

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Active
Floating Point
CAN, EBI/EMI, Ethernet, DAI, I ² C, MMC/SD/SDIO, SPI, SPORT, UART/USART, USB OTG
450MHz
ROM (512kB)
384kB
3.30V
1.10V
-40°C ~ 85°C (TA)
Surface Mount
349-LFBGA, CSPBGA
349-CSPBGA (19x19)
https://www.e-xfl.com/product-detail/analog-devices/adsp-21583bbcz-4a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	ADSP-							
	30382	30303	30304	30387	30303	21505	21304	21507
ARM Cortex-A5 (MHz, Max)	450	450	450	450	450	N/A	N/A	N/A
ARM Core L1 Cache (I, D kB)	32, 32	32, 32	32, 32	32, 32	32, 32	N/A	N/A	N/A
ARM Core L2 Cache (kB)	256	256	256	256	256	N/A	N/A	N/A
SHARC+ Core1 (MHz, Max)	450	450	450	450	450	450	450	450
SHARC+ Core2 (MHz, Max)	N/A	450	450	450	450	450	450	450
SHARC L1 SRAM/Core (kB)	640	384	640	640	640	384	640	640
L2 SRAM (Shared) (kB)	256	256	256	256	256	256	256	256
၌ ဥပြ L2 ROM (Shared) (kB)	512	512	512	512	512	512	512	512
중 철 DDR3/DDR2/LPDDR1 Controller (16-bit)	1	1	1	2	2	1	1	2
USB 2.0 HS + PHY (Host/Device/OTG)	1	1	1	1	1	N/A	N/A	N/A
USB 2.0 HS + PHY (Host/Device)	N/A	N/A	N/A	1	1	N/A	N/A	N/A
10/100 Std EMAC	N/A	N/A	N/A	1	1	N/A	N/A	N/A
10/100/1000 /AVB EMAC + Timer IEEE 1588	1	1	1	1	1	N/A	N/A	N/A
SDIO/eMMC	N/A	N/A	N/A	1	1	N/A	N/A	N/A
PCle 2.0 (1 Lane)	N/A	N/A	N/A	N/A	1	N/A	N/A	N/A
RTC	N/A	N/A	N/A	1	1	N/A	N/A	1
GPIO Ports	Port A to E	Port A to E	Port A to E	Port A to G	Port A to G	Port A to E	Port A to E	Port A to G
GPIO + DAI Pins	80 + 28	80 + 28	80 + 28	102 + 40	102 + 40	80 + 28	80 + 28	102 + 40
19 mm × 19 mm Package Options	349-BGA	349-BGA	349-BGA	529-BGA	529-BGA	349-BGA	349-BGA	529-BGA

Table 2. Comparison of ADSP-SC58x/ADSP-2158x Processor Features

Table 3. Comparison of ADSP-SC58x/ADSP-2158x Processor Features for Automotive

Processor Feature	ADSP-SC582W	ADSP-SC583W	ADSP-SC584W	ADSP-SC587W	ADSP-21583W	ADSP-21584W
ARM Cortex-A5 (MHz, Max)	450	450	450	450	N/A	N/A
ARM Core L1 Cache (I, D kB)	32, 32	32, 32	32, 32	32, 32	N/A	N/A
ARM Core L2 Cache (kB)	256	256	256	256	N/A	N/A
SHARC+ Core1 (MHz, Max)	450	450	450	450	450	450
SHARC+ Core2 (MHz, Max)	N/A	450	450	450	450	450
SHARC L1 SRAM/Core (kB)	640	384	640	640	384	640
L2 SRAM (Shared) (kB)	256	256	256	256	256	256
चे टे L2 ROM (Shared) (kB)	512	512	512	512	512	512
S DDR3/DDR2/LPDDR1 Controller (16-bit)	1	1	1	2	1	1
USB 2.0 HS + PHY (Host/Device/OTG)	1	1	1	1	N/A	N/A
USB 2.0 HS + PHY (Host/Device)	N/A	N/A	N/A	1	N/A	N/A
10/100 Std EMAC	N/A	N/A	N/A	1	N/A	N/A
10/100/1000/AVB EMAC + Timer IEEE 1588	1	1	1	1	N/A	N/A
SDIO/eMMC	N/A	N/A	N/A	1	N/A	N/A
PCle 2.0 (1 Lane)	N/A	N/A	N/A	N/A	N/A	N/A
MLB 3-Pin/6-Pin	1	1	1	1	1	1
RTC	N/A	N/A	N/A	1	N/A	N/A
GPIO Ports	Port A to E	Port A to E	Port A to E	Port A to G	Port A to E	Port A to E
GPIO + DAI Pins	80 + 28	80 + 28	80 + 28	102 + 40	80 + 28	80 + 28
19 mm \times 19 mm Package Options	349-BGA	349-BGA	349-BGA	529-BGA	349-BGA	349-BGA

Figure 4. SHARC+ SIMD Core Block Diagram

L1 Memory

Figure 5 shows the ADSP-SC58x/ADSP-2158x memory map. Each SHARC+ core has a tightly coupled L1 SRAM of up to 5 Mb. Each SHARC+ core can access code and data in a single cycle from this memory space. The ARM Cortex-A5 core can also access this memory space with multicycle accesses.

In the SHARC+ core private address space, both cores have L1 memory.

SHARC+ core memory-mapped register (CMMR) address space is 0x 0000 0000 through 0x 0003 FFFF in Normal Word (32-bit). Each block can be configured for different combinations of code and data storage. Of the 5 Mb SRAM, up to 1024 Kb can be configured for data memory (DM), program memory (PM), and instruction cache. Each memory block supports single-cycle, independent accesses by the core processor and I/O processor. The memory architecture, in combination with its separate on-chip buses, allows two data transfers from the core and one from the DMA engine in a single cycle. The SRAM of the processor can be configured as a maximum of 160k words of 32-bit data, 320k words of 16-bit data, 106.7k words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to 5 Mb. All of the memory can be accessed as 8-bit, 16-bit, 32-bit, 48-bit, or 64-bit words. Support of a 16-bit floating-point storage format doubles the amount of data that can be stored on chip.

