

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f32ak2t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

2 PIN D 3 REG	ODUCTION DESCRIPTION ISTER & MEMORY MAP SH PROGRAM MEMORY	8 13
4.1	INTRODUCTION	
4.2	MAIN FEATURES	
4.3	STRUCTURE	17
	4.3.1 Read-out Protection	17
4.4		18
4.5	ICP (IN-CIRCUIT PROGRAMMING)	19
4.6	IAP (IN-APPLICATION PROGRAMMING)	19
4.7	RELATED DOCUMENTATION	19
	4.7.1 Register Description	
	TRAL PROCESSING UNIT	
5.1		
5.2	MAIN FEATURES	
5.3	CPU REGISTERS	
	PLY, RESET AND CLOCK MANAGEMENT	
6.1	PHASE LOCKED LOOP	
6.2	MULTI-OSCILLATOR (MO)	
6.3	RESET SEQUENCE MANAGER (RSM)	
	6.3.1 Introduction	
	6.3.2 Asynchronous External RESET pin	
	6.3.3 External Power-On RESET 2 6.3.4 Internal Watchdog RESET 2	
6.4	SYSTEM INTEGRITY MANAGEMENT	
	6.4.1 Register Description	
7 INTE	RRUPTS	
7.1		28
7.2	MASKING AND PROCESSING FLOW	28
7.3	INTERRUPTS AND LOW POWER MODES	30
7.4	CONCURRENT & NESTED MANAGEMENT	30
7.5	INTERRUPT REGISTER DESCRIPTION	31
7.6	EXTERNAL INTERRUPTS	33
	7.6.1 I/O Port Interrupt Sensitivity	33
7.7	EXTERNAL INTERRUPT CONTROL REGISTER (EICR)	35
8 POW	/ER SAVING MODES	37
8.1		37
8.2	SLOW MODE	
8.3	WAIT MODE	38
8.4	ACTIVE-HALT AND HALT MODES	39
	8.4.1 ACTIVE-HALT MODE	
	8.4.2 HALT MODE	40

57

Address	Block	Register Label	Register Name	Reset Status	Remarks
0031h		TACR2	Timer A Control Register 2	00h	R/W
0032h		TACR1	Timer A Control Register 1	00h	R/W
0033h		TACSR	Timer A Control/Status Register	xxxx x0xxb	R/W
0034h		TAIC1HR	Timer A Input Capture 1 High Register	xxh	Read Only
0035h		TAIC1LR	Timer A Input Capture 1 Low Register	xxh	Read Only
0036h		TAOC1HR	Timer A Output Compare 1 High Register	80h	R/W
0037h		TAOC1LR	Timer A Output Compare 1 Low Register	00h	R/W
0038h	TIMER A	TACHR	Timer A Counter High Register	FFh	Read Only
0039h		TACLR	Timer A Counter Low Register	FCh	Read Only
003Ah		TAACHR	Timer A Alternate Counter High Register	FFh	Read Only
003Bh		TAACLR	Timer A Alternate Counter Low Register	FCh	Read Only
003Ch		TAIC2HR	Timer A Input Capture 2 High Register	xxh	Read Only
003Dh		TAIC2LR	Timer A Input Capture 2 Low Register	xxh	Read Only
003Eh		TAOC2HR	Timer A Output Compare 2 High Register	80h	R/W
003Fh		TAOC2LR	Timer A Output Compare 2 Low Register	00h	R/W
0040h			Reserved Area (1 Byte)		
0041h		TBCR2	Timer B Control Register 2	00h	R/W
0042h		TBCR1	Timer B Control Register 1	00h	R/W
0043h		TBCSR	Timer B Control/Status Register	xxxx x0xxb	R/W
0044h		TBIC1HR	Timer B Input Capture 1 High Register	xxh	Read Only
0045h		TBIC1LR	Timer B Input Capture 1 Low Register	xxh	Read Only
0046h		TBOC1HR	Timer B Output Compare 1 High Register	80h	R/W
0047h		TBOC1LR	Timer B Output Compare 1 Low Register	00h	R/W
0048h	TIMER B	TBCHR	Timer B Counter High Register	FFh	Read Only
0049h		TBCLR	Timer B Counter Low Register	FCh	Read Only
004Ah		TBACHR	Timer B Alternate Counter High Register	FFh	Read Only
004Bh		TBACLR	Timer B Alternate Counter Low Register	FCh	Read Only
004Ch		TBIC2HR	Timer B Input Capture 2 High Register	xxh	Read Only
004Dh		TBIC2LR	Timer B Input Capture 2 Low Register	xxh	Read Only
004Eh		TBOC2HR	Timer B Output Compare 2 High Register	80h	R/W
004Fh		TBOC2LR	Timer B Output Compare 2 Low Register	00h	R/W
00505		00100	COL Status Desister	004	Deed Only
0050h		SCISR	SCI Status Register	C0h	Read Only
0051h		SCIDR	SCI Data Register	xxh	R/W
0052h		SCIBRR	SCI Baud Rate Register	00h	R/W
0053h	SCI	SCICR1	SCI Control Register 1	x000 0000h	R/W
0054h		SCICR2	SCI Control Register 2	00h	R/W
0055h		SCIERPR	SCI Extended Receive Prescaler Register	00h	R/W
0056h 0057h		SCIETPR	Reserved area SCI Extended Transmit Prescaler Register	 00h	R/W
			Sor Extended Hansmit Flescaler negister	001	I 1/ VV
0058h			Beconved Area (04 Pitter)		
to 006Fh			Reserved Area (24 Bytes)		
000F11		1	I	1	
0070h		ADCCSR	Control/Status Register	00h	R/W
0071h	ADC	ADCDRH	Data High Register	00h	Read Only
0072h		ADCDRL	Data Low Register	00h	Read Only
0073h 007Fh		1	Reserved Area (13 Bytes)	1	

