

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f32ak1t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

10.5.2 Main Features	87
	87
10.5.3 General Description	87
10.5.4 Functional Description	89
10.5.5 Low Power Modes	96
10.5.6 Interrupts	96
10.5.7 Register Description	97
10.6 10-BIT A/D CONVERTER (ADC)	. 103
10.6.1 Introduction	. 103
10.6.2 Main Features	. 103
10.6.3 Functional Description	. 104
10.6.4 Low Power Modes	. 104
10.6.5 Interrupts	. 104
	105
	107
	. 107
11.1.1 Inherent	. 108
11.1.2 Immediate	108
11.1.3 DIFECT	100
11 1 5 Indirect (Short Long)	108
11 1.6 Indirect Indexed (Short Long)	109
11.1.7 Relative mode (Direct, Indirect)	. 109
11.2 INSTRUCTION GROUPS	. 110
12 ELECTRICAL CHARACTERISTICS	. 113
12.1 PARAMETER CONDITIONS	. 113
12.1.1 Minimum and Maximum values	. 113
12.1.2 Typical values	. 113
12.1.3 Typical curves	. 113
	•
12.1.4 Loading capacitor	. 113
12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.1.5 Pin input voltage 12.1.5 Pin input voltage	. 113 . 113
12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS	. 113 . 113 . 114
12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics	. 113 . 113 . 114 . 114
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 	. 113 . 113 . 114 . 114 . 114 . 114
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 	. 113 . 113 . 114 . 114 . 114 . 114 . 115
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 	. 113 . 113 . 114 . 114 . 114 . 114 . 115 . 115
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 	 113 113 114 114 114 115 115 115 115
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 	 113 113 114 114 114 115 115 115 115 116
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 	 113 113 114 114 114 115 115 115 115 116 116
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 	 113 113 114 114 114 115 115 115 115 116 116 116 118
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 	 113 113 114 114 114 115 115 115 115 116 116 118 119
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 	 113 113 114 114 114 115 115 115 115 116 116 116 118 119 120
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 12.5.1 General Timings 	 113 113 114 114 114 114 115 115 115 115 116 116 116 116 118 119 120 120
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 12.5.1 General Timings 12.5.2 External Clock Source 12.5 Current Consumption 	 113 113 114 114 114 115 115 115 115 116 116 118 119 120 120 120
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 12.5.1 General Timings 12.5.2 External Clock Source 12.5.3 Crystal and Ceramic Resonator Oscillators 12.5.4 PLL Characteristics 	 113 113 114 114 114 115 115 115 115 116 116 116 116 118 119 120 120 120 121 122
 12.1.4 Loading capacitor 12.1.5 Pin input voltage 12.2 ABSOLUTE MAXIMUM RATINGS 12.2.1 Voltage Characteristics 12.2.2 Current Characteristics 12.2.3 Thermal Characteristics 12.3 OPERATING CONDITIONS 12.3.1 Operating Conditions 12.4 SUPPLY CURRENT CHARACTERISTICS 12.4.1 CURRENT CONSUMPTION 12.4.2 Supply and Clock Managers 12.4.3 On-Chip Peripherals 12.5 CLOCK AND TIMING CHARACTERISTICS 12.5.1 General Timings 12.5.2 External Clock Source 12.5.3 Crystal and Ceramic Resonator Oscillators 12.6 MEMORY CHABACTERISTICS 	 113 113 114 114 114 115 115 115 115 115 116 116 116 118 119 120 120 120 121 123 124

57

PIN DESCRIPTION (Cont'd)