Conversion between the 32-bit floating-point and 16-bit floating-point formats is performed in a single instruction. While each memory block can store combinations of code and data, accesses are most efficient when one block stores data using the DM bus for transfers, and the other block stores instructions and data using the PM bus for transfers.

Using the DM and PM buses, with each bus dedicated to a memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache. The system configuration is flexible, but a typical configuration is 512 Kb DM, 128 Kb PM, and 128 Kb of instruction cache, with the remaining L1 memory configured as SRAM. Each addressable memory space outside the L1 memory can be accessed either directly or via cache.

SECURITY FEATURES

The following sections describe the security features of the ADSP-SC58x/ADSP-2158x processors.

ARM TrustZone

The ADSP-SC58x processors provide TrustZone technology that is integrated into the ARM Cortex-A5 processors. The TrustZone technology enables a secure state that is extended throughout the system fabric.

Cryptographic Hardware Accelerators

The ADSP-SC58x/ADSP-2158x processors support standardsbased hardware accelerated encryption, decryption, authentication, and true random number generation.

Support for the hardware-accelerated cryptographic ciphers includes the following:

- AES in ECB, CBC, ICM, and CTR modes with 128-bit, 192-bit, and 256-bit keys
- DES in ECB and CBC mode with 56-bit key
- 3DES in ECB and CBC mode with 3x 56-bit key
- ARC4 in stateful, stateless mode, up to 128-bit key

Support for the hardware accelerated hash functions includes the following:

- SHA-1
- SHA-2 with 224-bit and 256-bit digests
- HMAC transforms for SHA-1 and SHA-2
- MD5

Public key accelerator (PKA) is available to offload computation intensive public key cryptography operations.

Both a hardware-based nondeterministic random number generator and pseudorandom number generator are available.

Secure boot is also available with 224-bit elliptic curve digital signatures ensuring integrity and authenticity of the boot stream. Optionally, ensuring confidentiality through AES-128 encryption is available.

Employ secure debug to allow only trusted users to access the system with debug tools.

CAUTION

This product includes security features that can be used to protect embedded nonvolatile memory contents and prevent execution of unauthorized code. When security is enabled on this device (either by the ordering party or the subsequent receiving parties), the ability of Analog Devices to conduct failure analysis on returned devices is limited. Contact Analog Devices for details on the failure analysis limitations for this device.

System Protection Unit (SPU)

The system protection unit (SPU) guards against accidental or unwanted access to an MMR space of the peripheral by providing a write protection mechanism. The user can choose and configure the protected peripherals as well as configure which of the four system MMR masters (two SHARC+ cores, memory DMA, and CoreSight debug) the peripherals are guarded against.

The SPU is also part of the security infrastructure. Along with providing write protection functionality, the SPU is employed to define which resources in the system are secure or nonsecure and to block access to secure resources from nonsecure masters.

System Memory Protection Unit (SMPU)

Synonymously, the system memory protection unit (SMPU) provides memory protection against read and/or write transactions to defined regions of memory. There are SMPU units in the ADSP-SC58x/ADSP-2158x processors for each memory space, except for SHARC L1 and SPI direct memory slave.

The SMPU is also part of the security infrastructure. It allows the user to protect against arbitrary read and/or write transactions and allows regions of memory to be defined as secure and prevent nonsecure masters from accessing those memory regions.

SAFETY FEATURES

The ADSP-SC58x/ADSP-2158x processors are designed to support functional safety applications. While the level of safety is mainly dominated by the system concept, the following primitives are provided by the processors to build a robust safety concept.

Multiparity Bit Protected SHARC+ Core L1 Memories

In the SHARC+ core L1 memory space, whether SRAM or cache, multiple parity bits protect each word to detect the single event upsets that occur in all RAMs. Parity does not protect the cache tags.

Error Correcting Codes (ECC) Protected L2 Memories

Error correcting codes (ECC) correct single event upsets. A single error correct-double error detect (SEC-DED) code protects the L2 memory. By default, ECC is enabled, but it can be disabled on a per bank basis. Single-bit errors correct transparently. If enabled, dual-bit errors can issue a system event or fault. ECC protection is fully transparent to the user, even if L2 memory is read or written by 8-bit or 16-bit entities.

Cyclic Redundant Code (CRC) Protected Memories

While parity bit and ECC protection mainly protect against random soft errors in L1 and L2 memory cells, the cyclic redundant code (CRC) engines can protect against systematic errors (pointer errors) and static content (instruction code) of L1, L2, and even L3 memories (DDR2, LPDDR). The processors feature two CRC engines that are embedded in the memory to memory DMA controllers.

CRC checksums can be calculated or compared automatically during memory transfers, or one or multiple memory regions can be continuously scrubbed by a single DMA work unit as per DMA descriptor chain instructions. The CRC engine also protects data loaded during the boot process.

Signal Watchdogs

The eight general-purpose timers feature modes to monitor offchip signals. The watchdog period mode monitors whether external signals toggle with a period within an expected range. The watchdog width mode monitors whether the pulse widths of external signals are within an expected range. Both modes help to detect undesired toggling or lack of toggling of system level signals.

System Event Controller (SEC)

Besides system events, the system event controller (SEC) further supports fault management including fault action configuration as timeout, internal indication by system interrupt, or external indication through the SYS_FAULT pin and system reset.

PROCESSOR PERIPHERALS

The following sections describe the peripherals of the ADSP-SC58x/ADSP-2158x processors.

Dynamic Memory Controller (DMC)

The 16-bit dynamic memory controller (DMC) interfaces to:

- LPDDR1 (JESD209A) maximum frequency 200 MHz, DDRCLK (64 Mb to 2 Gb)
- DDR2 (JESD79-2E) maximum frequency 400 MHz, DDRCLK (256 Mb to 4 Gb)
- DDR3 (JESD79-3E) maximum frequency 450 MHz, DDRCLK (512 Mb to 8 Gb)
- DDR3L (1.5 V compatible only) maximum frequency 450 MHz, DDRCLK (512 Mb to 8 Gb)

See Table 8 for the DMC memory map.

Digital Audio Interface (DAI)

The processors support two mirrored digital audio interface (DAI) units. Each DAI can connect various peripherals to any of the DAI pins (DAI_PIN20-DAI_PIN01).