Legend: x=undefined, R/W=read/write

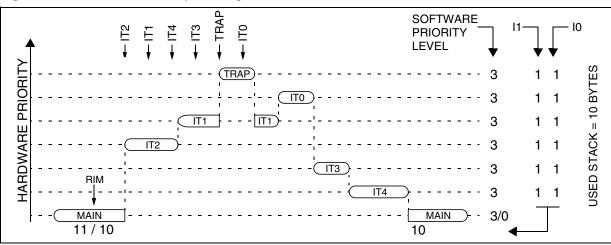
Notes:

- 1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.
- 2. The bits associated with unavailable pins must always keep their reset value.

INTERRUPTS (Cont'd)

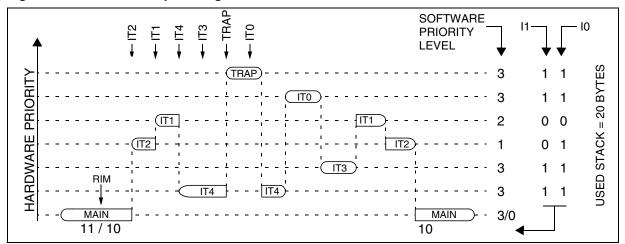
7.3 INTERRUPTS AND LOW POWER MODES

All interrupts allow the processor to exit the WAIT low power mode. On the contrary, only external and other specified interrupts allow the processor to exit from the HALT modes (see column "Exit from HALT" in "Interrupt Mapping" table). When several pending interrupts are present while exiting HALT mode, the first one serviced can only be an interrupt with exit from HALT mode capability and it is selected through the same decision process shown in Figure 16.


Note: If an interrupt, that is not able to Exit from HALT mode, is pending with the highest priority when exiting HALT mode, this interrupt is serviced after the first one serviced.

7.4 CONCURRENT & NESTED MANAGEMENT

The following Figure 17 and Figure 18 show two different interrupt management modes. The first is called concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode in Figure 18. The interrupt hardware priority is given in this order from the lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0. The software priority is given for each interrupt.


Warning: A stack overflow may occur without notifying the software of the failure.

47/

Figure 17. Concurrent Interrupt Management

Figure 18. Nested Interrupt Management

INTERRUPTS (Cont'd)

7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
IS11	IS10	IPB	IS21	IS20	IPA	0	0

Bit 7:6 = IS1[1:0] ei2 and ei3 sensitivity The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the following external interrupts: - ei2 (port B3..0)

IS11	IS10	External Interrupt Sensitivity					
1311	1010	IPB bit =0	IPB bit =1				
0	0	Falling edge & low level	Rising edge & high level				
0	1	Rising edge only	Falling edge only				
1	0	Falling edge only Rising edge on					
1	1	Rising and falling edge					

- ei3 (port B4)

IS11	IS10	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bit 5 = **IPB** Interrupt polarity for port B

This bit is used to invert the sensitivity of the port B [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3).

