

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Active
Туре	Floating Point
Interface	CAN, EBI/EMI, Ethernet, DAI, I ² C, MMC/SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	300MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	384kB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	349-LFBGA, CSPBGA
Supplier Device Package	349-CSPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-sc583kbcz-3a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Single external reference with analog inputs between 0 V and 3.3 V.
- Selectable ADC clock frequency including the ability to program a prescaler.
- Adaptable conversion type; allows single or continuous conversion with option of autoscan.
- Auto sequencing capability with up to 15 autoconversions in a single session. Each conversion can be programmed to select 1 to 15 input channels.
- 16 data registers (individually addressable) to store conversion values.

USB 2.0 On the Go (OTG) Dual-Role Device Controller

There are two USB modules + PHY. USB0 supports HS/FS/LS USB 2.0 on the go (OTG) and USB1 supports HS/FS USB 2.0 only and can be programmed to be a host or device.

The USB 2.0 OTG dual-role device controller provides a low cost connectivity solution in industrial applications, as well as consumer mobile devices such as cell phones, digital still cameras, and MP3 players. The USB 2.0 controller allows these devices to transfer data using a point to point USB connection without the need for a PC host. The module can operate in a traditional USB peripheral only mode as well as the host mode presented in the OTG supplement to the USB 2.0 specification.

The USB clock is provided through a dedicated external crystal or crystal oscillator.

The USB OTG dual-role device controller includes a PLL with programmable multipliers to generate the necessary internal clocking frequency for the USB.

Media Local Bus (MLB)

The automotive model has a media local bus (MLB) slave interface that allows the processors to function as a media local bus device. It includes support for both 3-pin and 6-pin media local bus protocols. The MLB 3-pin configuration supports speeds up to $1024 \times FS$. The MLB 6-pin configuration supports speed of $4096 \times FS$. The MLB also supports up to 63 logical channels with up to 468 bytes of data per MLB frame.

The MLB interface supports MOST25/MOST50/MOST150 data rates and operates in slave mode only.

2-Wire Controller Interface (TWI)

The processors include three 2-wire interface (TWI) modules that provide a simple exchange method of control data between multiple devices. The TWI module is compatible with the widely used I²C bus standard. The TWI module offers the capabilities of simultaneous master and slave operation and support for both 7-bit addressing and multimedia data arbitration. The TWI interface utilizes two pins for transferring clock (TWI_SCL) and data (TWI_SDA) and supports the protocol at speeds up to 400 kb/sec. The TWI interface pins are compatible with 5 V logic levels.

Additionally, the TWI module is fully compatible with serial camera control bus (SCCB) functionality for easier control of various CMOS camera sensor devices.

General-Purpose I/O (GPIO)

Each general-purpose port pin can be individually controlled by manipulating the port control, status, and interrupt registers:

- GPIO direction control register specifies the direction of each individual GPIO pin as input or output.
- GPIO control and status registers have a write one to modify mechanism that allows any combination of individual GPIO pins to be modified in a single instruction, without affecting the level of any other GPIO pins.
- GPIO interrupt mask registers allow each individual GPIO pin to function as an interrupt to the processors. GPIO pins defined as inputs can be configured to generate hardware interrupts, while output pins can be triggered by software interrupts.
- GPIO interrupt sensitivity registers specify whether individual pins are level or edge sensitive and specify, if edge sensitive, whether the rising edge or both the rising and falling edges of the signal are significant.

Pin Interrupts

Every port pin on the processors can request interrupts in either an edge sensitive or a level sensitive manner with programmable polarity. Interrupt functionality is decoupled from GPIO operation. Six system-level interrupt channels (PINT0–PINT5) are reserved for this purpose. Each of these interrupt channels can manage up to 32 interrupt pins. The assignment from pin to interrupt is not performed on a pin by pin basis. Rather, groups of eight pins (half ports) can be flexibly assigned to interrupt channels.

Every pin interrupt channel features a special set of 32-bit memory-mapped registers that enable half-port assignment and interrupt management. This includes masking, identification, and clearing of requests. These registers also enable access to the respective pin states and use of the interrupt latches, regardless of whether the interrupt is masked or not. Most control registers feature multiple MMR address entries to write-one-to-set or write-one-to-clear them individually.