The application code makes these connections using the signal routing unit (SRU), shown in Figure 1.

The SRU is a matrix routing unit (or group of multiplexers) that enables the peripherals provided by the DAI to interconnect under software control. This functionality allows easy use of the DAI associated peripherals for a wider variety of applications by using a larger set of algorithms than is possible with nonconfigurable signal paths.

The DAI includes the peripherals described in the following sections (SPORTs, ASRC, S/PDIF, and PCG). DAI pin buffers 20 and 19 can change the polarity of the input signals. Most signals of the peripherals belonging to different DAIs cannot be interconnected, with few exceptions. The DAI_PINx pin buffers may also be used as GPIO pins. DAI input signals allow the triggering of interrupts on the rising edge, the falling edge, or both edges.

See the Digital Audio Interface (DAI) chapter of the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference for complete information on the use of the DAIs and SRUs.

Serial Ports (SPORTs)

The processors feature eight synchronous full serial ports. These ports provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices. These devices include Analog Devices AD19xx/ADAU19xx family of audio codecs, analog-to-digital converters (ADCs) and digital-to-analog converters (DACs). Two data lines, a clock, and frame sync make up the serial ports. The data lines can be programmed to either transmit or receive data and each data line has a dedicated DMA channel.

An individual full SPORT module consists of two independently configurable SPORT halves with identical functionality. Two bidirectional data lines—primary (0) and secondary (1)—are available per SPORT half and are configurable as either transmitters or receivers. Therefore, each SPORT half permits two unidirectional streams into or out of the same SPORT. This bidirectional functionality provides greater flexibility for serial communications. For full-duplex configuration, one half SPORT provides two transmit signals, while the other half SPORT provides the two receive signals. The frame sync and clock are shared.

Serial ports operate in the following six modes:

- Standard DSP serial mode
- Multichannel time division multiplexing (TDM) mode
- I²S mode
- Packed I²S mode
- Left justified mode
- Right justified mode

Asynchronous Sample Rate Converter (ASRC)

The asynchronous sample rate converter (ASRC) contains eight ASRC blocks. It is the same core in the AD1896 192 kHz stereo asynchronous sample rate converter. The ASRC provides up to 140 dB signal-to-noise ratio (SNR). The ASRC block performs synchronous or asynchronous sample rate conversion across independent stereo channels, without using internal processor resources. The ASRC blocks can also be configured to operate together to convert multichannel audio data without phase mismatches. Finally, the ASRC can clean up audio data from jittery clock sources such as the S/PDIF receiver.

S/PDIF-Compatible Digital Audio Receiver/Transmitter

The Sony/Philips Digital Interface Format (S/PDIF) is a standard audio data transfer format that allows the transfer of digital audio signals from one device to another without converting them to an analog signal. There are two S/PDIF transmit/receive

ADSP-SC58x/ADSP-2158x DETAILED SIGNAL DESCRIPTIONS

Table 11 provides a detailed description of each pin.

 Table 11. ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions

Signal Name	Direction	Description
ACM_A[n]	Output	ADC Control Signals. Function varies by mode.
ACM_T[n]	Input	External Trigger n. Input for external trigger events.
C1_FLG[n]	InOut	SHARC+ Core 1 Flag Pin.
C2_FLG[n]	InOut	SHARC+ Core 2 Flag Pin.
CAN_RX	Input	Receive. Typically an external CAN transceiver RX output.
CAN_TX	Output	Transmit. Typically an external CAN transceiver TX input.
CNT_DG	Input	Count Down and Gate. Depending on the mode of operation, this input acts either as a count down signal or a gate signal.
		Gate—stops the GP counter from incrementing or decrementing.
CNT_UD	Input	Count Up and Direction. Depending on the mode of operation, this input acts either as a count up signal or a direction signal. Count up—this input causes the GP counter to increment. Direction—selects whether the GP counter is incrementing or decrementing.
CNT_ZM	Input	Count Zero Marker. Input that connects to the zero marker output of a rotary device or detects the pressing of a pushbutton.
DAI_PIN[nn]	InOut	Pin n. The digital applications interfaces (DAI0 and DAI1) connect various peripherals to any of the DAI0_PINxx and DAI1_PINxx pins. Programs make these connections using the signal routing unit (SRU). Both DAI units are symmetric. The shared DAIx_PIN03 and DAIx_PIN04 pins allow routing between both DAI units.
DMC_A[nn]	Output	Address n. Address bus.
DMC_BA[n]	Output	Bank Address n. Defines which internal bank an activate, read, write or precharge command is applied to on the dynamic memory. Bank Address n also defines which mode registers (MR, EMR, EMR2, and/or EMR3) load during the load mode register command.
DMC_CAS	Output	Column Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the CAS input of dynamic memory.
DMC_CK	Output	Clock. Outputs DCLK to external dynamic memory.
DMC_CKE	Output	Clock Enable. Active high clock enables. Connects to the dynamic memory's CKE input.
DMC_CK	Output	Clock (Complement). Complement of DMC_CK.
DMC_CS[n]	Output	Chip Select n. Commands are recognized by the memory only when this signal is asserted.
DMC_DQ[nn]	InOut	Data n. Bidirectional data bus.
DMC_LDM	Output	Data Mask for Lower Byte. Mask for DMC_DQ07:DMC_DQ00 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.
DMC_LDQS	InOut	Data Strobe for Lower Byte. DMC_DQ07:DMC_DQ00 data strobe. Output with write data. Input with read data. Can be single-ended or differential depending on register settings.
DMC_LDQS	InOut	Data Strobe for Lower Byte (Complement). Complement of LDQS. Not used in single-ended mode.
DMC_ODT	Output	On-Die Termination. Enables dynamic memory termination resistances when driven high (assuming the memory is properly configured).
DMC_RAS	Output	Row Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the RAS input of dynamic memory.
DMC_RESET	Output	Reset (DDR3 Only).
DMC_RZQ	InOut	External Calibration Resistor Connection.
DMC_UDM	Output	Data Mask for Upper Byte. Mask for DMC_DQ15:DMC_DQ08 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.
DMC_UDQS	InOut	Data Strobe for Upper Byte. DMC_DQ15:DMC_DQ08 data strobe. Output with write data. Input with read data. Not used in single-ended mode.