0: No sensitivity inversion

1: Sensitivity inversion

Bit 4:3 = **IS2[1:0]** ei0 and ei1 sensitivity The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the following external interrupts:

- ei0 (port A3..0)

IS21	IS20	External Interrupt Sensitivity				
1321	1320	IPA bit =0	IPA bit =1			
0	0	Falling edge & low level	Rising edge & high level			
0	1	Rising edge only	Falling edge only			
1	0	Falling edge only	Rising edge only			
1	1	Rising and	falling edge			

- ei1 (port F2..0)

IS21	IS20	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bit 2 = **IPA** Interrupt polarity for port A

This bit is used to invert the sensitivity of the port A [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3). 0: No sensitivity inversion

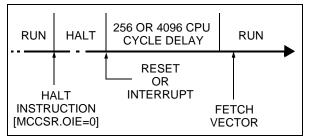
1: Sensitivity inversion

Bits 1:0 = Reserved, must always be kept cleared.

POWER SAVING MODES (Cont'd)

8.4.2 HALT MODE

The HALT mode is the lowest power consumption mode of the MCU. It is entered by executing the 'HALT' instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is cleared (see Section 10.2 on page 53 for more details on the MCCSR register).


The MCU can exit HALT mode on reception of either a specific interrupt (see Table 8, "Interrupt Mapping," on page 33) or a RESET. When exiting HALT mode by means of a RESET or an interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 26).

When entering HALT mode, the I[1:0] bits in the CC register are forced to '10b'to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.

In HALT mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator).

The compatibility of Watchdog operation with HALT mode is configured by the "WDGHALT" option bit of the option byte. The HALT instruction when executed while the Watchdog system is enabled, can generate a Watchdog RESET (see Section 14.1 on page 145) for more details.

HALT INSTRUCTION (MCCSR.OIE=0) ENABLE WATCHDOG WDGHALT 1) 0 DISAE

Figure 26. HALT Mode Flow-chart

Notes:

1. WDGHALT is an option bit. See option byte section for more details.

2. Peripheral clocked with an external clock source can still be active.

3. Only some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to Table 8, "Interrupt Mapping," on page 33 for more details.

4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

more de-

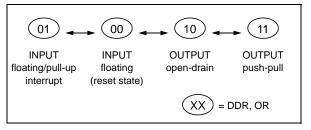
I/O PORTS (Cont'd)

CAUTION: The alternate function must not be activated as long as the pin is configured as input with interrupt, in order to avoid generating spurious interrupts.

Analog alternate function

When the pin is used as an ADC input, the I/O must be configured as floating input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input.

It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin.


WARNING: The analog input voltage level must be within the limits stated in the absolute maximum ratings.

9.3 I/O PORT IMPLEMENTATION

The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific feature of the I/O port such as ADC Input or true open drain.

Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 28 Other transitions are potentially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation.

Figure 28. Interrupt I/O Port State Transitions

9.4 LOW POWER MODES

Mode Description			
WAIT	No effect on I/O ports. External interrupts cause the device to exit from WAIT mode.		
HALT	No effect on I/O ports. External interrupts cause the device to exit from HALT mode.		

9.5 INTERRUPTS

The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and the interrupt mask in the CC register is not active (RIM instruction).

Interrupt Event	Interrupt Event Flag		Exit from Wait	Exit from Halt
External interrupt on selected external event	-	DDRx ORx	Yes	Yes

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
002Ah	WDGCR	WDGA	T6	T5	T4	T3	T2	T1	T0
	Reset Value	0	1	1	1	1	1	1	1

Table 14. Watchdog Timer Register Map and Reset Values

10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC)

The Main Clock Controller consists of three different functions:

- a programmable CPU clock prescaler
- a clock-out signal to supply external devices
- a real time clock timer with interrupt capability

Each function can be used independently and simultaneously.

10.2.1 Programmable CPU Clock Prescaler

The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal peripherals. It manages SLOW power saving mode (See Section 8.2 SLOW MODE for more details).

The prescaler selects the f_{CPU} main clock frequency and is controlled by three bits in the MCCSR register: CP[1:0] and SMS.

10.2.2 Clock-out Capability

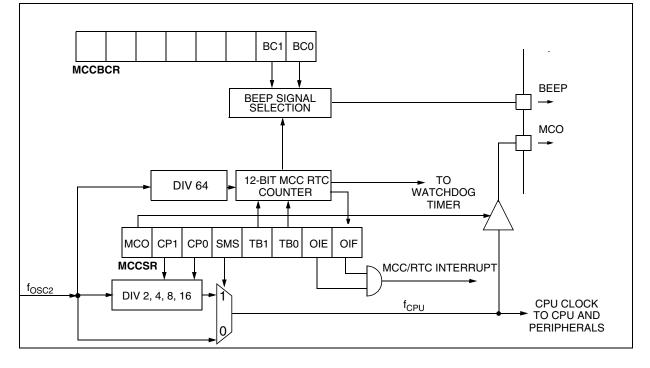
47/

The clock-out capability is an alternate function of an I/O port pin that outputs a f_{OSC2} clock to drive

external devices. It is controlled by the MCO bit in the MCCSR register.