Mobile Storage Interface (MSI)

The mobile storage interface (MSI) controller acts as the host interface for multimedia cards (MMC), secure digital memory cards (SD), and secure digital input/output cards (SDIO). The MSI controller has the following features:

- Support for a single MMC, SD memory, and SDIO card
- Support for 1-bit and 4-bit SD modes
- Support for 1-bit, 4-bit, and 8-bit MMC modes
- Support for eMMC 4.3 embedded NAND flash devices
- An eleven-signal external interface with clock, command, optional interrupt, and up to eight data lines
- Integrated DMA controller
- Card interface clock generation in the clock distribution unit (CDU)
- SDIO interrupt and read wait features

Signal Name	Direction	Description
SMC_ABE[n]	Output	Byte Enable n. Indicates whether the lower or upper byte of a memory is being accessed. When an
		asynchronous write is made to the upper byte of a 16-bit memory, $\overline{SMC}ABE1 = 0$ and $\overline{SMC}ABE0 = 1$. When an asynchronous write is made to the lower byte of a 16-bit memory, $\overline{SMC}ABE1 = 1$ and $\overline{SMC}ABE0 = 0$.
SMC_AMS[n]	Output	Memory Select n. Typically connects to the chip select of a memory device.
SMC_AOE	Output	Output Enable. Asserts at the beginning of the setup period of a read access.
SMC_ARDY	Input	Asynchronous Ready. Flow control signal used by memory devices to indicate to the SMC when further transactions may proceed.
SMC_ARE	Output	Read Enable. Asserts at the beginning of a read access.
SMC_AWE	Output	Write Enable. Asserts for the duration of a write access period.
SMC_A[nn]	Output	Address n. Address bus.
SMC_D[nn]	InOut	Data n. Bidirectional data bus.
SPI_CLK	InOut	Clock. Input in slave mode, output in master mode.
SPI_D2	InOut	Data 2. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.
SPI_D3	InOut	Data 3. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.
SPI_MISO	InOut	Master In, Slave Out. Transfers serial data. Operates in the same direction as SPI_MOSI in dual and quad modes. Open-drain when ODM mode is enabled.
SPI_MOSI	InOut	Master Out, Slave In. Transfers serial data. Operates in the same direction as SPI_MISO in dual and quad modes. Open-drain when ODM mode is enabled.
SPI_RDY	InOut	Ready. Optional flow signal. Output in slave mode, input in master mode.
SPI_SEL[n]	Output	Slave Select Output n. Used in master mode to enable the desired slave.
<u>SPI_SS</u>	Input	Slave Select Input. Slave mode—acts as the slave select input. Master mode—optionally serves as an error detection input for the SPI when there are multiple masters.
SPT_ACLK	InOut	Channel A Clock. Data and frame sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_AD0	InOut	Channel A Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_AD1	InOut	Channel A Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_AFS	InOut	Channel A Frame Sync. The frame sync pulse initiates shifting of the serial data. This signal is either generated internally or externally.
SPT_ATDV	Output	Channel A Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.
SPT_BCLK	InOut	Channel B Clock. Data and frame sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_BD0	InOut	Channel B Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_BD1	InOut	Channel B Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_BFS	InOut	Channel B Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.
SPT_BTDV	Output	Channel B Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.
SYS_BMODE[n]	Input	Boot Mode Control n. Selects the boot mode of the processor.
SYS_CLKIN0	Input	Clock/Crystal Input.
SYS_CLKIN1	Input	Clock/Crystal Input.
SYS_CLKOUT	Output	Processor Clock Output. Outputs internal clocks. Clocks may be divided down. See the CGU chapter of the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference for more details.

