

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Active
Туре	Floating Point
Interface	CAN, EBI/EMI, Ethernet, DAI, I ² C, MMC/SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	500MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	640kB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	349-LFBGA, CSPBGA
Supplier Device Package	349-CSPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21584bbcz-5a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Single-Cycle Fetch of Instructional Four Operands

The ADSP-SC58x/ADSP-2158x processors feature an enhanced Harvard architecture in which the DM bus transfers data and PM bus transfers both instructions and data.

With the separate program memory bus, data memory buses, and on-chip instruction conflict-cache, the processor can simultaneously fetch four operands (two over each data bus) and one instruction from the conflict cache, in a single cycle.

Core Event Controller (CEC)

The SHARC+ core generates various core interrupts (including arithmetic and circular buffer instruction flow exceptions) and SEC events (debug/monitor and software). The core only responds to unmasked interrupts (enabled in the IMASK register).

Instruction Conflict-Cache

The processors include a 32-entry instruction cache that enables three-bus operation for fetching an instruction and four data values. The cache is selective—only the instructions that require fetches conflict with the PM bus data accesses cache. This cache allows full speed execution of core, looped operations, such as digital filter multiply accumulates, and fast Fourier transforms (FFT) butterfly processing. The conflict cache serves for on-chip bus conflicts only.

Branch Target Buffer/Branch Predictor

Implementation of a hardware-based branch predictor (BP) and branch target buffer (BTB) reduce branch delay. The program sequencer supports efficient branching using the BTB for conditional and unconditional instructions.

Addressing Spaces

In addition to traditionally supported long word, normal word, extended precision word and short word addressing aliases, the processors support byte addressing for the data and instruction accesses. The enhanced ISA/VISA provides new instructions for accessing all sizes of data from byte space as well as converting word addresses to byte and byte to word addresses.

Additional Features

The enhanced ISA/VISA of the ADSP-SC58x/ADSP-2158x processors also provides a memory barrier instruction for data synchronization, exclusive data access support for multicore data sharing, and exclusive data access to enable multiprocessor programming. To enhance the reliability of the application, L1 data RAMs support parity error detection logic for every byte. Additionally, the processors detect illegal opcodes. Core interrupts flag both errors. Master ports of the core also detect for failed external accesses.

SYSTEM INFRASTRUCTURE

The following sections describe the system infrastructure of the ADSP-SC58x/ADSP-2158x processors.

System L2 Memory

A system L2 SRAM memory of 2 Mb (256 kB) and two ROM memories, each 2 Mb (256 kB), are available to both SHARC+ cores, the ARM Cortex-A5 core, and the system DMA channels (see Table 5). All L2 SRAM/ROM blocks are subdivided into eight banks to support concurrent access to the L2 memory ports. Memory accesses to the L2 memory space are multicycle accesses by both the ARM Cortex-A5 and SHARC+ cores.

The memory space is used for various cases including:

- ARM Cortex-A5 to SHARC+ core data sharing and intercore communications
- Accelerator and peripheral sources and destination memory to avoid accessing data in the external memory
- A location for DMA descriptors
- Storage for additional data for either the ARM Cortex-A5 or SHARC+ cores to avoid external memory latencies and reduce external memory bandwidth
- Storage for incoming Ethernet traffic to improve performance
- Storage for data coefficient tables cached by the SHARC+ core

See the System Memory Protection Unit (SMPU) section for options in limiting access by specific cores and DMA masters.

The ARM Cortex-A5 core has an L1 instruction and data cache, each of which is 32 kB in size. The core also has an L2 cache controller of 256 kB. When enabling the caches, accesses to all other memory spaces (internal and external) go through the cache.

SHARC+ Core L1 Memory in Multiprocessor Space

The ARM Cortex-A5 core can access the L1 memory of the SHARC+ core. See Table 6 for the L1 memory address in multi-processor space. The SHARC+ core can access the L1 memory of the other SHARC+ core in the multiprocessor space.

One Time Programmable Memory (OTP)

The processors feature 7 Kb of one time programmable (OTP) memory which is memory-map accessible. This memory stores a unique chip identification and supports secure boot and secure operation.

I/O Memory Space

The static memory controller (SMC) is programmed to control up to two blocks of external memories or memory-mapped devices, with flexible timing parameters. Each block occupies an 8 Kb segment regardless of the size of the device used. Mapped I/Os also include PCIe data and SPI2 memory address space (see Table 7).

Table 7. Memory Map of Mapped I/Os

	Byte Address Space		SHARC+ Core Instruction Fetch			
	ARM Cortex-A5 – Data Access and Instruction Fetch SHARC+ – Data Access	Normal Word Address Space for Data Access SHARC+	VISA Space	ISA Space		
SMC Bank 0 (64 MB)	0x40000000-0x43FFFFFF	0x01000000-0x01FFFFFF	0x00F00000-0x00F3FFFF	0x00700000-0x0073FFFF		
SMC Bank 1 (64 MB)	0x44000000-0x47FFFFFF	Not applicable	Not applicable	Not applicable		
SMC Bank 2 (64 MB)	0x48000000-0x4BFFFFFF	Not applicable	Not applicable	Not applicable		
SMC Bank 3 (64 MB)	0x4C000000-0x4FFFFFFF	Not applicable	Not applicable	Not applicable		
PCIe Data (256 MB)	0x50000000-0x5FFFFFFF	0x02000000-0x03FFFFFF	0x00F40000-0x00F7FFFF	0x00740000-0x0077FFFF		
SPI2 Memory (512 MB)	0x60000000-0x7FFFFFFF	0x04000000-0x07FFFFFF	0x00F80000-0x00FFFFFF	0x00780000-0x007FFFFF		

