
Timer B: 41	Reset Value	0	0	0	0	0	0	0	0
Timer A: 33	CSR	ICF1	OCF1	TOF	ICF2	OCF2	TIMD	-	-
Timer B: 43	Reset Value	х	х	х	Х	Х	0	Х	х
Timer A: 34	IC1HR	MSB							LSB
Timer B: 44	Reset Value	х	х	х	Х	Х	Х	Х	х
Timer A: 35	IC1LR	MSB							LSB
Timer B: 45	Reset Value	х	х	Х	Х	Х	Х	Х	Х
Timer A: 36	OC1HR	MSB							LSB
Timer B: 46	Reset Value	1	0	0	0	0	0	0	0
Timer A: 37	OC1LR	MSB							LSB
Timer B: 47	Reset Value	0	0	0	0	0	0	0	0
Timer A: 3E	OC2HR	MSB							LSB
Timer B: 4E	Reset Value	1	0	0	0	0	0	0	0
Timer A: 3F	OC2LR	MSB							LSB
Timer B: 4F	Reset Value	0	0	0	0	0	0	0	0
Timer A: 38	CHR	MSB							LSB
Timer B: 48	Reset Value	1	1	1	1	1	1	1	1
Timer A: 39	CLR	MSB							LSB
Timer B: 49	Reset Value	1	1	1	1	1	1	0	0
Timer A: 3A	ACHR	MSB							LSB
Timer B: 4A	Reset Value	1	1	1	1	1	1	1	1
Timer A: 3B	ACLR	MSB							LSB
Timer B: 4B	Reset Value	1	1	1	1	1	1	0	0
Timer A: 3C	IC2HR	MSB							LSB
Timer B: 4C	Reset Value	х	х	Х	х	х	х	х	х
Timer A: 3D	IC2LR	MSB							LSB
Timer B: 4D	Reset Value	х	х	Х	х	х	х	х	х

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4 Functional Description

The block diagram of the Serial Control Interface, is shown in Figure 51. It contains 6 dedicated registers:

- Two control registers (SCICR1 & SCICR2)
- A status register (SCISR)

5/

- A baud rate register (SCIBRR)
- An extended prescaler receiver register (SCIER-PR)
- An extended prescaler transmitter register (SCI-ETPR)

Refer to the register descriptions in Section 10.5.7for the definitions of each bit.

10.5.4.1 Serial Data Format

Word length may be selected as being either 8 or 9 bits by programming the M bit in the SCICR1 register (see Figure 51).

The TDO pin is in low state during the start bit.

The TDO pin is in high state during the stop bit.

An Idle character is interpreted as an entire frame of "1"s followed by the start bit of the next frame which contains data.

A Break character is interpreted on receiving "0"s for some multiple of the frame period. At the end of the last break frame the transmitter inserts an extra "1" bit to acknowledge the start bit.

Transmission and reception are driven by their own baud rate generator.

Figure 52. Word Length Programming

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.7 Register Description STATUS REGISTER (SCISR)

Read Only

Reset Value: 1100 0000 (C0h)

1							0
TDRE	тс	RDRF	IDLE	OR	NF	FE	PE

Bit 7 = **TDRE** *Transmit data register empty.*

This bit is set by hardware when the content of the TDR register has been transferred into the shift register. An interrupt is generated if the TIE bit=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a write to the SCIDR register).

0: Data is not transferred to the shift register

1: Data is transferred to the shift register

Note: Data will not be transferred to the shift register unless the TDRE bit is cleared.

Bit 6 = **TC** Transmission complete.

This bit is set by hardware when transmission of a frame containing Data is complete. An interrupt is generated if TCIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a write to the SCIDR register).

0: Transmission is not complete

1: Transmission is complete

Note: TC is not set after the transmission of a Preamble or a Break.