CAUTION: When selected, the clock out pin suspends the clock during ACTIVE-HALT mode.

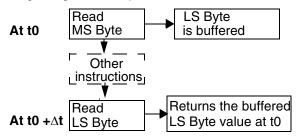
10.2.3 Real Time Clock Timer (RTC)


The counter of the real time clock timer allows an interrupt to be generated based on an accurate real time clock. Four different time bases depending directly on f_{OSC2} are available. The whole functionality is controlled by four bits of the MCC-SR register: TB[1:0], OIE and OIF.

When the RTC interrupt is enabled (OIE bit set), the ST7 enters ACTIVE-HALT mode when the HALT instruction is executed. See Section 8.4 AC-TIVE-HALT AND HALT MODES for more details.

10.2.4 Beeper

The beep function is controlled by the MCCBCR register. It can output three selectable frequencies on the BEEP pin (I/O port alternate function).


Figure 32. Main Clock Controller (MCC/RTC) Block Diagram

16-BIT TIMER (Cont'd)

16-bit read sequence: (from either the Counter Register or the Alternate Counter Register).

Beginning of the sequence

Sequence completed

The user must read the MS Byte first, then the LS Byte value is buffered automatically.

This buffered value remains unchanged until the 16-bit read sequence is completed, even if the user reads the MS Byte several times.

After a complete reading sequence, if only the CLR register or ACLR register are read, they return the LS Byte of the count value at the time of the read.

Whatever the timer mode used (input capture, output compare, one pulse mode or PWM mode) an overflow occurs when the counter rolls over from FFFFh to 0000h then:

- The TOF bit of the SR register is set.
- A timer interrupt is generated if:
 - TOIE bit of the CR1 register is set and
 - I bit of the CC register is cleared.

If one of these conditions is false, the interrupt remains pending to be issued as soon as they are both true. Clearing the overflow interrupt request is done in two steps:

1. Reading the SR register while the TOF bit is set. 2. An access (read or write) to the CLR register.

Notes: The TOF bit is not cleared by accesses to ACLR register. The advantage of accessing the ACLR register rather than the CLR register is that it allows simultaneous use of the overflow function and reading the free running counter at random times (for example, to measure elapsed time) without the risk of clearing the TOF bit erroneously.

The timer is not affected by WAIT mode.

In HALT mode, the counter stops counting until the mode is exited. Counting then resumes from the previous count (MCU awakened by an interrupt) or from the reset count (MCU awakened by a Reset).

10.3.3.2 External Clock

The external clock (where available) is selected if CC0=1 and CC1=1 in the CR2 register.

The status of the EXEDG bit in the CR2 register determines the type of level transition on the external clock pin EXTCLK that will trigger the free running counter.

The counter is synchronized with the falling edge of the internal CPU clock.

A minimum of four falling edges of the CPU clock must occur between two consecutive active edges of the external clock; thus the external clock frequency must be less than a quarter of the CPU clock frequency.

16-BIT TIMER (Cont'd)

Figure 40. Output Compare Timing Diagram, f_{TIMER} =f_{CPU}/2

INTERNAL CPU CLOCK TIMER CLOCK COUNTER REGISTER	
OUTPUT COMPARE REGISTER <i>i</i> (OCR <i>i</i>)	2ED3
OUTPUT COMPARE FLAG i (OCFi)	
OCMP <i>i</i> PIN (OLVL <i>i</i> =1)	

Figure 41. Output Compare Timing Diagram, $f_{TIMER} = f_{CPU}/4$

INTERNAL CPU CLOCK TIMER CLOCK COUNTER REGISTER OUTPUT COMPARE REGISTER <i>i</i> (OCR <i>i</i>)	
COMPARE REGISTER / LATCH	
OUTPUT COMPARE FLAG <i>i</i> (OCF <i>i</i>)	
OCMP <i>i</i> PIN (OLVL <i>i</i> =1)	

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 register.

Character Transmission

During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 51).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIETPR registers.
- Set the TE bit to assign the TDO pin to the alternate function and to send a idle frame as first transmission.
- Access the SCISR register and write the data to send in the SCIDR register (this sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.

Clearing the TDRE bit is always performed by the following software sequence:

- 1. An access to the SCISR register
- 2. A write to the SCIDR register

The TDRE bit is set by hardware and it indicates:

- The TDR register is empty.
- The data transfer is beginning.
- The next data can be written in the SCIDR register without overwriting the previous data.

This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR register.

When a transmission is taking place, a write instruction to the SCIDR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission.