Table 8. DMC Memory Map

	Byte Address Space		SHARC+ Core Instruction Fetch			
	ARM Cortex-A5 – Data Access and					
	Instruction Fetch	Normal Word Address				
	SHARC+ – Data Access	Space for Data Access SHARC+	VISA Space	ISA Space		
DMC0 (1 GB)	0x80000000-0xBFFFFFF	0x10000000-0x17FFFFFF	0x00800000-0x00AFFFFF	0x00400000-0x004FFFFF		
DMC1 (1 GB)	0xC0000000-0xFFFFFFF	0x18000000-0x1FFFFFFF	0x00C00000-0x00EFFFF	0x00600000-0x006FFFFF		

System Crossbars (SCBs)

The system crossbars (SCBs) are the fundamental building blocks of a switch-fabric style for on-chip system bus interconnection. The SCBs connect system bus masters to system bus slaves, providing concurrent data transfer between multiple bus masters and multiple bus slaves. A hierarchical model—built from multiple SCBs—provides a power and area efficient system interconnection.

The SCBs provide the following features:

- Highly efficient, pipelined bus transfer protocol for sustained throughput
- Full-duplex bus operation for flexibility and reduced latency
- Concurrent bus transfer support to allow multiple bus masters to access bus slaves simultaneously
- Protection model (privileged/secure) support for selective bus interconnect protection

Direct Memory Access (DMA)

The processors use direct memory access (DMA) to transfer data within memory spaces or between a memory space and a peripheral. The processors can specify data transfer operations and return to normal processing while the fully integrated DMA controller carries out the data transfers independent of processor activity.

DMA transfers can occur between memory and a peripheral or between one memory and another memory. Each memory to memory DMA stream uses two channels: one channel is the source channel and the second is the destination channel.

All DMA channels can transport data to and from all on-chip and off-chip memories. Programs can use two types of DMA transfers: descriptor-based or register-based. Register-based DMA allows the processors to program DMA control registers directly to initiate a DMA transfer. On completion, the DMA control registers automatically update with original setup values for continuous transfer. Descriptor-based DMA transfers require a set of parameters stored within memory to initiate a DMA sequence. Descriptor-based DMA transfers allow multiple DMA sequences to be chained together. Program a DMA channel to set up and start another DMA transfer automatically after the current sequence completes.

The DMA engine supports the following DMA operations:

- A single linear buffer that stops on completion
- A linear buffer with negative, positive, or zero stride length
- A circular autorefreshing buffer that interrupts when each buffer becomes full
- A similar circular buffer that interrupts on fractional buffers, such as at the halfway point
- The 1D DMA uses a set of identical ping pong buffers defined by a linked ring of two-word descriptor sets, each containing a link pointer and an address
- The 1D DMA uses a linked list of four-word descriptor sets containing a link pointer, an address, a length, and a configuration
- The 2D DMA uses an array of one-word descriptor sets, specifying only the base DMA address
- The 2D DMA uses a linked list of multiword descriptor sets, specifying all configurable parameters

The reset target is defined as the following:

- System reset—all functional units except the RCU are set to default states.
- Hardware reset—all functional units are set to default states without exception. History is lost.
- Core only reset— affects the core only. When in reset state, the core is not accessed by any bus master.

The reset source is defined as the following:

- System reset—can be triggered by software (writing to the RCU_CTL register) or by another functional unit such as the dynamic power management (DPM) unit or any of the SEC, TRU, or emulator inputs.
- Hardware reset—the <u>SYS_HWRST</u> input signal asserts active (pulled down).
- Core only reset—affects only the core. The core is not accessed by any bus master when in reset state.
- Trigger request (peripheral).

Real-Time Clock (RTC)

The real-time clock (RTC) provides a robust set of digital watch features, including current time, stopwatch, and alarm. The RTC is clocked by a 32.768 kHz crystal external to the processor. Connect the RTCO_CLKIN and RTCO_XTAL pins with external components as shown in Figure 6.

The RTC peripheral has dedicated power supply pins so it can remain powered up and clocked even when the remainder of the processor is in a low power state. The RTC provides several programmable interrupt options, including interrupt per second, minute, hour, or day clock ticks; interrupt on programmable stopwatch countdown; or interrupt at a programmed alarm time.

NOTE: C1 AND C2 ARE SPECIFIC TO CRYSTAL SPECIFIED FOR X1. CONTACT CRYSTAL MANUFACTURER FOR DETAILS.

Figure 6. External Components for RTC

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal by a prescaler. The counter function of the timer consists of four counters: a 60 second counter, a 60 minute counter, a 24 hour counter, and a 32,768 day counter. When the alarm interrupt is enabled, the alarm function generates an interrupt when the output of the timer matches the programmed value in the alarm control register (RTC_ALARM). There are two alarms: a time of day and a day and time of that day.

The stopwatch function counts down from a programmed value, with 1 sec resolution. When the stopwatch interrupt is enabled and the counter underflows, an interrupt is generated.

Clock Generation Unit (CGU)

The ADSP-SC58x/ADSP-2158x processors support two independent PLLs. Each PLL is part of a clock generation unit (CGU); see Figure 8. Each CGU can be either driven externally by the same clock source or each can be driven by separate sources. This provides flexibility in determining the internal clocking frequencies for each clock domain.

Frequencies generated by each CGU are derived from a common multiplier with different divider values available for each output.

The CGU generates all on-chip clocks and synchronization signals. Multiplication factors are programmed to define the PLLCLK frequency.