Signal Name	Direction	Description
SYS_FAULT	InOut	Active-High Fault Output. Indicates internal faults or senses external faults depending on the operating mode.
SYS_FAULT	InOut	Active-Low Fault Output. Indicates internal faults or senses external faults depending on the operating mode.
SYS_HWRST	Input	Processor Hardware Reset Control. Resets the device when asserted.
SYS_RESOUT	Output	Reset Output. Indicates the device is in the reset state.
SYS_XTAL0	Output	Crystal Output.
SYS_XTAL1	Output	Crystal Output.
TM_ACI[n]	Input	Alternate Capture Input n. Provides an additional input for WIDCAP, WATCHDOG, and PININT modes.
TM_ACLK[n]	Input	Alternate Clock n. Provides an additional time base for an individual timer.
TM_CLK	Input	Clock. Provides an additional global time base for all GP timers.
TM_TMR[n]	InOut	Timer n. The main input/output signal for each timer.
TRACE_CLK	Output	Trace Clock. Clock output.
TRACE_D[nn]	Output	Trace Data n. Unidirectional data bus.
TWI_SCL	InOut	Serial Clock. Clock output when master, clock input when slave.
TWI_SDA	InOut	Serial Data. Receives or transmits data.
UART_CTS	Input	Clear to Send. Flow control signal.
UART_RTS	Output	Request to Send. Flow control signal.
UART_RX	Input	Receive. Receives input. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
UART_TX	Output	Transmit. Transmits output. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
USB_CLKIN	Input	Clock/Crystal Input. This clock input is multiplied by a PLL to form the USB clock. See data sheet specifications for frequency/tolerance information.
USB_DM	InOut	Data –. Bidirectional differential data line.
USB_DP	InOut	Data +. Bidirectional differential data line.
USB_ID	Input	OTG ID. Senses whether the controller is a host or device. This signal is pulled low when an A-type plug is sensed (signifying that the USB controller is the A device). The input is high when a B-type plug is sensed (signifying that the USB controller is the B device).
USB_VBC	Output	VBUS Control. Controls an external voltage source to supply VBUS when in host mode. Can be configured as open-drain. Polarity is configurable as well.
USB_VBUS	InOut	Bus Voltage. Connects to bus voltage in host and device modes.
USB_XTAL	Output	Crystal. Drives an external crystal. Must be left unconnected if an external clock is driving USB_CLKIN.

Table 11. ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
SYS_BMODE0	Boot Mode Control n	Not Muxed	SYS_BMODE0
SYS_BMODE1	Boot Mode Control n	Not Muxed	SYS_BMODE1
SYS_BMODE2	Boot Mode Control n	Not Muxed	SYS_BMODE2
SYS_CLKIN0	Clock/Crystal Input	Not Muxed	SYS_CLKIN0
SYS_CLKIN1	Clock/Crystal Input	Not Muxed	SYS_CLKIN1
SYS_CLKOUT	Processor Clock Output	Not Muxed	SYS_CLKOUT
SYS_FAULT	Active High Fault Output	Not Muxed	SYS_FAULT
SYS_FAULT	Active Low Fault Output	Not Muxed	SYS_FAULT
SYS_HWRST	Processor Hardware Reset Control	Not Muxed	SYS_HWRST
SYS_RESOUT	Reset Output	Not Muxed	SYS_RESOUT
SYS_XTAL0	Crystal Output	Not Muxed	SYS_XTAL0
SYS_XTAL1	Crystal Output	Not Muxed	SYS_XTAL1
TM0_ACI0	TIMER0 Alternate Capture Input 0	с	PC_14
TM0_ACI1	TIMER0 Alternate Capture Input 1	В	PB_03
TM0_ACI2	TIMER0 Alternate Capture Input 2	D	PD_13
TM0_ACI3	TIMER0 Alternate Capture Input 3	с	PC_07
TM0_ACI4	TIMER0 Alternate Capture Input 4	В	PB_10
TM0_ACLK1	TIMER0 Alternate Clock 1	D	PD_08
TM0_ACLK2	TIMER0 Alternate Clock 2	D	PD_09
TM0_ACLK3	TIMER0 Alternate Clock 3	В	PB_00
TM0_ACLK4	TIMER0 Alternate Clock 4	В	PB_01
TM0_CLK	TIMER0 Clock	с	PC_11
TM0_TMR0	TIMER0 Timer 0	E	PE_09
TM0_TMR1	TIMER0 Timer 1	В	PB_15
TM0_TMR2	TIMER0 Timer 2	В	PB_10
TM0_TMR3	TIMER0 Timer 3	В	PB_07
TM0_TMR4	TIMER0 Timer 4	В	PB_08
TM0_TMR5	TIMER0 Timer 5	В	PB_14
TRACE0_CLK	TRACE0 Trace Clock	D	PD_10
TRACE0_D00	TRACE0 Trace Data 0	D	PD_02
TRACE0_D01	TRACE0 Trace Data 1	D	PD_03
TRACE0_D02	TRACE0 Trace Data 2	D	PD_04
TRACE0_D03	TRACE0 Trace Data 3	D	PD_05
TRACE0_D04	TRACE0 Trace Data 4	D	PD_06
TRACE0_D05	TRACE0 Trace Data 5	D	PD_07
TRACE0_D06	TRACE0 Trace Data 6	D	PD_08
TRACE0_D07	TRACE0 Trace Data 7	D	PD_09
TWI0_SCL	TWI0 Serial Clock	Not Muxed	TWI0_SCL
TWI0_SDA	TWI0 Serial Data	Not Muxed	TWI0_SDA
TWI1_SCL	TWI1 Serial Clock	Not Muxed	TWI1_SCL
TWI1_SDA	TWI1 Serial Data	Not Muxed	TWI1_SDA
TWI2_SCL	TWI2 Serial Clock	Not Muxed	TWI2_SCL
TWI2_SDA	TWI2 Serial Data	Not Muxed	TWI2_SDA
UARTO_CTS	UART0 Clear to Send	D	PD_00
UARTO_RTS	UART0 Request to Send	С	PC_15
UARTO_RX	UARTO Receive	С	PC_14
UARTO_TX	UARTO Transmit	С	PC_13
UART1_CTS	UART1 Clear to Send	E	PE_01

Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
	ETHO Receive Data 0	Δ	
	ETHO Receive Data 1	Δ	PA 05
	ETHO Receive Data 7	Δ	PA 08
	ETHO Receive Data 3	Δ	PA 09
	ETHO Transmit Clock	Δ	PA 11
ETHO TYCER	ETHO TYCTL (GigE) or TYEN (10/100)	Δ	PA 10
	ETHO Transmit Data 0	^	PA_00
	ETHO Transmit Data 0		PA_00
	ETHO Transmit Data 1		PA_01
	ETHO Transmit Data 2		TA_12
	ETHO Transmit Enable		PA_10
	ETHI Carrier Sonse / DMII Pessive Data Valid		PA_10
	ETH1 Carrier Sense/ Nin Receive Data Valid		
	ETH1 Management Channel Cock		PF_14
		F	
		G	PG_00
		G	PG_04
EIHI_RXDI		G	PG_05
EIHI_IXD0	ETHI Transmit Data 0	G	PG_02
		G	PG_03
EIHI_IXEN	ETHT Transmit Enable	G	PG_01
HADCO_EOC_DOUT	HADCO End of Conversion / Serial Data Out	F -	PF_02
HADCO_MUX0	HADC0 Controls to external multiplexer	F _	PF_05
HADC0_MUX1	HADC0 Controls to external multiplexer	F	PF_04
HADC0_MUX2	HADC0 Controls to external multiplexer	F	PF_03
HADC0_VIN0	HADC0 Analog Input at channel 0	Not Muxed	HADC0_VIN0
HADC0_VIN1	HADC0 Analog Input at channel 1	Not Muxed	HADC0_VIN1
HADC0_VIN2	HADC0 Analog Input at channel 2	Not Muxed	HADC0_VIN2
HADC0_VIN3	HADC0 Analog Input at channel 3	Not Muxed	HADC0_VIN3
HADC0_VIN4	HADC0 Analog Input at channel 4	Not Muxed	HADC0_VIN4
HADC0_VIN5	HADC0 Analog Input at channel 5	Not Muxed	HADC0_VIN5
HADC0_VIN6	HADC0 Analog Input at channel 6	Not Muxed	HADC0_VIN6
HADC0_VIN7	HADC0 Analog Input at channel 7	Not Muxed	HADC0_VIN7
HADC0_VREFN	HADC0 Ground Reference for ADC	Not Muxed	HADC0_VREFN
HADC0_VREFP	HADC0 External Reference for ADC	Not Muxed	HADC0_VREFP
JTG_TCK	TAPC JTAG Clock	Not Muxed	JTG_TCK
JTG_TDI	TAPC JTAG Serial Data In	Not Muxed	JTG_TDI
JTG_TDO	TAPC JTAG Serial Data Out	Not Muxed	JTG_TDO
JTG_TMS	TAPC JTAG Mode Select	Not Muxed	JTG_TMS
JTG_TRST	TAPC JTAG Reset	Not Muxed	JTG_TRST
LP0_ACK	LP0 Acknowledge	D	PD_11
LP0_CLK	LP0 Clock	D	PD_10
LP0_D0	LPO Data 0	D	PD_02
LP0_D1	LP0 Data 1	D	PD_03
LP0_D2	LPO Data 2	D	PD_04
LP0_D3	LPO Data 3	D	PD_05
LP0_D4	LP0 Data 4	D	PD_06
LP0_D5	LP0 Data 5	D	PD_07
LP0_D6	LP0 Data 6	D	PD_08

Table 19. ADSP-SC58x/ADSP-2158x 529-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
LP0_D7	LPO Data 7	D	PD_09
LP1_ACK	LP1 Acknowledge	В	PB_15
LP1_CLK	LP1 Clock	с	PC_00
LP1_D0	LP1 Data 0	В	PB_07
LP1_D1	LP1 Data 1	В	PB_08
LP1_D2	LP1 Data 2	В	PB_09
LP1_D3	LP1 Data 3	В	PB_10
LP1_D4	LP1 Data 4	В	PB_11
LP1_D5	LP1 Data 5	В	PB_12
LP1_D6	LP1 Data 6	В	PB_13
LP1_D7	LP1 Data 7	В	PB_14
MLB0_CLKN	MLB0 Differential Clock (–)	Not Muxed	MLB0_CLKN
MLB0_CLKP	MLB0 Differential Clock (+)	Not Muxed	MLB0_CLKP
MLB0_DATN	MLB0 Differential Data (–)	Not Muxed	MLB0_DATN
MLB0_DATP	MLB0 Differential Data (+)	Not Muxed	MLB0_DATP
MLB0_SIGN	MLB0 Differential Signal (–)	Not Muxed	MLB0_SIGN
MLB0_SIGP	MLB0 Differential Signal (+)	Not Muxed	MLB0_SIGP
MLB0_CLK	MLB0 Single-Ended Clock	В	PB_04
MLB0_DAT	MLB0 Single-Ended Data	В	PB_06
MLB0_SIG	MLB0 Single-Ended Signal	В	PB_05
MLB0_CLKOUT	MLB0 Single-Ended Clock Out	D	PD_14
MSI0_CD	MSI0 Card Detect	F	PF_12
MSI0_CLK	MSI0 Clock	F	PF_11
MSI0_CMD	MSI0 Command	F	PF_10
MSI0_D0	MSI0 Data 0	F	PF_02
MSI0_D1	MSI0 Data 1	F	PF_03
MSI0_D2	MSI0 Data 2	F	PF_04
MSI0_D3	MSI0 Data 3	F	PF_05
MSI0_D4	MSI0 Data 4	F	PF_06
MSI0_D5	MSI0 Data 5	F	PF_07
MSI0_D6	MSI0 Data 6	F	PF_08
MSI0_D7	MSI0 Data 7	F	PF_09
MSI0_INT	MSI0 eSDIO Interrupt Input	F	PF_13
PA_00-15	PORTA Position 00 through Position 15	A	PA_00-15
PB_00-15	PORTB Position 00 through Position 15	В	PB_00-15
PCIE0_CLKM	PCIE0 CLK -	Not Muxed	PCIE0_CLKM
PCIE0_CLKP	PCIE0 CLK +	Not Muxed	PCIE0_CLKP
PCIE0_REF	PCIE0 Reference	Not Muxed	PCIE0_REF
PCIE0_RXM	PCIE0 RX -	Not Muxed	PCIE0_RXM
PCIE0_RXP	PCIE0 RX +	Not Muxed	PCIE0_RXP
PCIE0_TXM	PCIE0 TX -	Not Muxed	PCIE0_TXM
PCIE0_TXP	PCIE0 TX +	Not Muxed	PCIE0_TXP
PC_00-15	PORTC Position 00 through Position 15	С	PC_00-15
PD_00-15	PORTD Position 00 through Position 15	D	PD_00-15
PE_00-15	PORTE Position 00 through Position 15	E	PE_00-15
PF_00-15	PORTF Position 00 through Position 15	F	PF_00-15
PG_00-5	PORTG Position 00 through Position 5	G	PG_00-5
PPI0_CLK	EPPI0 Clock	E	PE_03