Bit 5 = **RDRF** *Received data ready flag.*

This bit is set by hardware when the content of the RDR register has been transferred to the SCIDR register. An interrupt is generated if RIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: Data is not received

1: Received data is ready to be read

Bit 4 = **IDLE** *Idle line detect.*

This bit is set by hardware when a Idle Line is detected. An interrupt is generated if the ILIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Idle Line is detected

1: Idle Line is detected

Note: The IDLE bit will not be set again until the RDRF bit has been set itself (i.e. a new idle line occurs).

Bit 3 = **OR** Overrun error.

This bit is set by hardware when the word currently being received in the shift register is ready to be transferred into the RDR register while RDRF=1. An interrupt is generated if RIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Overrun error

1: Overrun error is detected

Note: When this bit is set RDR register content will not be lost but the shift register will be overwritten.

Bit 2 = NF Noise flag.

This bit is set by hardware when noise is detected on a received frame. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No noise is detected

1: Noise is detected

Note: This bit does not generate interrupt as it appears at the same time as the RDRF bit which itself generates an interrupt.

Bit 1 = **FE** Framing error.

This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Framing error is detected

1: Framing error or break character is detected

Note: This bit does not generate interrupt as it appears at the same time as the RDRF bit which itself generates an interrupt. If the word currently being transferred causes both frame error and overrun error, it will be transferred and only the OR bit will be set.

Bit 0 = **PE** Parity error.

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE=1 in the SCICR1 register. 0: No parity error

1: Parity error

SERIAL COMMUNICATIONS INTERFACE (Cont'd) CONTROL REGISTER 2 (SCICR2)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK

Bit 7 = **TIE** *Transmitter interrupt enable.* This bit is set and cleared by software. 0: Interrupt is inhibited

1: An SCI interrupt is generated whenever TDRE=1 in the SCISR register

Bit 6 = TCIE *Transmission complete interrupt enable*

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SCI interrupt is generated whenever TC=1 in the SCISR register

Bit 5 = **RIE** Receiver interrupt enable.

This bit is set and cleared by software.

- 0: Interrupt is inhibited
- 1: An SCI interrupt is generated whenever OR=1 or RDRF=1 in the SCISR register

Bit 4 = **ILIE** *Idle line interrupt enable.*

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SCI interrupt is generated whenever IDLE=1 in the SCISR register.

Bit 3 = **TE** *Transmitter enable.*

This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled

1: Transmitter is enabled

Notes:

- During transmission, a "0" pulse on the TE bit ("0" followed by "1") sends a preamble (idle line) after the current word.
- When TE is set there is a 1 bit-time delay before the transmission starts.

Caution: The TDO pin is free for general purpose I/O only when the TE and RE bits are both cleared (or if TE is never set).

Bit 2 = **RE** Receiver enable.

This bit enables the receiver. It is set and cleared by software.

- 0: Receiver is disabled
- 1: Receiver is enabled and begins searching for a start bit

Bit 1 = **RWU** Receiver wake-up.

This bit determines if the SCI is in mute mode or not. It is set and cleared by software and can be cleared by hardware when a wake-up sequence is recognized.

- 0: Receiver in Active mode
- 1: Receiver in Mute mode

Note: Before selecting Mute mode (setting the RWU bit), the SCI must receive some data first, otherwise it cannot function in Mute mode with wakeup by idle line detection.

Bit 0 = SBK Send break.

This bit set is used to send break characters. It is set and cleared by software.

0: No break character is transmitted

1: Break characters are transmitted

Note: If the SBK bit is set to "1" and then to "0", the transmitter will send a BREAK word at the end of the current word.

11 INSTRUCTION SET

11.1 CPU ADDRESSING MODES

The CPU features 17 different addressing modes which can be classified in 7 main groups:

Addressing Mode	Example
Inherent	nop
Immediate	ld A,#\$55
Direct	ld A,\$55
Indexed	ld A,(\$55,X)
Indirect	ld A,([\$55],X)
Relative	jrne loop
Bit operation	bset byte,#5

The CPU Instruction set is designed to minimize the number of bytes required per instruction: To do

Table 24. CPU Addressing Mode Overview

57/

so, most of the addressing modes may be subdivided in two sub-modes called long and short:

- Long addressing mode is more powerful because it can use the full 64 Kbyte address space, however it uses more bytes and more CPU cycles.
- Short addressing mode is less powerful because it can generally only access page zero (0000h -00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)

The ST7 Assembler optimizes the use of long and short addressing modes.