	Pin	n°				Le	evel			Р	ort			Main			
44	42	32	32	Pin Name	ype	Ŧ	out		Inp	out		Out	tput	function	Alternate	Function	
TQFF	SDIP	TQFF	SDIP		F	Inpi	Outp	float	ndw	int	ana	OD	РР	reset)			
24	17	9	12	PC1/OCMP1_B/ AIN13	I/O	С _т		x	х		х	х	x	Port C1	Timer B Out- put Com- pare 1	ADC Analog Input 13	
25	18	10	13	PC2 (HS)/ICAP2_B	I/O	C_{T}	HS	Х	Х			Х	Х	Port C2	Timer B Input	t Capture 2	
26	19	11	14	PC3 (HS)/ICAP1_B	I/O	C_T	HS	X	Х			Х	Х	Port C3	Timer B Input	t Capture 1	
27	20	12	15	PC4/MISO/ICCDA- TA	I/O	CT		x	х			х	x	Port C4	SPI Master In / Slave Out Data	ICC Data In- put	
28	21	13	16	PC5/MOSI/AIN14	I/O	CT		x	х		х	х	х	Port C5	SPI Master Out / Slave In Data	ADC Analog Input 14	
29	22	14	17	PC6/SCK/ICCCLK	I/O	CT		x	Х			х	х	Port C6	SPI Serial Clock	ICC Clock Output	
30	23	15	18	PC7/SS/AIN15	I/O	CT		x	х		х	х	х	Port C7	SPI Slave Select (ac- tive low)	ADC Analog Input 15	
31	24	16	19	PA3 (HS)	I/O	C_T	HS	Х		ei0		Х	Х	Port A3			
32	25			V _{DD_1}	S									Digital Main Supply Voltage			
33	26			V _{SS_1}	S									Digital G	Digital Ground Voltage		
34	27	17	20	PA4 (HS)	I/O	C_T	HS	X	Х			Х	Х	Port A4	^{>} ort A4		
35	28			PA5 (HS)	I/O	C_T	HS	Х	Х			Х	Х	Port A5			
36	29	18	21	PA6 (HS)	I/O	C_T	HS	Х				Т		Port A6 ¹)		
37	30	19	22	PA7 (HS)	I/O	C_T	HS	Х				Т		Port A7 ¹)		
38	31	20	23	V _{PP} /ICCSEL	I									Must be t grammin programm Section 1 voltage n devices.	Must be tied low. In the flash pro- gramming mode, this pin acts as the programming voltage input V_{PP} . See Section 12.9.2 for more details. High voltage must not be applied to ROM devices.		
39	32	21	24	RESET	I/O	C_T								Top prior	ity non maskal	ole interrupt.	
40	33	22	25	V _{SS_2}	S									Digital G	round Voltage		
41	34	23	26	OSC2	0									Resonate	or oscillator inv	erter output	
42	35	24	27	OSC1	I									External cillator in	clock input or I verter input	Resonator os-	
43	36	25	28	V _{DD_2}	S									Digital M	Aain Supply Voltage		
44	37	26	29	PE0/TDO	I/O	C_T		Х	Х			Х	Х	Port E0	SCI Transmit	Data Out	
1	38	27	30	PE1/RDI	I/O	C_{T}		Х	Х			Х	Х	Port E1	SCI Receive	Data In	
2	39	28	31	PB0	I/O	CT		x	е	i2		х	х	Port B0	Caution: Negative current injection not allowed on this pin ⁵⁾		
3	40			PB1	I/O	C_T		X	е	i2		Х	Х	Port B1			
4	41			PB2	I/O	C_{T}		Х	е	i2		Х	Х	Port B2			
5	42	29	32	PB3	I/O	C_{T}		Х		ei2		Х	Х	Port B3			

6 SUPPLY, RESET AND CLOCK MANAGEMENT

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in Figure 11.

For more details, refer to dedicated parametric section.

Main features

57/

- Optional PLL for multiplying the frequency by 2
- Reset Sequence Manager (RSM)
- Multi-Oscillator Clock Management (MO)
 - 5 Crystal/Ceramic resonator oscillators

6.1 PHASE LOCKED LOOP

If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply

Figure 11. Clock, Reset and Supply Block Diagram

the frequency by two to obtain an f_{OSC2} of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL is disabled, then $f_{OSC2} = f_{OSC}/2$.