When no transmission is taking place, a write instruction to the SCIDR register places the data directly in the shift register, the data transmission starts, and the TDRE bit is immediately set. When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt is generated if the TCIE is set and the I bit is cleared in the CCR register.

Clearing the TC bit is performed by the following software sequence:

1. An access to the SCISR register

A write to the SCIDR register

Note: The TDRE and TC bits are cleared by the same software sequence.

Break Characters

Setting the SBK bit loads the shift register with a break character. The break frame length depends on the M bit (see Figure 52).

As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame.

Idle Characters

Setting the TE bit drives the SCI to send an idle frame before the first data frame.

Clearing and then setting the TE bit during a transmission sends an idle frame after the current word.

Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the best time to toggle the TE bit is when the TDRE bit is set i.e. before writing the next byte in the SCIDR.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4.7 Parity Control

Parity control (generation of parity bit in transmission and parity checking in reception) can be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length defined by the M bit, the possible SCI frame formats are as listed in Table 20.

M bit	PCE bit	SCI frame
0	0	SB 8 bit data STB
0	1	SB 7-bit data PB STB
1	0	SB 9-bit data STB
1	1	SB 8-bit data PB STB

Legend: SB = Start Bit, STB = Stop Bit,

PB = Parity Bit

Note: In case of wake up by an address mark, the MSB bit of the data is taken into account and not the parity bit

Even parity: the parity bit is calculated to obtain an even number of "1s" inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Ex: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit = 0).

Odd parity: the parity bit is calculated to obtain an odd number of "1s" inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Ex: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit = 1).

Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted but is changed by the parity bit.

Reception mode: If the PCE bit is set then the interface checks if the received data byte has an

even number of "1s" if even parity is selected (PS=0) or an odd number of "1s" if odd parity is selected (PS=1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is generated if PIE is set in the SCICR1 register.

10.5.4.8 SCI Clock Tolerance

During reception, each bit is sampled 16 times. The majority of the 8th, 9th and 10th samples is considered as the bit value. For a valid bit detection, all the three samples should have the same value otherwise the noise flag (NF) is set. For example: if the 8th, 9th and 10th samples are 0, 1 and 1 respectively, then the bit value will be "1", but the Noise Flag bit is be set because the three samples values are not the same.

Consequently, the bit length must be long enough so that the 8th, 9th and 10th samples have the desired bit value. This means the clock frequency should not vary more than 6/16 (37.5%) within one bit. The sampling clock is resynchronized at each start bit, so that when receiving 10 bits (one start bit, 1 data byte, 1 stop bit), the clock deviation must not exceed 3.75%.

Note: The internal sampling clock of the microcontroller samples the pin value on every falling edge. Therefore, the internal sampling clock and the time the application expects the sampling to take place may be out of sync. For example: If the baud rate is 15.625 kbaud (bit length is 64µs), then the 8th, 9th and 10th samples will be at 28µs, 32µs & 36µs respectively (the first sample starting ideally at 0µs). But if the falling edge of the internal clock occurs just before the pin value changes, the samples would then be out of sync by ~4us. This means the entire bit length must be at least 40µs (36µs for the 10th sample + 4µs for synchronization with the internal sampling clock).

SERIAL COMMUNICATIONS INTERFACE (Cont'd) CONTROL REGISTER 2 (SCICR2)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK

Bit 7 = **TIE** *Transmitter interrupt enable.* This bit is set and cleared by software. 0: Interrupt is inhibited

1: An SCI interrupt is generated whenever TDRE=1 in the SCISR register

Bit 6 = TCIE *Transmission complete interrupt enable*

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SCI interrupt is generated whenever TC=1 in the SCISR register

Bit 5 = **RIE** Receiver interrupt enable.

This bit is set and cleared by software.

- 0: Interrupt is inhibited
- 1: An SCI interrupt is generated whenever OR=1 or RDRF=1 in the SCISR register

Bit 4 = **ILIE** *Idle line interrupt enable.*

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SCI interrupt is generated whenever IDLE=1 in the SCISR register.

Bit 3 = **TE** *Transmitter enable.*

This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled

1: Transmitter is enabled

Notes:

- During transmission, a "0" pulse on the TE bit ("0" followed by "1") sends a preamble (idle line) after the current word.
- When TE is set there is a 1 bit-time delay before the transmission starts.

Caution: The TDO pin is free for general purpose I/O only when the TE and RE bits are both cleared (or if TE is never set).

Bit 2 = **RE** Receiver enable.

This bit enables the receiver. It is set and cleared by software.