Programmable values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks, the DDR1/DDR2/ DDR3 clock (DCLK), and the output clock (OCLK). For more information on clocking, see the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference.

Writing to the CGU control registers does not affect the behavior of the PLL immediately. Registers are first programmed with a new value and the PLL logic executes the changes so it transitions smoothly from the current conditions to the new conditions.

System Crystal Oscillator and USB Crystal Oscillator

The processor can be clocked by an external crystal (see Figure 7), a sine wave input, or a buffered, shaped clock derived from an external clock oscillator. If using an external clock, it should be a TTL-compatible signal and must not be halted, changed, or operated below the specified frequency during normal operation. This signal is connected to the SYS_CLKINx pin and the USB_CLKIN pin of the processor. When using an external clock, the SYS_XTALx pin and the USB_XTAL pin must be left unconnected. Alternatively, because the processor includes an on-chip oscillator circuit, an external crystal can be used.

For fundamental frequency operation, use the circuit shown in Figure 7. A parallel resonant, fundamental frequency, microprocessor grade crystal is connected across the SYS_CLKINx pin and the SYS_XTALx pin. The on-chip resistance between the SYS_CLKINx pin and the SYS_XTALx pin is in the 500 kΩ range. Further parallel resistors are typically not recommended.

The two capacitors and the series resistor, shown in Figure 7, fine tune phase and amplitude of the sine frequency. The capacitor and resistor values shown in Figure 7 are typical values only. The capacitor values are dependent upon the load capacitance recommendations of the crystal manufacturer and the physical layout of the printed circuit board (PCB). The resistor value depends on the drive level specified by the crystal manufacturer. The user must verify the customized values based on careful investigations on multiple devices over the required temperature range.

Signal Name	Direction	Description
SYS_FAULT	InOut	Active-High Fault Output. Indicates internal faults or senses external faults depending on the operating mode.
SYS_FAULT	InOut	Active-Low Fault Output. Indicates internal faults or senses external faults depending on the operating mode.
SYS_HWRST	Input	Processor Hardware Reset Control. Resets the device when asserted.
SYS_RESOUT	Output	Reset Output. Indicates the device is in the reset state.
SYS_XTAL0	Output	Crystal Output.
SYS_XTAL1	Output	Crystal Output.
TM_ACI[n]	Input	Alternate Capture Input n. Provides an additional input for WIDCAP, WATCHDOG, and PININT modes.
TM_ACLK[n]	Input	Alternate Clock n. Provides an additional time base for an individual timer.
TM_CLK	Input	Clock. Provides an additional global time base for all GP timers.
TM_TMR[n]	InOut	Timer n. The main input/output signal for each timer.
TRACE_CLK	Output	Trace Clock. Clock output.
TRACE_D[nn]	Output	Trace Data n. Unidirectional data bus.
TWI_SCL	InOut	Serial Clock. Clock output when master, clock input when slave.
TWI_SDA	InOut	Serial Data. Receives or transmits data.
UART_CTS	Input	Clear to Send. Flow control signal.
UART_RTS	Output	Request to Send. Flow control signal.
UART_RX	Input	Receive. Receives input. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
UART_TX	Output	Transmit. Transmits output. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
USB_CLKIN	Input	Clock/Crystal Input. This clock input is multiplied by a PLL to form the USB clock. See data sheet specifications for frequency/tolerance information.
USB_DM	InOut	Data –. Bidirectional differential data line.
USB_DP	InOut	Data +. Bidirectional differential data line.
USB_ID	Input	OTG ID. Senses whether the controller is a host or device. This signal is pulled low when an A-type plug is sensed (signifying that the USB controller is the A device). The input is high when a B-type plug is sensed (signifying that the USB controller is the B device).
USB_VBC	Output	VBUS Control. Controls an external voltage source to supply VBUS when in host mode. Can be configured as open-drain. Polarity is configurable as well.
USB_VBUS	InOut	Bus Voltage. Connects to bus voltage in host and device modes.
USB_XTAL	Output	Crystal. Drives an external crystal. Must be left unconnected if an external clock is driving USB_CLKIN.

Table 11. ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
UART1_RTS	UART1 Request to Send	E	PE_02
UART1_RX	UART1 Receive	В	PB_03
UART1_TX	UART1 Transmit	В	PB_02
UART2_CTS	UART2 Clear to Send	E	PE_11
UART2_RTS	UART2 Request to Send	E	PE_10
UART2_RX	UART2 Receive	D	PD_13
UART2_TX	UART2 Transmit	D	PD_12
USB0_CLKIN	USB0 Clock/Crystal Input	Not Muxed	USB_CLKIN
USB0_DM	USB0 Negative Data (–)	Not Muxed	USB0_DM
USB0_DP	USB0 Positive Data (+)	Not Muxed	USB0_DP
USB0_ID	USB0 OTG ID	Not Muxed	USB0_ID
USB0_VBC	USB0 VBUS Control	Not Muxed	USB0_VBC
USB0_VBUS	USB0 Bus Voltage	Not Muxed	USB0_VBUS
USB0_XTAL	USB0 Crystal	Not Muxed	USB_XTAL
VDD_DMC	DMC VDD	Not Muxed	VDD_DMC
VDD_HADC	HADC VDD	Not Muxed	VDD_HADC
VDD_USB	USB VDD	Not Muxed	VDD_USB

Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
				SMC0_ARE	
PC 01	SPI2 CLK			SMCO_/ML	
 PC_02					
PC_03	SPI2_MOSI				
PC_04	SPI2_D2				
PC_05	SPI2_D3				
PC_06	SPI2_SEL1				SPI2_SS
PC_07	CAN0_RX	SPI0_SEL1		SMC0_AMS2	TM0_ACI3
PC_08	CAN0_TX			SMC0_AMS3	
PC_09	SPI0_CLK				
PC_10	SPI0_MISO				
PC_11	SPI0_MOSI				TM0_CLK
PC_12	SPI0_SEL3	SPI0_RDY	ACM0_T0	SMC0_A25	
PC_13	UART0_TX	SPI1_SEL1	ACM0_A0		
PC_14	UARTO_RX		ACM0_A1		TM0_ACI0
PC_15	UARTO_RTS	PPI0_FS3	ACM0_A2	SMC0_AMS0	

Table 22. Signal Multiplexing for Port C

Table 23. Signal Multiplexing for Port D

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PD_00	UART0_CTS	PPI0_D23	ACM0_A3	SMC0_D07	
PD_01	SPI0_SEL2		ACM0_A4	SMC0_AOE	SPI0_SS
PD_02	LP0_D0	PWM1_TRIP0	TRACE0_D00		
PD_03	LP0_D1	PWM1_AH	TRACE0_D01		
PD_04	LP0_D2	PWM1_AL	TRACE0_D02		
PD_05	LP0_D3	PWM1_BH	TRACE0_D03		
PD_06	LP0_D4	PWM1_BL	TRACE0_D04		
PD_07	LP0_D5	PWM1_CH	TRACE0_D05		
PD_08	LP0_D6	PWM1_CL	TRACE0_D06		TM0_ACLK1
PD_09	LP0_D7	PWM1_DH	TRACE0_D07		TM0_ACLK2
PD_10	LP0_CLK	PWM1_DL	TRACE0_CLK		
PD_11	LP0_ACK	PWM1_SYNC			
PD_12	UART2_TX		PPI0_D19	SMC0_A06	
PD_13	UART2_RX		PPI0_D18	SMC0_A05	TM0_ACI2
PD_14	PPI0_D11	PWM2_TRIP0	MLB0_CLKOUT	SMC0_D06	
PD_15	PPI0_D10	PWM2_CH		SMC0_D05	

Table 24. Signal Multiplexing for Port E

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PE_00	PPI0_D09	PWM2_CL		SMC0_D04	
PE_01	PPI0_FS2	SPI0_SEL5	UART1_CTS	C1_FLG0	
PE_02	PPI0_FS1	SPI0_SEL6	UART1_RTS	C2_FLG0	

ADSP-SC58X/ADSP-2158X DESIGNER QUICK REFERENCE

Table 27 provides a quick reference summary of pin related information for circuit board design. The columns in this table provide the following information:

- The signal name column includes the signal name for every pin and the GPIO multiplexed pin function, where applicable.
- The type column identifies the I/O type or supply type of the pin. The abbreviations used in this column are a (analog), s (supply), g (ground) and Input, Output, and InOut.
- The driver type column identifies the driver type used by the corresponding pin. The driver types are defined in the Output Drive Currents section of this data sheet.
- The int term column specifies the termination present when the processor is not in the reset state.

- The reset term column specifies the termination present when the processor is in the reset state.
- The reset drive column specifies the active drive on the signal when the processor is in the reset state.
- The power domain column specifies the power supply domain in which the signal resides.
- The description and notes column identifies any special requirements or characteristics for a signal. These recommendations apply whether or not the hardware block associated with the signal is featured on the product. If no special requirements are listed, the signal can be left unconnected if it is not used. For multiplexed general-purpose I/O pins, this column identifies the functions available on the pin.

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DAI0_PIN01	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 1
							Notes: No notes
DAI0_PIN02	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 2
							Notes: No notes
DAI0_PIN03	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 3
							Notes: No notes
DAI0_PIN04	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 4
							Notes: No notes
DAI0_PIN05	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 5
							Notes: No notes
DAI0_PIN06	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 6
							Notes: No notes
DAI0_PIN07	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 7
							Notes: No notes
DAI0_PIN08	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 8
							Notes: No notes
DAI0_PIN09	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 9
							Notes: No notes
DAI0_PIN10	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 10
							Notes: No notes
DAI0_PIN11	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 11
							Notes: No notes
DAI0_PIN12	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 12
							Notes: No notes
DAI0_PIN13	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 13
							Notes: No notes
DAI0_PIN14	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 14
							Notes: No notes
DAI0_PIN15	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 15
							Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DMC1_DQ09	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 9 Notes: No notes
DMC1_DQ10	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 10 Notes: No notes
DMC1_DQ11	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 11 Notes: No notes
DMC1_DQ12	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 12 Notes: No notes
DMC1_DQ13	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 13 Notes: No notes
DMC1_DQ14	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 14 Notes: No notes
DMC1_DQ15	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 15 Notes: No notes
DMC1_LDM	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Data Mask for Lower Byte Notes: No notes
DMC1_LDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data Strobe for Lower Byte Notes: External weak pull-down required in LPDDR mode
DMC1_LDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data Strobe for Lower Byte (complement) Notes: No notes
DMC1_ODT	Output	В	none	none	none	VDD_DMC	Desc: DMC1 On-die termination Notes: No notes
DMC1_RAS	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Row Address Strobe Notes: No notes
DMC1_RESET	InOut	В	none	none	none	VDD_DMC	Desc: DMC1 Reset (DDR3 only) Notes: No notes
DMC1_RZQ	a	В	none	none	none	VDD_DMC	Desc: DMC1 External calibration resistor connection Notes: Applicable for DDR2 and DDR3 only. External pull-down of 34 ohms need to be added.