Caution: The PLL is not recommended for applications where timing accuracy is required.

Figure 10. PLL Block Diagram

7 INTERRUPTS

7.1 INTRODUCTION

The ST7 enhanced interrupt management provides the following features:

- Hardware interrupts
- Software interrupt (TRAP)
- Nested or concurrent interrupt management with flexible interrupt priority and level management:
 - Up to 4 software programmable nesting levels
 - Up to 16 interrupt vectors fixed by hardware
- 2 non maskable events: RESET, TRAP

This interrupt management is based on:

- Bit 5 and bit 3 of the CPU CC register (I1:0),
- Interrupt software priority registers (ISPRx),
- Fixed interrupt vector addresses located at the high addresses of the memory map (FFE0h to FFFFh) sorted by hardware priority order.

This enhanced interrupt controller guarantees full upward compatibility with the standard (not nested) ST7 interrupt controller.

7.2 MASKING AND PROCESSING FLOW

The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see Table 6). The processing flow is shown in Figure 15

Figure 15. Interrupt Processing Flowchart

When an interrupt request has to be serviced:

- Normal processing is suspended at the end of the current instruction execution.
- The PC, X, A and CC registers are saved onto the stack.
- I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx registers of the serviced interrupt vector.
- The PC is then loaded with the interrupt vector of the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to "Interrupt Mapping" table for vector addresses).

The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.

Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack and the program in the previous level will resume.

Table 6. Interrupt Software Priority Levels

Interrupt software priority	Level	l1	10
Level 0 (main)	Low	1	0
Level 1		0	1
Level 2	•	0	0
Level 3 (= interrupt disable)	High	1	1

INTERRUPTS (Cont'd)

Table 9. Nested Interrupts Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
		е	i1	ei0		MCC	MCC + SI		
0024h	ISPR0	l1_3	10_3	l1_2	10_2	l1_1	I0_1		
	Reset Value	1	1	1	1	1	1	1	1
		S	PI			e	i3	ei2	
0025h	ISPR1	l1_7	10_7	l1_6	10_6	l1_5	10_5	l1_4	10_4
	Reset Value	1	1	1	1	1	1	1	1
		AVD		SCI		TIMER B		TIMER A	
0026h	ISPR2	11_11	l0_11	l1_10	l0_10	l1_9	10_9	l1_8	10_8
	Reset Value	1	1	1	1	1	1	1	1
0027h	ISPR3					l1_13	l0_13	l1_12	10_12
	Reset Value	1	1	1	1	1	1	1	1
00006	EICR	IS11	IS10	IPB	IS21	IS20	IPA		
002011	Reset Value	0	0	0	0	0	0	0	0

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
002Ah	WDGCR	WDGA	T6	T5	T4	T3	T2	T1	T0
	Reset Value	0	1	1	1	1	1	1	1

Table 14. Watchdog Timer Register Map and Reset Values

16-BIT TIMER (Cont'd)

10.3.4 Low Power Modes

Mode	Description
WAIT	No effect on 16-bit Timer.
WAII	Timer interrupts cause the device to exit from WAIT mode.
	16-bit Timer registers are frozen.
HALT	In HALT mode, the counter stops counting until Halt mode is exited. Counting resumes from the previous count when the MCU is woken up by an interrupt with "exit from HALT mode" capability or from the counter reset value when the MCU is woken up by a RESET.
	If an input capture event occurs on the ICAP <i>i</i> pin, the input capture detection circuitry is armed. Consequently, when the MCU is woken up by an interrupt with "exit from HALT mode" capability, the ICF <i>i</i> bit is set, and the counter value present when exiting from HALT mode is captured into the IC <i>i</i> R register.

10.3.5 Interrupts

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
Input Capture 1 event/Counter reset in PWM mode	ICF1	ICIE	Yes	No
Input Capture 2 event	ICF2		Yes	No
Output Compare 1 event (not available in PWM mode)	OCF1		Yes	No
Output Compare 2 event (not available in PWM mode)	OCF2		Yes	No
Timer Overflow event	TOF	TOIE	Yes	No

Note: The 16-bit Timer interrupt events are connected to the same interrupt vector (see Interrupts chapter). These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction).