Mode		Syntax	Destination	Pointer Address (Hex.)	Pointer Size (Hex.)	Length (Bytes)	
Inherent			nop				+ 0
Immediate			ld A,#\$55				+ 1
Short	Direct		ld A,\$10	00FF			+ 1
Long	Direct		ld A,\$1000	0000FFFF			+ 2
No Offset	Direct	Indexed	ld A,(X)	00FF			+ 0
Short	Direct	Indexed	ld A,(\$10,X)	001FE			+ 1
Long	Direct	Indexed	ld A,(\$1000,X)	0000FFFF			+ 2
Short	Indirect		ld A,[\$10]	00FF	00FF	byte	+ 2
Long	Indirect		ld A,[\$10.w]	0000FFFF	00FF	word	+ 2
Short	Indirect	Indexed	ld A,([\$10],X)	001FE	00FF	byte	+ 2
Long	Indirect	Indexed	ld A,([\$10.w],X)	0000FFFF	00FF	word	+ 2
Relative	Direct		jrne loop	PC+/-127			+ 1
Relative	Indirect		jrne [\$10]	PC+/-127	00FF	byte	+ 2
Bit	Direct		bset \$10,#7	00FF			+ 1
Bit	Indirect		bset [\$10],#7	00FF	00FF	byte	+ 2
Bit	Direct	Relative	btjt \$10,#7,skip	00FF			+ 2
Bit	Indirect	Relative	btjt [\$10],#7,skip	00FF	00FF	byte	+ 3

INSTRUCTION SET OVERVIEW (Cont'd)

11.2 INSTRUCTION GROUPS

The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may

be subdivided into 13 main groups as illustrated in the following table:

Load and Transfer	LD	CLR						
Stack operation	PUSH	POP	RSP					
Increment/Decrement	INC	DEC						
Compare and Tests	СР	TNZ	BCP					
Logical operations	AND	OR	XOR	CPL	NEG			
Bit Operation	BSET	BRES						
Conditional Bit Test and Branch	BTJT	BTJF						
Arithmetic operations	ADC	ADD	SUB	SBC	MUL			
Shift and Rotates	SLL	SRL	SRA	RLC	RRC	SWAP	SLA	
Unconditional Jump or Call	JRA	JRT	JRF	JP	CALL	CALLR	NOP	RET
Conditional Branch	JRxx							
Interruption management	TRAP	WFI	HALT	IRET				
Condition Code Flag modification	SIM	RIM	SCF	RCF				

Using a pre-byte

The instructions are described with one to four opcodes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

- PC-2 End of previous instruction
- PC-1 Prebyte
- PC opcode

PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one.

PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode.

It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.

PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

Oscil.			Typical Ceramic Resonators (information for guidance only)					t _{SU(osc)}
		Reference ³⁾		Freq.	Characteristic ¹⁾		[pF]	[ms] ²⁾
0	LP	A	CSA2.00MG	2MHz	$\Delta f_{OSC} = [\pm 0.5\%_{tolerance}, \pm 0.3\%_{\Delta Ta}, \pm 0.3\%_{aging}, \pm x.x\%_{correl}]$	22	22	4
mi	MP	AT.	CSA4.00MG	4MHz	$\Delta f_{OSC} = [\pm 0.5\%_{tolerance}, \pm 0.3\%_{\Delta Ta}, \pm 0.3\%_{aging}, \pm x.x\%_{correl}]$	22	22	2
Cera	MS	IUR	CSA8.00MTZ	8MHz	$\Delta f_{OSC} = [\pm 0.5\%_{tolerance}, \pm 0.5\%_{\Delta Ta}, \pm 0.3\%_{aging}, \pm x.x\%_{correl}]$	33	33	1
0	HS	2	CSA16.00MXZ040 ⁴⁾	16MHz	$\Delta f_{OSC} = [\pm 0.5\%_{tolerance}, \pm 0.3\%_{\Delta Ta}, \pm 0.3\%_{aging}, \pm x.x\%_{correl}]$	33	33	0.7