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DMC1_UDM	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Data Mask for Upper Byte Notes: No notes
DMC1_UDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data Strobe for Upper Byte Notes: External weak pull-down required in LPDDR mode
DMC1_UDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data Strobe for Upper Byte (complement) Notes: No notes
DMC1_VREF	а		none	none	none	VDD_DMC	Desc: DMC1 Voltage Reference Notes: No notes
DMC1_WE	Output	В	none	none	none		Desc: DMC1 Write Enable Notes: No notes
GND	g	NA	none	none	none		Desc: Ground Notes: No notes
HADC0_VIN0	а	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 0
							Notes: If Input not used connect to GND
HADC0_VIN1	а	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 1
							Notes: If Input not used connect to GND
HADC0_VIN2	a	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 2 Notes: If Input not used connect
	2	ΝΔ	none	none	none		to GND
	a		none	none	none		channel 3
	2	ΝΑ	nono	nono	nono		to GND
	a		none	none	none		channel 4 Notes: If Input not used connect
HADC0 VIN5	а	NA	none	none	none	VDD HADC	to GND Desc: HADC0 Analog Input at
							channel 5 Notes: If Input not used connect
HADC0_VIN6	a	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 6
							Notes: If Input not used connect to GND
HADC0_VIN7	a	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 7
							Notes: If Input not used connect to GND

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
HADC0_VREFN	S	NA	none	none	none	VDD_HADC	Desc: HADC0 Ground Reference for ADC Notes: No notes
HADC0_VREFP	s	NA	none	none	none	VDD_HADC	Desc: HADC0 External Reference for ADC
ЛТG_ТСК	Input		PullUp	none	none	VDD_EXT	Desc: JTAG Clock
JTG_TDI	Input		PullUp	none	none	VDD_EXT	Desc: JTAG Serial Data In Notes: No notes
JTG_TDO	Output	A	none	none	none	VDD_EXT	Desc: JTAG Serial Data Out Notes: No notes
JTG_TMS	InOut	A	PullUp	none	none	VDD_EXT	Desc: JTAG Mode Select Notes: No notes
JTG_TRST	Input		PullDown	none	none	VDD_EXT	Desc: JTAG Reset Notes: No notes
MLB0_CLKN	Input	NA	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Clock (-) Notes: No notes
MLBO_CLKP	Input	NA	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Clock (+) Notes: No notes
MLB0_DATN	InOut	1	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Data (-) Notes: No notes
MLB0_DATP	InOut	I	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Data (+) Notes: No notes
MLB0_SIGN	InOut	I	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Signal (-) Notes: No notes
MLB0_SIGP	InOut	I	Internal logic ensures that input signal does not float	none	none	VDD_EXT	Desc: MLB0 Differential Signal (+) Notes: No notes
PA_00	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTA Position 0 EMAC0 Transmit Data 0 SMC0 Address 21
PA_01	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTA Position 1 EMAC0 Transmit Data 1 SMC0 Address 20 Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

				450 N	٨Hz	
Parameter		Conditions	Min	Тур	Max	Unit
IDD_IDLE	V _{DD_INT} Current in Idle	$\label{eq:fcclk} \begin{aligned} f_{CCLK} &= 450 \text{ MHz} \\ ASF_{SHARC1} &= 0.31 \\ ASF_{SHARC2} &= 0.31 \\ ASF_{A5} &= 0.29 \\ f_{SYSCLK} &= 225 \text{ MHz} \\ f_{SCLK0/1} &= 112.5 \text{ MHz} \\ (Other clocks are disabled) \\ No peripheral or DMA activity \\ T_J &= 25^{\circ}\text{C} \\ V_{DDINT} &= 1.1 \text{ V} \end{aligned}$		495		mA
I _{DD_TYP}	V _{DD_INT} Current	$f_{CCLK} = 450 \text{ MHz}$ $ASF_{SHARC1} = 1.0$ $ASF_{SHARC2} = 1.0$ $ASF_{A5} = 0.73$ $f_{SYSCLK} = 225 \text{ MHz}$ $f_{SCLK0/1} = 112.5 \text{ MHz}$ $(Other clocks are disabled)$ $FFT accelerator operating at f_{SYSCLK/4}$ $DMA data rate = 600 \text{ MB/s}$ $T_J = 25^{\circ}C$ $V_{DDINT} = 1.1 \text{ V}$		1112		mA
I _{DD_INT} ¹¹	V _{DD_INT} Current	$f_{CCLK} > 0 MHz$ $f_{SCLK0/1} \ge 0 MHz$			See I _{DD_INT_TOT} equation in the Total Internal Power Dissi- pation section.	mA

¹Applies to all output and bidirectional pins except TWI, DMC, USB, PCIe, and MLB.

²See the Output Drive Currents section for typical drive current capabilities.

³Applies to all DMC output and bidirectional signals in DDR2 mode.

⁴Applies to all DMC output and bidirectional signals in DDR3 mode.

⁵ Applies to all DMC output and bidirectional signals in LPDDR mode.

⁶Applies to input pins SYS_BMODE0-2, SYS_CLKIN0, SYS_CLKIN1, <u>SYS_HWRST</u>, JTG_TDI, JTG_TMS, and USB0_CLKIN.

⁷ Applies to input pins with internal pull-ups including JTG_TDI, JTG_TMS, and JTG_TCK. ⁸ Applies to signals JTAG_TRST, USB0_VBUS, USB1_VBUS.