10.3.6 Summary of Timer modes

MODES	TIMER RESOURCES							
MODES	Input Capture 1	Input Capture 2	Output Compare 1	Output Compare 2				
Input Capture (1 and/or 2)	Yes	Yes ²⁾	Yes	Yes				
Output Compare (1 and/or 2)	Yes	Yes	Yes	Yes				
One Pulse Mode	No	Not Recommended ¹⁾	No	Partially ²⁾				
PWM Mode	No	Not Recommended ³⁾	No	No				

1) See note 4 in Section 10.3.3.5 One Pulse Mode

2) See note 5 and 6 in Section 10.3.3.5 One Pulse Mode

3) See note 4 in Section 10.3.3.6 Pulse Width Modulation Mode

SERIAL PERIPHERAL INTERFACE (Cont'd)

10.4.4 Clock Phase and Clock Polarity

Four possible timing relationships may be chosen by software, using the CPOL and CPHA bits (See Figure 48).

Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data capture clock edge

Figure 48, shows an SPI transfer with the four combinations of the CPHA and CPOL bits. The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the MISO pin, the MOSI pin are directly connected between the master and the slave device.

Note: If CPOL is changed at the communication byte boundaries, the SPI must be disabled by resetting the SPE bit.

Figure 48. Data Clock Timing Diagram

SERIAL PERIPHERAL INTERFACE (Cont'd)

10.4.6 Low Power Modes

Mode	Description
WAIT	No effect on SPI. SPI interrupt events cause the device to exit from WAIT mode.
HALT	SPI registers are frozen. In HALT mode, the SPI is inactive. SPI oper- ation resumes when the MCU is woken up by an interrupt with "exit from HALT mode" ca- pability. The data received is subsequently read from the SPIDR register when the soft- ware is running (interrupt vector fetching). If several data are received before the wake- up event, then an overrun error is generated. This error can be detected after the fetch of the interrupt routine that woke up the device.

10.4.6.1 Using the SPI to wakeup the MCU from Halt mode

In slave configuration, the SPI is able to wakeup the ST7 device from HALT mode through a SPIF interrupt. The data received is subsequently read from the SPIDR register when the software is running (interrupt vector fetch). If multiple data transfers have been performed before software clears the SPIF bit, then the OVR bit is set by hardware. **Note:** When waking up from Halt mode, if the SPI remains in Slave mode, it is recommended to perform an extra communications cycle to bring the SPI from Halt mode state to normal state. If the SPI exits from Slave mode, it returns to normal state immediately.

Caution: The SPI can wake up the ST7 from Halt mode only if the Slave Select signal (external SS pin or the SSI bit in the SPICSR register) is low when the ST7 enters Halt mode. So if Slave selection is configured as external (see Section 10.4.3.2), make sure the master drives a low level on the SS pin when the slave enters Halt mode.

10.4.7 Interrupts

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
SPI End of Transfer Event	SPIF		Yes	Yes
Master Mode Fault Event	MODF	SPIE	Yes	No
Overrun Error	OVR		Yes	No

Note: The SPI interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in

10.5 SERIAL COMMUNICATIONS INTERFACE (SCI)

10.5.1 Introduction

The Serial Communications Interface (SCI) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The SCI offers a very wide range of baud rates using two baud rate generator systems.