Table 19. ADSP-SC58x/ADSP-2158x 529-Ball CSP_BGA Signal Descriptions (Continued)

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
HADC0_VREFN	S	NA	none	none	none	VDD_HADC	Desc: HADC0 Ground Reference for ADC Notes: No notes
HADC0_VREFP	s	NA	none	none	none	VDD_HADC	Desc: HADC0 External Reference for ADC
ЛТG_ТСК	Input		PullUp	none	none	VDD_EXT	Desc: JTAG Clock
JTG_TDI	Input		PullUp	none	none	VDD_EXT	Desc: JTAG Serial Data In Notes: No notes
JTG_TDO	Output	A	none	none	none	VDD_EXT	Desc: JTAG Serial Data Out Notes: No notes
JTG_TMS	InOut	A	PullUp	none	none	VDD_EXT	Desc: JTAG Mode Select Notes: No notes
JTG_TRST	Input		PullDown	none	none	VDD_EXT	Desc: JTAG Reset Notes: No notes
MLB0_CLKN	Input	NA	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Clock (-) Notes: No notes
MLBO_CLKP	Input	NA	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Clock (+) Notes: No notes
MLB0_DATN	InOut	1	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Data (-) Notes: No notes
MLB0_DATP	InOut	I	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Data (+) Notes: No notes
MLB0_SIGN	InOut	I	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Signal (-) Notes: No notes
MLB0_SIGP	InOut	I	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Signal (+) Notes: No notes
PA_00	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTA Position 0 EMAC0 Transmit Data 0 SMC0 Address 21
PA_01	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTA Position 1 EMAC0 Transmit Data 1 SMC0 Address 20 Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

Circuit Name a	T	Driver	Int	Reset	Reset	Dama Damain	Description
	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
USB_XIAL	а		none	none	none		Desc: USB0/USB1 Crystal
							Notes: Services both USBU and
VDD_DIVIC	S	NA	none	none	none		Desc: DIVIC VDD
							Notes: No notes
VDD_EXT	S	NA	none	none	none		Desc: External Voltage Domain
							Notes: No notes
VDD_HADC	S	NA	none	none	none		Desc: HADC VDD
							Notes: No notes
VDD_INT	S	NA	none	none	none		Desc: Internal Voltage Domain
							Notes: No notes
VDD_PCIE	s	NA	none	none	none		Desc: PCIE Supply Voltage
							Notes: Connect to GND if not used ¹
VDD_PCIE_RX	s	NA	none	none	none		Desc: PCIE RX Supply Voltage
							Notes: Connect to GND if not used ¹
VDD_PCIE_TX	s	NA	none	none	none		Desc: PCIE TX Supply Voltage
							Notes: Connect to GND if not used ¹
VDD_RTC	s	NA	none	none	none		Desc: RTC VDD
							Notes: No notes
VDD_USB	s	NA	none	none	none		Desc: USB VDD
							Notes: Connect to VDD_EXT when USB is not used

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

¹Guidance also applies to models that do not feature the associated hardware block. See Table 2 or Table 3 for further information.

ELECTRICAL CHARACTERISTICS

			450 MHz			
Parameter		Conditions	Min	Тур	Max	Unit
V _{OH} ¹	High Level Output Voltage	At $V_{DD_{EXT}}$ = minimum, I_{OH} = -1.0 mA ²	2.4			V
V _{OL} ¹	Low Level Output Voltage	At $V_{DD_{EXT}}$ = minimum, I_{OL} = 1.0 mA ²			0.4	V
V _{OH_DDR2} ³	High Level Output Voltage for DDR2 DS = 40 Ω	At V_{DD_DDR} = minimum, I_{OH} = -5.8 mA	1.38			V
V _{OL_DDR2} ³	Low Level Output Voltage for DDR2 DS = 40 Ω	At V_{DD_DDR} = minimum, I_{OL} = 5.8 mA			0.32	V
V _{OH_DDR2} ³	High Level Output Voltage for DDR2 DS = 60 Ω	At V_{DD_DDR} = minimum, I_{OH} = -3.4 mA	1.38			V
V _{OL_DDR2} ³	Low Level Output Voltage for DDR2 DS = 60 Ω	At V_{DD_DDR} = minimum, I_{OL} = 3.4 mA			0.32	V
V _{OH_DDR3} ⁴	High Level Output Voltage for DDR3 DS = 40 Ω	At V_{DD_DDR} = minimum, I_{OH} = -5.8 mA	1.105			V
V _{OL_DDR3} ⁴	Low Level Output Voltage for DDR3 DS = 40 Ω	At V_{DD_DDR} = minimum, I_{OL} = 5.8 mA			0.32	V
V _{OH_DDR3} ⁴	High Level Output Voltage for DDR3 DS = 60 Ω	At V_{DD_DDR} = minimum, I_{OH} = -3.4 mA	1.105			V
V _{OL_DDR3} ⁴	Low Level Output Voltage for DDR3 DS = 60 Ω	At V_{DD_DDR} = minimum, I_{OL} = 3.4 mA			0.32	V
$V_{OH_LPDDR}^5$	High Level Output Voltage for LPDDR	At V_{DD_DDR} = minimum, I_{OH} = -6.0 mA	1.38			V
V _{OL_LPDDR} ⁵	Low Level Output Voltage for LPDDR	At V_{DD_DDR} = minimum, I_{OL} = 6.0 mA			0.32	V
I _{IH} ^{6, 7}	High Level Input Current	At V_{DD_EXT} = maximum, $V_{IN} = V_{DD_EXT}$ maximum			10	μΑ
I _{IL} 6	Low Level Input Current	At $V_{DD_{EXT}} = maximum$, $V_{IN} = 0 V$			10	μΑ
I _{IL_PU} ⁷	Low Level Input Current Pull-up	At V_{DD_EXT} = maximum, V_{IN} = 0 V			200	μA
I _{IH_PD} ⁸	High Level Input Current Pull-down	At V_{DD_EXT} = maximum, V_{IN} = 0 V			200	μΑ
I _{OZH} 9	Three-State Leakage Current	At $V_{DD_{EXT}}/V_{DD_{DDR}} = maximum,$ $V_{IN} = V_{DD_{EXT}}/V_{DD_{DDR}} maximum$			10	μΑ
I _{OZL} ⁹	Three-State Leakage Current	at V_{DD_EXT}/V_{DD_DDR} = maximum, $V_{IN} = 0 V$			10	μΑ
C _{IN} ¹⁰	Input Capacitance	$T_{CASE} = 25^{\circ}C$			5	pF