- 0: Receiver is disabled
- 1: Receiver is enabled and begins searching for a start bit

Bit 1 = **RWU** *Receiver wake-up.*

This bit determines if the SCI is in mute mode or not. It is set and cleared by software and can be cleared by hardware when a wake-up sequence is recognized.

- 0: Receiver in Active mode
- 1: Receiver in Mute mode

Note: Before selecting Mute mode (setting the RWU bit), the SCI must receive some data first, otherwise it cannot function in Mute mode with wakeup by idle line detection.

Bit 0 = SBK Send break.

This bit set is used to send break characters. It is set and cleared by software.

0: No break character is transmitted

1: Break characters are transmitted

Note: If the SBK bit is set to "1" and then to "0", the transmitter will send a BREAK word at the end of the current word.

12.2 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi-

12.2.1 Voltage Characteristics

tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit	
V _{DD} - V _{SS}	Supply voltage	6.5		
V _{PP} - V _{SS}	Programming Voltage	13	v	
V _{IN} ^{1) & 2)}	Input Voltage on true open drain pin	V _{SS} -0.3 to 6.5	v	
VIN /	Input voltage on any other pin	V_{SS} -0.3 to V_{DD} +0.3		
$ \Delta V_{DDx} $ and $ \Delta V_{SSx} $	Variations between different digital power pins	50	mV	
IV _{SSA} - V _{SSx} I	Variations between digital and analog ground pins	50	IIIV	
V _{ESD(HBM)} Electro-static discharge voltage (Human Body Model)		see Section 12.7.3 on p	200 127	
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	366 366001 12.7.3 01 p	aye 127	

12.2.2 Current Characteristics

Symbol	Ratings	Ratings			
I _{VDD}	Total current into V _{DD} power lines (source) ³⁾			mA	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ³⁾			mA	
	Output current sunk by any standard I/	Output current sunk by any standard I/O and control pin			
I _{IO}	Output current sunk by any high sink I/	50			
	Output current source by any I/Os and	- 25			
	Injected current on V _{PP} pin		± 5		
	Injected current on RESET pin		± 5	mA	
I _{INJ(PIN)} ^{2) & 4)}	Injected current on OSC1 and OSC2 p	ins	± 5		
	Injected current on Flash device pin PE	+5			
	Injected current on any other pin 5) & 6)	± 5			
ΣI _{INJ(PIN)} ²⁾	Total injected current (sum of all I/O ar	id control pins) ⁵⁾	± 25		

Notes:

1. Directly connecting the RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7k Ω for RESET, 10k Ω for I/Os). For the same reason, unused I/O pins must not be directly tied to V_{DD} or V_{SS}.

2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

3. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.

4. Negative injection disturbs the analog performance of the device. See note in "ADC Accuracy" on page 140.

For best reliability, it is recommended to avoid negative injection of more than 1.6mA.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterisation with $\Sigma I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device.

6. True open drain I/O port pins do not accept positive injection.

EMC CHARACTERISTICS (Cont'd)

12.7.3 Absolute Maximum Ratings (Electrical Sensitivity)

Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

12.7.3.1 Electro-Static Discharge (ESD)

Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: Human Body Model and Machine Model. This test conforms to the JESD22-A114A/A115A standard.

Absolute Maximum Ratings

Symbol	Ratings	Conditions	Maximum value 1)	Unit
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	T _A =+25°C	2000	
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	T _A =+25°C	200	V
V _{ESD(CD)}	Electro-static discharge voltage (Charged Device Model)	T _A =+25°C	250	

Notes:

1. Data based on characterization results, not tested in production.

- 12.7.3.2 Static and Dynamic Latch-Up
- LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
- DLU: Electro-Static Discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181.

Electrical Sensitivities

Symbol	Parameter	Conditions	Class ¹⁾
		T_{A} =+25°C T_{A} =+85°C T_{A} =+105°C T_{A} =+125°C	А
LU		T _A =+85°C	A
LU	Static latch-up class	T _A =+105°C	A
		T _A =+125°C	А
DLU	Dynamic latch-up class	$V_{DD}\!\!=\!\!5.5V,f_{OSC}\!\!=\!\!4MHz,T_{A}\!\!=\!\!+25^{\circ}C$	A

Notes:

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).