10.5.2 Main Features

- Full duplex, asynchronous communications
- NRZ standard format (Mark/Space)
- Dual baud rate generator systems
- Independently programmable transmit and receive baud rates up to 500K baud.
- Programmable data word length (8 or 9 bits)
- Receive buffer full, Transmit buffer empty and End of Transmission flags
- Two receiver wake-up modes:
 - Address bit (MSB)
 - Idle line
- Muting function for multiprocessor configurations
- Separate enable bits for Transmitter and Receiver
- Four error detection flags:
 - Overrun error
 - Noise error
 - Frame error
 - Parity error
- Five interrupt sources with flags:
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle line received
 - Overrun error detected
- Parity control:

57/

- Transmits parity bit
- Checks parity of received data byte
- Reduced power consumption mode

10.5.3 General Description

The interface is externally connected to another device by two pins (see Figure 52):

- TDO: Transmit Data Output. When the transmitter and the receiver are disabled, the output pin returns to its I/O port configuration. When the transmitter and/or the receiver are enabled and nothing is to be transmitted, the TDO pin is at high level.
- RDI: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise.

Through these pins, serial data is transmitted and received as frames comprising:

- An Idle Line prior to transmission or reception
- A start bit
- A data word (8 or 9 bits) least significant bit first
- A Stop bit indicating that the frame is complete.
- This interface uses two types of baud rate generator:
- A conventional type for commonly-used baud rates,
- An extended type with a prescaler offering a very wide range of baud rates even with non-standard oscillator frequencies.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 register.

Character Transmission

During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 51).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIETPR registers.
- Set the TE bit to assign the TDO pin to the alternate function and to send a idle frame as first transmission.
- Access the SCISR register and write the data to send in the SCIDR register (this sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.

Clearing the TDRE bit is always performed by the following software sequence:

- 1. An access to the SCISR register
- 2. A write to the SCIDR register

The TDRE bit is set by hardware and it indicates:

- The TDR register is empty.
- The data transfer is beginning.
- The next data can be written in the SCIDR register without overwriting the previous data.

This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR register.

When a transmission is taking place, a write instruction to the SCIDR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission.

When no transmission is taking place, a write instruction to the SCIDR register places the data directly in the shift register, the data transmission starts, and the TDRE bit is immediately set. When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt is generated if the TCIE is set and the I bit is cleared in the CCR register.

Clearing the TC bit is performed by the following software sequence:

1. An access to the SCISR register

2. A write to the SCIDR register

Note: The TDRE and TC bits are cleared by the same software sequence.

Break Characters

Setting the SBK bit loads the shift register with a break character. The break frame length depends on the M bit (see Figure 52).

As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame.

Idle Characters

Setting the TE bit drives the SCI to send an idle frame before the first data frame.

Clearing and then setting the TE bit during a transmission sends an idle frame after the current word.

Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the best time to toggle the TE bit is when the TDRE bit is set i.e. before writing the next byte in the SCIDR.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4.7 Parity Control

Parity control (generation of parity bit in transmission and parity checking in reception) can be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length defined by the M bit, the possible SCI frame formats are as listed in Table 20.

Table 20. Frame Forma	ts
-----------------------	----

M bit	PCE bit	SCI frame
0	0	SB 8 bit data STB
0	1 SB 7-bit data PB	
1	0	SB 9-bit data STB
1	1	SB 8-bit data PB STB

Legend: SB = Start Bit, STB = Stop Bit,

PB = Parity Bit

Note: In case of wake up by an address mark, the MSB bit of the data is taken into account and not the parity bit

Even parity: the parity bit is calculated to obtain an even number of "1s" inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Ex: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit = 0).

Odd parity: the parity bit is calculated to obtain an odd number of "1s" inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Ex: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit = 1).

Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted but is changed by the parity bit.

Reception mode: If the PCE bit is set then the interface checks if the received data byte has an

even number of "1s" if even parity is selected (PS=0) or an odd number of "1s" if odd parity is selected (PS=1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is generated if PIE is set in the SCICR1 register.

10.5.4.8 SCI Clock Tolerance

During reception, each bit is sampled 16 times. The majority of the 8th, 9th and 10th samples is considered as the bit value. For a valid bit detection, all the three samples should have the same value otherwise the noise flag (NF) is set. For example: if the 8th, 9th and 10th samples are 0, 1 and 1 respectively, then the bit value will be "1", but the Noise Flag bit is be set because the three samples values are not the same.