⁹ Applies to signals PA0-15, PB0-15, PC0-15, PD0-15, PE0-15, PG0-5, DAI0_PINx, DAI1_PINx, DMC0_DQx, DMC0_LDQS, DMC0_UDQS, DMC0_LDQS, DMC0_LDQS, DMC0_LDQS, DMC0_LDQS, SYS_FAULT, JTG_TDO, USB0_ID, USBx_DD, uSBx_DP, and USBx_VBC.

¹⁰Applies to all signal pins.

¹¹See "Estimating Power for ADSP-SC58x/2158x SHARC+ Processors" (EE-392) for further information.

Clock and Reset Timing

Table 44 and Figure 11 describe clock and reset operations related to the CGU and RCU. Per the CCLK, SYSCLK, SCLK, DCLK, and OCLK timing specifications in Table 29, combinations of SYS_CLKIN and clock multipliers must not select clock rates in excess of the maximum instruction rate of the processor.

Table 44. Clock and Reset Timing

Parameter Timing Requirements		Min	Max	Unit
f _{CKIN}	SYS_CLKINx Frequency (Crystal) ^{1, 2, 3}	20	50	MHz
	SYS_CLKINx Frequency (External CLKIN) ^{1, 2, 3}	20	50	MHz
t _{CKINL}	CLKIN Low Pulse ¹	10		ns
t _{CKINH}	CLKIN High Pulse ¹	10		ns
t _{WRST}	RESET Asserted Pulse Width Low ⁴	$11 \times t_{CKIN}$		ns

¹Applies to PLL bypass mode and PLL nonbypass mode.

² The t_{CKIN} period (see Figure 11) equals 1/f_{CKIN}.

 3 If the CGU_CTL.DF bit is set, the minimum f_{CKIN} specification is 40 MHz.

⁴Applies after power-up sequence is complete. See Table 43 and Figure 10 for power-up reset timing.

Figure 11. Clock and Reset Timing

The SPTx_TDV output signal becomes active in SPORT multichannel mode. During transmit slots (enabled with active channel selection registers) the SPTx_TDV is asserted for communication with external devices.

Table 67. Serial Ports—TDV (Transmit Data Valid)¹

Parameter		Min	Мах	Unit
Switching Ch	paracteristics			
t _{DRDVEN}	Data Valid Enable Delay from Drive Edge of External Clock ²	2		ns
t _{DFDVEN}	Data Valid Disable Delay from Drive Edge of External Clock ²		14	ns
t _{DRDVIN}	Data Valid Enable Delay from Drive Edge of Internal Clock ²	-2.5		ns
t _{DFDVIN}	Data Valid Disable Delay from Drive Edge of Internal Clock ²		3.5	ns

¹Specifications apply to all eight SPORTs.

²Referenced to drive edge.

Figure 39. Serial Ports—Transmit Data Valid Internal and External Clock

Precision Clock Generator (PCG) (Direct Pin Routing)

This timing is only valid when the SRU is configured such that the precision clock generator (PCG) takes inputs directly from the DAI pins (via pin buffers) and sends outputs directly to the DAI pins. For the other cases, where the PCG inputs and outputs are not directly routed to/from DAI pins (via pin buffers), there is no timing data available. All timing parameters and switching characteristics apply to external DAI pins (DAIx_PINx).

Table 77. Precision Clock Generator (Direct Pin Routing)

Paramete	r	Min	Max	Unit
Timing Red	quirements			
t _{PCGIP}	Input Clock Period	t _{SCLK} × 2		ns
t _{STRIG}	PCG Trigger Setup Before Falling Edge of PCG Input Clock	4.5		ns
t _{HTRIG}	PCG Trigger Hold After Falling Edge of PCG Input Clock	3		ns
Switching	Characteristics			
t _{DPCGIO}	PCG Output Clock and Frame Sync Active Edge Delay After PCG Input Clock	2.5	13.5	ns
t _{DTRIGCLK}	PCG Output Clock Delay After PCG Trigger	$2.5 + (2.5 \times t_{PCGIP})$	$13.5 + (2.5 \times t_{PCGIP})$	ns
t _{DTRIGFS} ¹	PCG Frame Sync Delay After PCG Trigger	$2.5 + ((2.5 + D - PH) \times t_{PCGIP})$	$13.5 + ((2.5 + D - PH) \times t_{PCGIP})$	ns
t _{PCGOW} ²	Output Clock Period	$2 \times t_{PCGIP} - 1$		ns

¹D = FSxDIV, PH = FSxPHASE. For more information, see the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference. ²Normal mode of operation.

t_{STRIG} t_{HTRIG} DAIx_PIN20-1 PCG_TRIGx_I DAIx_PIN20-1 PCG_EXTx_I (CLKIN) tDPCGIO t_{PCGIP} DAIx_PIN20-1 PCG CLKx O t_{PCGOW} **t**_{DTRIGCLK} t_{DPCGIO} DAIx_PIN20-1 PCG FSx O tDTRIGFS

Figure 50. PCG (Direct Pin Routing)

S/PDIF Transmitter Input Data Timing

The timing requirements for the S/PDIF transmitter are given in Table 96. Input signals are routed to the DAIx_PINx pins using the SRU. Therefore, the timing specifications provided below are valid at the DAIx_PINx pins.

Table 96.	S/PDIF	Transmitter	Input	Data	Timing
-----------	--------	-------------	-------	------	--------

Parameter		Min	Max	Unit
Timing Requirements				
t _{SISFS} ¹	Frame Sync Setup Before Serial Clock Rising Edge	3		ns
t _{SIHFS} ¹	Frame Sync Hold After Serial Clock Rising Edge	3		ns
t _{SISD} ¹	Data Setup Before Serial Clock Rising Edge	3		ns
t _{SIHD} 1	Data Hold After Serial Clock Rising Edge	3		ns
t _{SITXCLKW}	Transmit Clock Width	9		ns
t _{SITXCLK}	Transmit Clock Period	20		ns
t _{SISCLKW}	Clock Width	36		ns
t _{SISCLK}	Clock Period	80		ns

¹The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. The input of the PCG can be either CLKIN or any of the DAI pins.