HADC

HADC Electrical Characteristics

Table 37. HADC Electrical Characteristics

Parameter	Conditions	Тур	Unit
IDD_HADC_IDLE	Current consumption on	2.0	mA
	V _{DD_HADC} .		
	HADC is powered on, but not		
	converting.		
IDD_HADC_ACTIVE	Current consumption on	2.5	mA
	V _{DD_HADC} during a conversion.		
IDD_HADC_POWERDOWN	Current consumption on	10	μA
	V _{DD_HADC} .		
	Analog circuitry of the HADC is		
	powered down.		

HADC DC Accuracy

Table 38. HADC DC Accuracy¹

Parameter	Тур	Unit ²
Resolution	12	Bits
No Missing Codes (NMC)	10	Bits
Integral Nonlinearity (INL)	±2	LSB
Differential Nonlinearity (DNL)	±2	LSB
Offset Error	±8	LSB
Offset Error Matching	±10	LSB
Gain Error	±4	LSB
Gain Error Matching	±4	LSB

¹See the Operating Conditions section for the HADC0_VINx specification. ²LSB = HADC0_VREFP \div 4096.

HADC Timing Specifications

Table 39. HADC Timing Specifications

Parameter	Тур	Max	Unit
Conversion Time	$20 \times T_{SAMPLE}$		μs
Throughput Range		1	MSPS
TWAKEUP		100	μs

TMU

TMU Characteristics

Table 40. TMU Characteristics

Parameter	Тур	Unit
Resolution	1	°C
Accuracy	±6	°C

Asynchronous Write

Table 48 and Figure 15 show asynchronous memory write timing, related to the SMC.

Table 48. Asynchronous Memory Write

Parameter		Min	Max	Unit
Timing Requ	irement			
t _{DARDYAWE} 1	SMC0_ARDY Valid After SMC0_AWE Low ²		$(WAT - 2.5) \times t_{SCLK0} - 17.5$	ns
Switching Ch	paracteristics			
t _{ENDAT}	DATA Enable After SMC0_AMSx Assertion	-3.5		ns
t _{DDAT}	DATA Disable After SMC0_AMSx Deassertion		2.5	ns
t _{AMSAWE}	ADDR/SMC0_AMSx Assertion Before SMC0_AWE Low ³	$(PREST + WST + PREAT) \times t_{SCLK0} - 2$		ns
t _{HAWE}	Output ⁴ Hold After SMC0_AWE High ⁵	WHT \times t _{SCLK0} – 3.5		ns
t _{WAWE} 6	SMC0_AWE Active Low Width ²	WAT \times t _{SCLK0} – 2		ns
t _{DAWEARDY} ¹	SMC0_AWE High Delay After SMC0_ARDY Assertion	$2.5 \times t_{SCLK0}$	$3.5 \times t_{SCLK0} + 17.5$	ns

¹SMC_BxCTL.ARDYEN bit = 1.

²WAT value set using the SMC_BxTIM.WAT bits.

³PREST, WST, PREAT values set using the SMC_BXETIM.PREST bits, SMC_BXTIM.WST bits, SMC_BXETIM.PREAT bits, and the SMC_BXTIM.RAT bits.

⁴Output signals are DATA, SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_ABEx</u>.

⁵WHT value set using the SMC_BxTIM.WHT bits.

⁶SMC_BxCTL.ARDYEN bit = 0.

Figure 15. Asynchronous Write

Mobile DDR (LPDDR) SDRAM Clock and Control Cycle Timing

Table 54 and Figure 20 show mobile DDR SDRAM clock and control cycle timing, related to the DMC.

Table 54. Mobile DDR SDRAM Clock and Control Cycle Timing, V_{DD_DMCx} Nominal 1.8 V¹

			200 MHz ²	
Parameter		Min	Мах	Unit
Switching	Characteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	Minimum Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Maximum Clock Pulse Width	0.45	0.55	t _{СК}
t _{IS}	Control/Address Setup Relative to DMCx_CK Rise	1		ns
t _{IH}	Control/Address Hold Relative to DMCx_CK Rise	1		ns

¹Specifications apply to both DMC0 and DMC1.

²To ensure proper operation of LPDDR, all the LPDDR guidelines must be strictly followed. See "Interfacing DDR3/DDR2/LPDDR Memory to ADSP-SC5xx/215xx Processors" (EE-387).

IOTE: CONTROL = DMCx_CS0, DMCx_CKE, DMCx_RAS, DMCx_CAS, AND DMCx_WE ADDRESS = DMCx_A0-A15 AND DMCx_BA0-BA2.