Consequently, the bit length must be long enough so that the 8th, 9th and 10th samples have the desired bit value. This means the clock frequency should not vary more than 6/16 (37.5%) within one bit. The sampling clock is resynchronized at each start bit, so that when receiving 10 bits (one start bit, 1 data byte, 1 stop bit), the clock deviation must not exceed 3.75%.

Note: The internal sampling clock of the microcontroller samples the pin value on every falling edge. Therefore, the internal sampling clock and the time the application expects the sampling to take place may be out of sync. For example: If the baud rate is 15.625 kbaud (bit length is 64µs), then the 8th, 9th and 10th samples will be at 28µs, 32µs & 36µs respectively (the first sample starting ideally at 0µs). But if the falling edge of the internal clock occurs just before the pin value changes, the samples would then be out of sync by ~4us. This means the entire bit length must be at least 40µs (36µs for the 10th sample + 4µs for synchronization with the internal sampling clock).

SERIAL COMMUNICATIONS INTERFACE (Cont'd) EXTENDED RECEIVE PRESCALER DIVISION REGISTER (SCIERPR)

Read/Write

Reset Value: 0000 0000 (00h)

Allows setting of the Extended Prescaler rate division factor for the receive circuit.

7							0
ERPR							
7	6	5	4	3	2	1	0

Bits 7:0 = **ERPR[7:0]** 8-bit Extended Receive Prescaler Register.

The extended Baud Rate Generator is activated when a value different from 00h is stored in this register. Therefore the clock frequency issued from the 16 divider (see Figure 53) is divided by the binary factor set in the SCIERPR register (in the range 1 to 255).

The extended baud rate generator is not used after a reset.

Table 21. Baudrate Selection

57

EXTENDED TRANSMIT PRESCALER DIVISION REGISTER (SCIETPR)

Read/Write

Reset Value:0000 0000 (00h)

Allows setting of the External Prescaler rate division factor for the transmit circuit.

7							0
ETPR							
7	6	5	4	3	2	1	0

Bits 7:0 = **ETPR[7:0]** 8-bit Extended Transmit Prescaler Register.

The extended Baud Rate Generator is activated when a value different from 00h is stored in this register. Therefore the clock frequency issued from the 16 divider (see Figure 53) is divided by the binary factor set in the SCIETPR register (in the range 1 to 255).

The extended baud rate generator is not used after a reset.

			Cor		Baud		
Symbol	Parameter	f _{CPU}	Accuracy vs. Standard	Prescaler	Standard	Rate	Unit
f _{Tx} f _{Rx}	Communication frequency	8MHz	~0.16%	Conventional Mode TR (or RR)=128, PR=13 TR (or RR)= 32, PR=13 TR (or RR)= 16, PR=13 TR (or RR)= 8, PR=13 TR (or RR)= 4, PR=13 TR (or RR)= 16, PR= 3 TR (or RR)= 2, PR=13 TR (or RR)= 1, PR=13	300 1200 2400 4800 9600 10400 19200 38400	~300.48 ~1201.92 ~2403.84 ~4807.69 ~9615.38 ~10416.67 ~19230.77 ~38461.54	Hz
			~0.79%	Extended Mode ETPR (or ERPR) = 35, TR (or RR)= 1, PR=1	14400	~14285.71	

10-BIT A/D CONVERTER (ADC) (Cont'd)

10.6.6 Register Description

CONTROL/STATUS REGISTER (ADCCSR)

Read/Write (Except bit 7 read only)

Reset Value: 0000 0000 (00h)

7							0
EOC	SPEED	ADON	0	СНЗ	CH2	CH1	CH0

Bit 7 = **EOC** End of Conversion This bit is set by hardware. It is cleared by hardware when software reads the ADCDRH register or writes to any bit of the ADCCSR register. 0: Conversion is not complete 1: Conversion complete

Bit 6 = **SPEED** ADC clock selection This bit is set and cleared by software. 0: $f_{ADC} = f_{CPU}/4$ 1: $f_{ADC} = f_{CPU}/2$

Bit 5 = **ADON** A/D Converter on This bit is set and cleared by software. 0: Disable ADC and stop conversion 1: Enable ADC and start conversion

Bit 4 = **Reserved.** Must be kept cleared.