CLOCK AND TIMING CHARACTERISTICS (Cont'd)

Notes:

1. Resonator characteristics given by the ceramic resonator manufacturer.

2. $t_{SU(OSC)}$ is the typical oscillator start-up time measured between V_{DD} =2.8V and the fetch of the first instruction (with a quick V_{DD} ramp-up from 0 to 5V (<50µs).

3. Resonators all have different characteristics. Contact the manufacturer to obtain the appropriate values of external components and to verify oscillator performance.

4. 3rd overtone resonators require specific validation by the resonator manufacturer.

CLOCK CHARACTERISTICS (Cont'd)

12.5.4 PLL Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC}	PLL input frequency range		2		4	MHz
$\Delta f_{CPU} / f_{CPU}$	Instantaneous PLL jitter ¹⁾	f _{OSC} = 4 MHz.		0.7	2	%

Note:

57/

1. Data characterized but not tested.

The user must take the PLL jitter into account in the application (for example in serial communication or sampling of high frequency signals). The PLL jitter is a periodic effect, which is integrated over several CPU cycles. Therefore the longer the period of the application signal, the less it will be impacted by the PLL jitter.

Figure 65 shows the PLL jitter integrated on application signals in the range 125kHz to 2MHz. At frequencies of less than 125KHz, the jitter is negligible.

Figure 65. Integrated PLL Jitter vs signal frequency¹

Note 1: Measurement conditions: f_{CPU} = 8MHz.

12.9 CONTROL PIN CHARACTERISTICS

12.9.1 Asynchronous RESET Pin

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{hys}	Schmitt trigger voltage hysteresis ²⁾				2.5		
V _{IL}	Input low level voltage 1)					$0.16 \mathrm{xV}_{\mathrm{DD}}$	V
V _{IH}	Input high level voltage ¹⁾			$0.85 \mathrm{xV}_{\mathrm{DD}}$			v
V _{OL}	Output low level voltage 3)	V _{DD} =5V	I _{IO} =+2mA		0.2	0.5	V
I _{IO}	Driving current on RESET pin				2		mA
R _{ON}	Weak pull-up equivalent resistor	V _{DD} =5V		20	30	120	kΩ
t _{w(RSTL)out}	Generated reset pulse duration	Internal re	eset sources	20	30	42 ⁶⁾	μS
t _{h(RSTL)in}	External reset pulse hold time ⁴⁾			2.5			μS
t _{g(RSTL)in}	Filtered glitch duration ⁵⁾				200		ns

Notes:

1. Data based on characterization results, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels.

3. The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

4. To guarantee the reset of the device, a minimum pulse has to be applied to the $\overrightarrow{\text{RESET}}$ pin. All short pulses applied on the RESET pin with a duration below $t_{h(\text{RSTL})in}$ can be ignored.

5. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy environments.

6. Data guaranteed by design, not tested in production.

12.10 TIMER PERIPHERAL CHARACTERISTICS

Subject to general operating conditions for V_{DD} , f_{OSC} , and T_A unless otherwise specified.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...).

Data based on design simulation and/or characterisation results, not tested in production.