Figure 67. S/PDIF Transmitter Input Timing

Oversampling Clock (TxCLK) Switching Characteristics

The S/PDIF transmitter requires an oversampling clock input. This high frequency clock (TxCLK) input is divided down to generate the internal biphase clock.

Table 97.	Oversamplin	g Clock (TxCLK)	Switching	Characteristics
-----------	-------------	-----------	--------	-----------	-----------------

Parameter		Max	Unit
Switching Char	acteristics		
f _{TXCLK_384}	Frequency for TxCLK = 384 × Frame Sync	Oversampling ratio × frame sync $\leq 1/t_{SITXCLK}$	MHz
f _{TXCLK_256}	Frequency for TxCLK = $256 \times$ Frame Sync	49.2	MHz
f _{FS}	Frame Rate (FS)	192.0	kHz

S/PDIF Receiver

The following section describes timing as it relates to the S/PDIF receiver.

Internal Digital PLL Mode

In the internal digital PLL mode, the internal digital PLL generates the 512 \times FS clock.

Table 98. S/PDIF Receiver Internal Digital PLL Mode Timing

Parameter		Min	Мах	Unit
Switching Characteristics				
t _{DFSI}	Frame Sync Delay After Serial Clock		5	ns
t _{HOFSI}	Frame Sync Hold After Serial Clock	-2		ns
t _{DDTI}	Transmit Data Delay After Serial Clock		5	ns
t _{HDTI}	Transmit Data Hold After Serial Clock	-2		ns

Figure 68. S/PDIF Receiver Internal Digital PLL Mode Timing

Ball No.	Pin Name						
L10	GND	P03	JTG_TDO	U10	VDD_INT	AA01	DAI0_PIN11
L11	GND	P06	VDD_EXT	U11	VDD_INT	AA02	GND
L12	GND	P09	GND	U12	VDD_INT	AA03	DAI0_PIN10
L13	GND	P10	GND	U13	VDD_INT	AA04	DAI0_PIN04
L14	GND	P11	GND	U14	VDD_EXT	AA05	DAI0_PIN05
L15	GND	P12	GND	U15	VDD_EXT	AA06	USB0_ID
L17	VDD_EXT	P13	GND	U16	VDD_EXT	AA07	USB0_VBUS
L19	VDD_INT	P14	GND	U17	VDD_EXT	AA08	TWI2_SCL
L20	PE_11	P17	VDD_EXT	U20	DAI1_PIN20	AA09	TWI2_SDA
L21	PE_10	P20	DAI1_PIN01	U21	DAI1_PIN11	AA10	TWI0_SDA
L22	PE_09	P21	DAI1_PIN05	U22	DAI1_PIN19	AA11	HADC0_VIN2
M01	JTG_TRST	P22	DAI1_PIN03	V01	PB_13	AA12	HADC0_VIN5
M02	JTG_TMS	R01	GND	V02	PB_12	AA13	HADC0_VIN4
M03	JTG_TCK	R02	PB_15	V03	DAI0_PIN20	AA14	HADC0_VIN7
M04	VDD_INT	R03	PB_14	V20	PA_00	AA15	PB_05
M06	VDD_INT	R06	VDD_EXT	V21	PA_01	AA16	PB_02
M08	GND	R07	GND	V22	PA_02	AA17	PA_14
M09	GND	R16	GND	W01	PB_10	AA18	PB_03
M10	GND	R17	VDD_EXT	W02	PB_11	AA19	PA_12
M11	GND	R20	DAI1_PIN08	W03	DAI0_PIN19	AA20	PA_11
M12	GND	R21	DAI1_PIN07	W11	VDD_INT	AA21	GND
M13	GND	R22	DAI1_PIN06	W12	VDD_INT	AA22	PA_09
M14	GND	T01	SYS_XTAL0	W20	PA_05	AB01	GND
M15	GND	T02	SYS_BMODE2	W21	PA_03	AB02	DAI0_PIN09
M17	VDD_EXT	Т03	DAI0_PIN07	W22	PA_04	AB03	DAI0_PIN08
M19	VDD_INT	T06	VDD_EXT	Y01	PB_09	AB04	USB_CLKIN
M20	PE_13	T07	GND	Y02	PB_08	AB05	USB_XTAL
M21	PE_15	T08	GND	Y03	DAI0_PIN12	AB06	USB0_DP
M22	PE_12	Т09	GND	Y04	DAI0_PIN06	AB07	USB0_DM
N01	SYS_XTAL1	T10	GND	Y05	DAI0_PIN02	AB08	TWI1_SCL
N02	SYS_BMODE0	T11	GND	Y06	DAI0_PIN03	AB09	HADC0_VREFP
N03	PC_00	T12	GND	Y07	DAI0_PIN01	AB10	HADC0_VREFN
N06	VDD_EXT	T13	GND	Y08	USB0_VBC	AB11	HADC0_VIN0
N08	GND	T14	GND	Y09	TWI0_SCL	AB12	HADC0_VIN1
N09	GND	T15	GND	Y10	TWI1_SDA	AB13	HADC0_VIN3
N10	GND	T16	GND	Y11	VDD_HADC	AB14	MLB0_SIGP
N11	GND	T17	VDD_EXT	Y12	GND	AB15	MLB0_SIGN
N12	GND	T20	DAI1_PIN12	Y13	HADC0_VIN6	AB16	MLB0_DATP
N13	GND	T21	DAI1_PIN10	Y14	PB_06	AB17	MLB0_DATN
N14	GND	T22	DAI1_PIN09	Y15	PB_00	AB18	MLB0_CLKP
N15	GND	U01	SYS_CLKIN0	Y16	PB_04	AB19	MLB0_CLKN
N17	VDD_EXT	U02	SYS_RESOUT	Y17	PB_01	AB20	PA_13
N20	DAI1_PIN04	U03	PB_07	Y18	PA_10	AB21	PA_07
N21	DAI1_PIN02	U06	VDD_EXT	Y19	PA_15	AB22	GND
N22	PE_14	U07	VDD_EXT	Y20	GND		
P01	SYS_CLKIN1	U08	VDD_USB	Y21	PA_06		
P02	SYS_BMODE1	U09	VDD_INT	Y22	PA_08		