Bit 3:0 = CH[3:0] Channel Selection

These bits are set and cleared by software. They select the analog input to convert.

Channel Pin*	CH3	CH2	CH1	CH0
AIN0	0	0	0	0
AIN1	0	0	0	1
AIN2	0	0	1	0
AIN3	0	0	1	1
AIN4	0	1	0	0
AIN5	0	1	0	1
AIN6	0	1	1	0
AIN7	0	1	1	1
AIN8	1	0	0	0
AIN9	1	0	0	1
AIN10	1	0	1	0
AIN11	1	0	1	1
AIN12	1	1	0	0
AIN13	1	1	0	1
AIN14	1	1	1	0
AIN15	1	1	1	1

*The number of channels is device dependent. Refer to the device pinout description.

DATA REGISTER (ADCDRH)

Read Only Reset Value: 0000 0000 (00h)

7

D9	D8	D7	D6	D5	D4	D3	D2

Bit 7:0 = D[9:2] MSB of Converted Analog Value

DATA REGISTER (ADCDRL)

Read Only Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	D1	D0

Bit 7:2 = Reserved. Forced by hardware to 0.

Bit 1:0 = **D[1:0]** LSB of Converted Analog Value

0

12 ELECTRICAL CHARACTERISTICS

12.1 PARAMETER CONDITIONS

Unless otherwise specified, all voltages are referred to $\mathrm{V}_{\mathrm{SS}}.$

12.1.1 Minimum and Maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A=25^{\circ}C$ and $T_A=T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

12.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A=25^{\circ}$ C, $V_{DD}=5$ V. They are given only as design guidelines and are not tested.

12.1.3 Typical curves

57/

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

12.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 56.

Figure 56. Pin loading conditions

12.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 57.

Figure 57. Pin input voltage

10-BIT ADC CHARACTERISTICS (Cont'd)

12.12.3 ADC Accuracy

Conditions: V_{DD}=5V¹⁾

Symbol	Parameter	Conditions	Тур	Max ²⁾	Unit
IE _T I	Total unadjusted error 1)		4	6	
IE _O I	Offset error 1)		3	5	
IE _G I	Gain Error ¹⁾		0.5	4.5	LSB
IE _D I	Differential linearity error 1)	CPU in run mode @ $f_{ADC} = 2 \text{ MHz}.$	1.5	4.5	
IELI	Integral linearity error 1)	CPU in run mode @ $f_{ADC} = 2 \text{ MHz}.$	1.5	4.5	

Notes:

1. ADC Accuracy vs. Negative Injection Current: Injecting negative current may reduce the accuracy of the conversion being performed on another analog input. The effect of negative injection current on robust pins is specified in Section 12.12.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 12.8 does not affect the ADC accuracy.

2. Data based on characterization results, monitored in production to guarantee 99.73% within \pm max value from -40°C to 125°C ($\pm 3\sigma$ distribution limits).

Figure 83. ADC Accuracy Characteristics

15 KNOWN LIMITATIONS

15.1 ALL FLASH AND ROM DEVICES

15.1.1 Safe Connection of OSC1/OSC2 Pins

The OSC1 and/or OSC2 pins must not be left unconnected otherwise the ST7 main oscillator may start and, in this configuration, could generate an f_{OSC} clock frequency in excess of the allowed maximum (>16MHz.), putting the ST7 in an unsafe/undefined state. Refer to Section 6.2 on page 24.

15.1.2 Unexpected Reset Fetch

If an interrupt request occurs while a "POP CC" instruction is executed, the interrupt controller does not recognise the source of the interrupt and, by default, passes the RESET vector address to the CPU.