12.8 I/O PORT PIN CHARACTERISTICS

12.8.1 General Characteristics

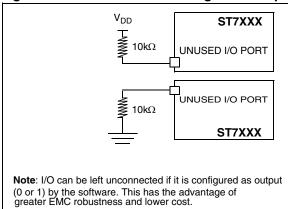
Subject to general operating conditions for V_{DD}, f_{OSC}, and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage (standard voltage devices) ¹⁾				0.3xV _{DD}	V
V _{IH}	Input high level voltage 1)		$0.7 \mathrm{xV}_{\mathrm{DD}}$			v
V _{hys}	Schmitt trigger voltage hysteresis ²⁾			0.7		v
ı 3)	Injected Current on Flash device pin PB0		0		+4	
$\left _{\mathrm{INJ(PIN)}}^{3}\right)$	Injected Current on other I/O pins	V _{DD} =5V			±4	mA
$\Sigma I_{\rm INJ(PIN)}^{3)}$	Total injected current (sum of all I/O and control pins)				±25	
l _{ikg}	Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$			±1	
۱ _S	Static current consumption induced by each floating input pin	Floating input mode ⁴⁾		200		μA
R _{PU}	Weak pull-up equivalent resistor ⁵⁾	V _{IN} =V _{SS} V _{DD} =5V	50	120	250	kΩ
C _{IO}	I/O pin capacitance			5		pF
t _{f(IO)out}	Output high to low level fall time ¹⁾	C _L =50pF		25		
t _{r(IO)out}	Output low to high level rise time ¹⁾	Between 10% and 90%		25		ns
t _{w(IT)in}	External interrupt pulse time ⁶⁾		1			t _{CPU}

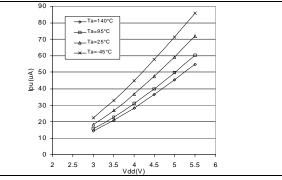
Notes:

1. Data based on characterization results, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.


3. When the current limitation is not possible, the V_{IN} maximum must be respected, otherwise refer to $I_{INJ(PIN)}$ specification. A positive injection is induced by V_{IN} >V_{DD} while a negative injection is induced by V_{IN} <V_{SS}. Refer to Section 12.2.2 on page 114 for more details.

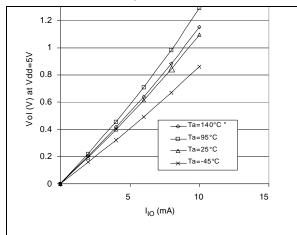
4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example and leaving the I/O unconnected on the board or an external pull-up or pull-down resistor (see Figure 66). Static peak current value taken at a fixed V_{IN} value, based on design simulation and technology characteristics, not tested in production. This value depends on V_{DD} and temperature values.


5. The R_{PU} pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described in Figure 67).

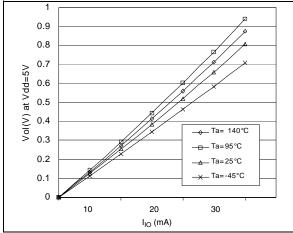
6. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source.

Figure 66. Unused I/O Pins configured as input

Figure 67. Typical I_{PU} vs. V_{DD} with V_{IN}=V_{SS}


I/O PORT PIN CHARACTERISTICS (Cont'd)

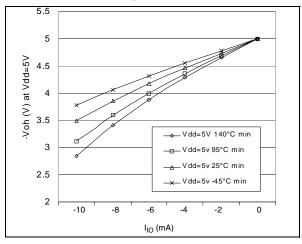
12.8.2 Output Driving Current


Subject to general operating conditions for V_{DD}, f_{CPU}, and T_A unless otherwise specified.

Symbol	Parameter		Conditions	Min	Max	Unit
	OL ¹⁾ Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see Figure 68) Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time (see Figure 69 and Figure 71)		I _{IO} =+5mA		1.2	
1)			I _{IO} =+2mA		0.5	
V _{OL} ')			I _{IO} =+20mA, T _A ≤85°C T _A >85°C		1.3 1.5	v
			I _{IO} =+8mA		0.6	
V _{OH} ²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time		I _{IO} =-5mA, T _A ≤85°C T _A >85°C			
	(see Figure 70 and Figure 73)		I _{IO} =-2mA	V _{DD} -0.7		1

Figure 68. Typical V_{OL} at V_{DD}=5V (std. ports)

Figure 69. Typ. V_{OL} at V_{DD}=5V (high-sink ports)


Notes:

<u>ل</u>حک

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}. True open drain I/O pins do not have V_{OH}.