12.10.1 16-Bit Timer

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{w(ICAP)in}	Input capture pulse time		1			t _{CPU}
+	PWM resolution time		2			t _{CPU}
^r res(PWM)		f _{CPU} =8MHz	250			ns
f _{EXT}	Timer external clock frequency		0		f _{CPU} /4	MHz
f _{PWM}	PWM repetition rate		0		f _{CPU} /4	MHz
Res _{PWM}	PWM resolution				16	bit

12.12 10-BIT ADC CHARACTERISTICS

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{ADC}	ADC clock frequency		0.4		2	MHz
V _{AREF}	Analog reference voltage	$0.7*V_{DD} \leq V_{AREF} \leq V_{DD}$	3.8		V _{DD}	V
V _{AIN}	Conversion voltage range ¹⁾		V _{SSA}		V _{AREF}	v
L.	Positive input leakage current for analog	-40°C≤T _A ≤+85°C			±250	nA
'lkg	input ²⁾	+85°C <t<sub>A≤+125°C</t<sub>			±1	μA
R _{AIN}	External input impedance				see	kΩ
C _{AIN}	External capacitor on analog input				Figure 79	pF
f _{AIN}	Variation freq. of analog input signal				Figure 80	Hz
C _{ADC}	Internal sample and hold capacitor			12		pF
t _{ADC}	Conversion time (Sample+Hold) f _{CPU} =8MHz, SPEED=0 f _{ADC} =2MHz			7.5		μs
t _{ADC}	 No of sample capacitor loading cycles No. of Hold conversion cycles 			4 11		1/f _{ADC}

Notes:

57

1. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than $10k\Omega$). Data based on characterization results, not tested in production.

2.injecting negative current on any of the analog input pins significantly reduces the accuracy of any conversion being performed on any analog input. Analog pins can be protected against negative injection by adding a Schottky diode (pin to ground). Injecting negative current on digital input pins degrades ADC accuracy especially if performed on a pin close to the analog input pins. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 12.8 does not affect the ADC accuracy.

14.5 DEVELOPMENT TOOLS

STMicroelectronics offers a range of hardware and software development tools for the ST7 microcontroller family. Full details of tools available for the ST7 from third party manufacturers can be obtain from the STMicroelectronics Internet site: → http://:mcu.st.com.

Tools from these manufacturers include C compliers, emulators and gang programmers.

Emulators

Two types of emulators are available from ST for the ST7232A family:

- ST7 DVP3 entry-level emulator offers a flexible and modular debugging and programming solution. SDIP42 & SDIP32 probes/adapters are included, other packages need a specific connection kit (refer to Table 28)
- ST7 EMU3 high-end emulator is delivered with everything (probes, TEB, adapters etc.) needed to start emulating the ST7232x family. To configure it to emulate other ST7 subfamily devices, the active probe for the ST7EMU3 can be changed and the ST7EMU3 probe is designed for easy interchange of TEBs (Target Emulation Board). See Table 28.

Table 28. STMicroelectronics Development Tools

In-circuit Debugging Kit

Two configurations are available from ST:

- STXF521-IND/USB: Low-cost In-Circuit Debugging kit from Softec Microsystems. Includes STX-InDART/USB board (USB port) and a specific demo board for ST72521 (TQFP64)
- STxF-INDART

Flash Programming tools

- ST7-STICK ST7 In-circuit Communication Kit, a complete software/hardware package for programming ST7 Flash devices. It connects to a host PC parallel port and to the target board or socket board via ST7 ICC connector.
- ICC Socket Boards provide an easy to use and flexible means of programming ST7 Flash devices. They can be connected to any tool that supports the ST7 ICC interface, such as ST7 EMU3, ST7-DVP3, inDART, ST7-STICK, or many third-party development tools.

Evaluation board

 ST7232x-EVAL with ICC connector for programming capability. Provides direct connection to ST7-DVP3 emulator. Supplied with daughter boards (core module) for ST72F32A chips.

		Emulation						
Supported	ST7 DVP	3 Series	ST7 EM					
Products	Emulator	Connection kit	Emulator	Active Probe & T.E.B.	ICC Socket Board			
ST72F32AJ, ST72F324AJ	ST7MDT20-DVP3	ST7MDT20-T44/ DVP	ST7MDT20J-		ST7SP00 1/m ¹			
ST7232AK, ST72F32AK	ST7MDT20-DVP3	ST7MDT20-T32/ DVP	EMU3	ST/WDT20J-TEB	5175D20J/XX*			

Note 1: Add suffix /EU, /UK, /US for the power supply of your region.