Workaround

To solve this issue, a "POP CC" instruction must always be preceded by a "SIM" instruction.

15.1.3 Clearing active interrupts outside interrupt routine

When an active interrupt request occurs at the same time as the related flag is being cleared, an unwanted reset may occur.

Note: clearing the related interrupt mask will not generate an unwanted reset

Concurrent interrupt context

The symptom does not occur when the interrupts are handled normally, i.e.

when:

- The interrupt flag is cleared within its own interrupt routine
- The interrupt flag is cleared within any interrupt routine
- The interrupt flag is cleared in any part of the code while this interrupt is disabled

If these conditions are not met, the symptom can be avoided by implementing the following sequence:

Perform SIM and RIM operation before and after resetting an active interrupt request.

Example:

SIM

reset interrupt flag

RIM

Nested interrupt context:

The symptom does not occur when the interrupts are handled normally, i.e.

when:

- The interrupt flag is cleared within its own interrupt routine
- The interrupt flag is cleared within any interrupt routine with higher or identical priority level
- The interrupt flag is cleared in any part of the code while this interrupt is disabled

If these conditions are not met, the symptom can be avoided by implementing the following sequence:

PUSH CC

SIM

reset interrupt flag

POP CC

15.1.4 16-bit Timer PWM Mode

In PWM mode, the first PWM pulse is missed after writing the value FFFCh in the OC1R register (OC1HR, OC1LR). It leads to either full or no PWM during a period, depending on the OLVL1 and OLVL2 settings.

15.1.5 SCI Wrong Break duration

Description

A single break character is sent by setting and resetting the SBK bit in the SCICR2 register. In some cases, the break character may have a longer duration than expected:

- 20 bits instead of 10 bits if M=0
- 22 bits instead of 11 bits if M=1.

In the same way, as long as the SBK bit is set, break characters are sent to the TDO pin. This may lead to generate one break more than expected.

Occurrence

The occurrence of the problem is random and proportional to the baudrate. With a transmit frequency of 19200 baud (fCPU=8MHz and SCI-BRR=0xC9), the wrong break duration occurrence is around 1%.

Workaround

If this wrong duration is not compliant with the communication protocol in the application, software can request that an Idle line be generated before the break character. In this case, the break duration is always correct assuming the applica-

DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont'd)

tion is not doing anything between the idle and the break. This can be ensured by temporarily disabling interrupts.

The exact sequence is:

- Disable interrupts
- Reset and Set TE (IDLE request)
- Set and Reset SBK (Break Request)
- Re-enable interrupts

15.2 ROM DEVICES ONLY

15.2.1 I/O Port A and F Configuration

When using an external quartz crystal or ceramic resonator, a few f_{OSC2} clock periods may be lost when the signal pattern in Table 31 occurs . This is because this pattern causes the device to enter test mode and return to user mode after a few clock periods. User program execution and I/O status are not changed, only a few clock cycles are lost.

This happens with either one of the following configurations:

PA3=0, PF4=1, PF1=0 while PLL option is disabled and PF0 is toggling

PA3=0, PF4=1, PF1=0, PF0=1 while PLL option is enabled

This is detailed in the following table

57/

Table 31. Port A and F Configuration:

PLL	PA3	PF4	PF1	PF0	Clock Disturbance
OFF	0	1	0	Toggling	Max. 2 clock cy- cles lost at each rising or falling edge of PF0
ON	0	1	0	1	Max. 1 clock cy- cle lost out of every 16

15.1.6 39-Pulse ICC Entry Mode

For Flash devices, ICC mode entry using ST7 application clock (39 pulses) is not supported. External clock mode must be used (36 pulses). Refer to the ST7 Flash Programming Reference Manual.

As a consequence, for cycle-accurate operations, these configurations are prohibited in either input or output mode.

Workaround:

To avoid this occurring, it is recommended to connect one of these pins to GND (PF4 or PF0) or V_{DD} (PA3 or PF1).

15.2.2 External clock source with PLL

PLL is not supported with external clock source.