CONFIGURATION OF THE 349-BALL CSP_BGA

Figure 98 shows an overview of signal placement on the 349-ball CSP_BGA.

BOTTOM VIEW

Figure 98. 349-Ball CSP_BGA Configuration

PLANNED AUTOMOTIVE PRODUCTION PRODUCTS

Model ^{1, 2}	Processor Instruction Rate (Max)	Temperature Range ³	ARM Cores ⁴	SHARC+ Cores	SHARC+ SRAM	PCle Lanes ⁴	Package Description	Package Option
AD21583WCBCZ4Axx	450 MHz	-40°C to +105°C	N/A	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
AD21584WCBCZ4Axx	450 MHz	–40°C to +105°C	N/A	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSC582WCBCZ4Axx	450 MHz	–40°C to +105°C	1	1	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSC583WCBCZ3Axx	300 MHz	–40°C to +105°C	1	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSC583WCBCZ4Axx	450 MHz	–40°C to +105°C	1	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSC584WCBCZ3Axx	300 MHz	–40°C to +105°C	1	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSC584WCBCZ4Axx	450 MHz	–40°C to +105°C	1	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSC587WCBCZ4Bxx	450 MHz	-40°C to +90°C	1	2	640 kB	N/A	529-Ball cspBGA	BC-529-1

 1 Z = RoHS Compliant Part.

² xx denotes the current die revision.

³Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see the Operating Conditions section for the junction temperature (T_J) specification which is the only temperature specification.

⁴N/A means not applicable.

ORDERING GUIDE

Model ¹	Processor Instruction Rate (Max)	Temperature Range ²	ARM Cores ³	SHARC+ Cores	SHARC+ SRAM	PCIe Lanes ³	Package Description	Package Option
ADSP-21583KBCZ-4A	450 MHz	0°C to +70°C	N/A	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-21583BBCZ-4A	450 MHz	–40°C to +85°C	N/A	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-21583CBCZ-4A	450 MHz	–40°C to +95°C	N/A	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-21584KBCZ-4A	450 MHz	0°C to +70°C	N/A	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-21584BBCZ-4A	450 MHz	–40°C to +85°C	N/A	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-21584CBCZ-4A	450 MHz	–40°C to +95°C	N/A	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-21587KBCZ-4B	450 MHz	0°C to +70°C	N/A	2	640 kB	N/A	529-Ball cspBGA	BC-529-1
ADSP-21587BBCZ-4B	450 MHz	–40°C to +85°C	N/A	2	640 kB	N/A	529-Ball cspBGA	BC-529-1
ADSP-SC582KBCZ-4A	450 MHz	0°C to +70°C	1	1	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC582BBCZ-4A	450 MHz	–40°C to +85°C	1	1	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC582CBCZ-4A	450 MHz	–40°C to +95°C	1	1	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC583KBCZ-3A	300 MHz	0°C to +70°C	1	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC583BBCZ-3A	300 MHz	–40°C to +85°C	1	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC583CBCZ-3A	300 MHz	–40°C to +95°C	1	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC583KBCZ-4A	450 MHz	0°C to +70°C	1	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC583BBCZ-4A	450 MHz	–40°C to +85°C	1	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC583CBCZ-4A	450 MHz	–40°C to +95°C	1	2	384 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC584KBCZ-3A	300 MHz	0°C to +70°C	1	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC584BBCZ-3A	300 MHz	–40°C to +85°C	1	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC584CBCZ-3A	300 MHz	–40°C to +95°C	1	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC584KBCZ-4A	450 MHz	0°C to +70°C	1	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC584BBCZ-4A	450 MHz	–40°C to +85°C	1	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC584CBCZ-4A	450 MHz	-40°C to +95°C	1	2	640 kB	N/A	349-Ball cspBGA	BC-349-1
ADSP-SC587KBCZ-4B	450 MHz	0°C to +70°C	1	2	640 kB	N/A	529-Ball cspBGA	BC-529-1
ADSP-SC587BBCZ-4B	450 MHz	-40°C to +85°C	1	2	640 kB	N/A	529-Ball cspBGA	BC-529-1
ADSP-SC589KBCZ-4B	450 MHz	0°C to +70°C	1	2	640 kB	1	529-Ball cspBGA	BC-529-1
ADSP-SC589BBCZ-4B	450 MHz	–40°C to +85°C	1	2	640 kB	1	529-Ball cspBGA	BC-529-1

¹Z =RoHS Compliant Part.

² Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see the Operating Conditions section for the junction temperature (T_J) specification which is the only temperature specification.

³N/A means not applicable.