Figure 70. Typical V_{OH} at V_{DD} =5V

12.9 CONTROL PIN CHARACTERISTICS

12.9.1 Asynchronous RESET Pin

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Symbol	Parameter	Cor	Conditions		Тур	Max	Unit
V _{hys}	Schmitt trigger voltage hysteresis 2)				2.5		
V _{IL}	Input low level voltage 1)					$0.16 \mathrm{xV}_{\mathrm{DD}}$	V
V _{IH}	Input high level voltage 1)			$0.85 \mathrm{xV}_{\mathrm{DD}}$			v
V _{OL}	Output low level voltage 3)	V _{DD} =5V	I _{IO} =+2mA		0.2	0.5	V
I _{IO}	Driving current on RESET pin				2		mA
R _{ON}	Weak pull-up equivalent resistor	V _{DD} =5V		20	30	120	kΩ
t _{w(RSTL)out}	Generated reset pulse duration	Internal re	eset sources	20	30	42 ⁶⁾	μS
t _{h(RSTL)in}	External reset pulse hold time 4)			2.5			μS
t _{g(RSTL)in}	Filtered glitch duration ⁵⁾				200		ns

Notes:

1. Data based on characterization results, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels.

3. The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

4. To guarantee the reset of the device, a minimum pulse has to be applied to the $\overrightarrow{\text{RESET}}$ pin. All short pulses applied on the RESET pin with a duration below $t_{h(\text{RSTL})in}$ can be ignored.

5. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy environments.

6. Data guaranteed by design, not tested in production.

14.6 ST7 APPLICATION NOTES

Table 30. ST7 Application Notes

IDENTIFICATION	DESCRIPTION
APPLICATION EX	AMPLES
AN1658	SERIAL NUMBERING IMPLEMENTATION
AN1720	MANAGING THE READ-OUT PROTECTION IN FLASH MICROCONTROLLERS
AN1755	A HIGH RESOLUTION/PRECISION THERMOMETER USING ST7 AND NE555
EXAMPLE DRIVER	RS
AN 969	SCI COMMUNICATION BETWEEN ST7 AND PC
AN 970	SPI COMMUNICATION BETWEEN ST7 AND EEPROM
AN 972	ST7 SOFTWARE SPI MASTER COMMUNICATION
AN 973	SCI SOFTWARE COMMUNICATION WITH A PC USING ST72251 16-BIT TIMER
AN 974	REAL TIME CLOCK WITH ST7 TIMER OUTPUT COMPARE
AN 976	DRIVING A BUZZER THROUGH ST7 TIMER PWM FUNCTION
AN 979	DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC
AN 980	ST7 KEYPAD DECODING TECHNIQUES, IMPLEMENTING WAKE-UP ON KEYSTROKE
AN1041	USING ST7 PWM SIGNAL TO GENERATE ANALOG OUTPUT (SINUSOÏD)
AN1044	MULTIPLE INTERRUPT SOURCES MANAGEMENT FOR ST7 MCUS
AN1046	UART EMULATION SOFTWARE
AN1047	MANAGING RECEPTION ERRORS WITH THE ST7 SCI PERIPHERALS
AN1048	ST7 SOFTWARE LCD DRIVER
AN1078	PWM DUTY CYCLE SWITCH IMPLEMENTING TRUE 0% & 100% DUTY CYCLE
AN1445	EMULATED 16 BIT SLAVE SPI
AN1504	STARTING A PWM SIGNAL DIRECTLY AT HIGH LEVEL USING THE ST7 16-BIT TIMER
GENERAL PURPC	DSE
AN1476	LOW COST POWER SUPPLY FOR HOME APPLIANCES
AN1709	EMC DESIGN FOR ST MICROCONTROLLERS
AN1752	ST72324 QUICK REFERENCE NOTE
PRODUCT EVALU	
AN 910	PERFORMANCE BENCHMARKING
AN 990	ST7 BENEFITS VERSUS INDUSTRY STANDARD
AN1150	BENCHMARK ST72 VS PC16
AN1151	PERFORMANCE COMPARISON BETWEEN ST72254 & PC16F876
AN1278	LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS
PRODUCT MIGRA	
AN1131	MIGRATING APPLICATIONS FROM ST72511/311/214/124 TO ST72521/321/324
PRODUCT OPTIM	IZATION
	USING ST7 WITH CERAMIC RESONATOR
AN1014	HOW TO MINIMIZE THE ST7 POWER CONSUMPTION
AN1015	SOFTWARE TECHNIQUES FOR IMPROVING MICROCONTROLLER EMC PERFORMANCE
AN1070	ST7 CHECKSUM SELF-CHECKING CAPABILITY
AN1181	ELECTROSTATIC DISCHARGE SENSITIVE MEASUREMENT
AN1502	EMULATED DATA EEPROM WITH ST7 HDFLASH MEMORY
AN1530	ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC OSCILLA- TOR
AN1636	UNDERSTANDING AND MINIMIZING ADC CONVERSION ERRORS
PROGRAMMING A	AND TOOLS
AN 978	ST7 VISUAL DEVELOP SOFTWARE KEY DEBUGGING FEATURES