Link Ports (LP)

In LP receive mode, the link port clock is supplied externally and is called f_{LCLKREXT}, therefore the period can be represented by:

$$t_{LCLKREXT} = \frac{1}{f_{LCLKREXT}}$$

In link port transmit mode, the programmed link port clock ($f_{LCLKTPROG}$) frequency in MHz is set by the following equation where VALUE is a field in the LP_DIV register that can be set from 1 to 255:

$$f_{LCLKTPROG} = \frac{f_{CLKO8}}{(VALUE \times 2)}$$

In the case where VALUE = 0, $f_{LCLKTPROG} = f_{CLKO8}$. For all settings of VALUE, the following equation is true:

$$t_{LCLKTPROG} = \frac{1}{f_{LCLKTPROG}}$$

Calculation of the link receiver data setup and hold relative to the link clock is required to determine the maximum allowable skew that can be introduced in the transmission path length difference between LPx_Dx and LPx_CLK. Setup skew is the maximum delay that can be introduced in LPx_Dx relative to LPx_CLK (setup skew = $t_{LCLKTWH}$ min – t_{DLDCH} – t_{SLDCL}). Hold skew is the maximum delay that can be introduced in LPx_CLK relative to LPx_Dx (hold skew = $t_{LCLKTWL}$ min – t_{HLDCH} – t_{HLDCL}).

Table 62. Link Ports—Receive	Table 62.	Link Ports-	-Receive
------------------------------	-----------	-------------	----------

Parameter		Min	Max	Unit
Timing Requirements				
f _{LCLKREXT}	LPx_CLK Frequency		150	MHz
t _{SLDCL}	Data Setup Before LPx_CLK Low	0.9		ns
t _{HLDCL}	Data Hold After LPx_CLK Low	1.4		ns
t _{LCLKEW}	LPx_CLK Period ²	t _{LCLKREXT} – 0.42		ns
t _{LCLKRWL}	LPx_CLK Width Low ²	$0.5 imes t_{LCLKREXT}$		ns
t _{LCLKRWH}	LPx_CLK Width High ²	$0.5 imes t_{LCLKREXT}$		ns
Switching Cha	racteristic			
t _{DLALC}	LPx_ACK Low Delay After LPx_CLK Low ³	$1.5 \times t_{CLKO8} + 4$	$2.5 \times t_{CLKO8} + 12$	ns

¹Specifications apply to LP0 and LP1.

²This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external LPx_CLK. For the external LPx_CLK ideal maximum frequency see the f_{LCLKTEXT} specification in Table 29.

³LPx_ACK goes low with t_{DLALC} relative to rise of LPx_CLK after first byte, but does not go low if the link buffer of the receiver is not about to fill.

Figure 43. SPI Port—Master Timing

Figure 52. Timer Cycle Timing

DAIx Pin to DAIx Pin Direct Routing (DAI0 Block and DAI1 Block)

Table 81 and Figure 53 describe I/O timing related to the digital audio interface (DAI) for direct pin connections only (for example, DAIx_PB01_I to DAIx_PB02_O).

Table 81. DAI Pin to DAI Pin Routing

Parameter		Min	Max	Unit
Timing Requirement				
t _{DPIO}	Delay DAI Pin Input Valid to DAI Output Valid	1.5	12	ns

Figure 53. DAI Pin to DAI Pin Direct Routing

Up/Down Counter/Rotary Encoder Timing

Table 82 and Figure 54 describe timing related to the general-purpose counter (CNT).

Table 82. Up/Down Counter/Rotary Encoder Timing

Parameter		Min	Max	Unit
Timing Requirement				
twcount	Up/Down Counter/Rotary Encoder Input Pulse Width	$2 \times t_{SCLK0}$		ns

Figure 54. Up/Down Counter/Rotary Encoder Timing

Figure 88. Driver Type B and Device Driver C (LPDDR)

Figure 89. Driver Type B and Device Driver C (LPDDR)

TEST CONDITIONS

All timing requirements appearing in this data sheet were measured under the conditions described in this section. Figure 90 shows the measurement point for ac measurements (except output enable/disable). The measurement point, V_{MEAS} , is V_{DD} EXT/2 for V_{DD} EXT (nominal) = 3.3 V.

Figure 90. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Enable Time Measurement

Output balls are considered enabled when they make a transition from a high impedance state to the point when they start driving. The output enable time, t_{ENA} , is the interval from the point when a reference signal reaches a high or low voltage level to the point when the output starts driving (see Figure 91).

Figure 91. Output Enable/Disable

The time t_{ENA_MEASURED} is the interval from when the reference signal switches to when the output voltage reaches V_{TRIP} (high) or V_{TRIP} (low). For V_{DD_EXT} (nominal) = 3.3 V, V_{TRIP} (high) is 1.9 V, and V_{TRIP} (low) is 1.4 V. Time, t_{TRIP}, is the interval from when the output starts driving to when the output reaches the V_{TRIP} (high) or V_{TRIP} (low) trip voltage.

Time t_{ENA} is calculated as shown in the equation:

$$t_{ENA} = t_{ENA_MEASURED} - t_{TRIP}$$

If multiple balls (such as the data bus) are enabled, the measurement value is that of the first ball to start driving.

Output Disable Time Measurement

Output balls are considered disabled when they stop driving, go into a high impedance state, and start to decay from the output high or low voltage. The output disable time, t_{DIS} , is the difference between t_{DIS} MEASURED and t_{DECAY} (see Figure 91).

$$t_{DIS} = t_{DIS_MEASURED} - t_{DECAS}$$

The time for the voltage on the bus to decay by ΔV is dependent on the capacitive load, C_{L_2} and the load current, I_L . This decay time can be approximated by the following equation:

$$t_{DECAY} = (C_L \Delta V) / I_L$$

The time t_{DECAY} is calculated with test loads C_L and I_L , with ΔV equal to 0.25 V for V_{DD} EXT (nominal) = 3.3 V.

The time $t_{DIS_MEASURED}$ is the interval from when the reference signal switches, to when the output voltage decays ΔV from the measured output high or output low voltage.

www.analog.com

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13317-0-10/16(0)