Table 11. ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
PWM2_DL	PWM2 Channel D Low Side	E	PE_10
PWM2_SYNC	PWM2 PWMTMR Grouped	E	PE_05
PWM2_TRIP0	PWM2 Shutdown Input 0	D	PD_14
GND	Ground	Not Muxed	GND
VDD_EXT	External Voltage Domain	Not Muxed	VDD_EXT
VDD_INT	Internal Voltage Domain	Not Muxed	VDD_INT
SINC0_CLK0	SINC0 Clock 0	В	PB_01
SINC0_D0	SINC0 Data 0	А	PA_14
SINC0_D1	SINC0 Data 1	А	PA_15
SINC0_D2	SINC0 Data 2	В	PB_00
SINC0_D3	SINC0 Data 3	В	PB_04
SMC0_A01	SMC0 Address 1	В	PB_05
5MC0_A02	SMC0 Address 2	В	PB_06
SMC0_A03	SMC0 Address 3	В	PB_03
SMC0_A04	SMC0 Address 4	В	PB_02
SMC0_A05	SMC0 Address 5	D	PD_13
SMC0_A06	SMC0 Address 6	D	PD_12
	SMC0 Address 7	В	 PB_01
	SMC0 Address 8	В	 PB_00
SMC0_A09	SMC0 Address 9	A	PA_15
SMC0_A10	SMC0 Address 10	А	 PA_14
SMC0_A11	SMC0 Address 11	A	PA_09
5MC0_A12	SMC0 Address 12	A	PA_08
5MC0_A13	SMC0 Address 13	A	PA_13
5MC0_A14	SMC0 Address 14	A	PA_12
SMC0_A15	SMC0 Address 15	A	PA_11
5MC0_A16	SMC0 Address 16	A	PA_07
5MC0_A17	SMC0 Address 17	A	PA_06
5MC0_A18	SMC0 Address 18	A	PA_05
5MC0_A19	SMC0 Address 19	A	PA_04
5MC0_A20	SMC0 Address 20	A	PA_01
5MC0_A21	SMC0 Address 21	A	PA_00
5MC0_A21	SMC0 Address 22	A	PA_10
5MC0_A22	SMC0 Address 22		PA_03
5MC0_A23 5MC0_A24	SMC0 Address 23	A	PA_02
SMC0_A24 SMC0_A25	SMC0 Address 24	C	PC_12
SMC0_A25	SMC0 Address 25 SMC0 Byte Enable 0	E	PC_12 PE_14
SMC0_ABE1	SMC0 Byte Enable 0		PE_14 PE_15
SMC0_ABET	SMC0 Byte Enable 1 SMC0 Memory Select 0	E	PC_15
SMC0_AMS0 SMC0_AMS1		C	
	SMC0 Memory Select 1	E	PE_13
SMC0_AMS2	SMC0 Memory Select 2	С	PC_07
SMC0_AMS3	SMC0 Memory Select 3	C	PC_08
SMC0_AOE	SMC0 Output Enable	D	PD_01
SMC0_ARDY	SMC0 Asynchronous Ready	В	PB_04
SMC0_ARE	SMC0 Read Enable	C	PC_00
SMC0_AWE	SMC0 Write Enable	В	PB_15
SMC0_D00	SMC0 Data 0	E	PE_12
SMC0_D01	SMC0 Data 1	E	PE_11

Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP_BGA Signal Descriptions (Continued)

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PE_00	PPI0_D09	PWM2_CL		SMC0_D04	
PE_01	PPI0_FS2	SPI0_SEL5	UART1_CTS	C1_FLG0	
PE_02	PPI0_FS1	SPI0_SEL6	UART1_RTS	C2_FLG0	
PE_03	PPI0_CLK	SPI0_SEL7	SPI2_SEL2	C1_FLG1	
PE_04	PPI0_D08	PWM2_DH	SPI2_SEL3	C2_FLG1	
PE_05	PPI0_D07	PWM2_SYNC	SPI2_SEL4	C1_FLG2	
PE_06	PPI0_D06		SPI2_SEL5	C2_FLG2	
PE_07	PPI0_D05		SPI1_SEL2	C1_FLG3	
PE_08	PPI0_D04	SPI1_SEL5	SPI1_RDY	C2_FLG3	
PE_09	PPI0_D03	PWM0_SYNC	TM0_TMR0	SMC0_D03	
PE_10	PPI0_D02	PWM2_DL	UART2_RTS	SMC0_D02	
PE_11	PPI0_D01	SPI1_SEL3	UART2_CTS	SMC0_D01	SPI1_SS
PE_12	PPI0_D00	SPI1_SEL4	SPI2_RDY	SMC0_D00	
PE_13	SPI1_CLK		PPI0_D20	SMC0_AMS1	
PE_14	SPI1_MISO		PPI0_D21	SMC0_ABE0	
PE_15	SPI1_MOSI		PPI0_D22	SMC0_ABE1	

Table 17. Signal Multiplexing for Port E

Table 18 shows the internal timer signal routing. This table applies to both the 349-ball and 529-ball CSP_BGA packages.

Table 18. Internal Timer Signal Routing

Timer Input Signal	Internal Source	
TM0_ACLK0	SYS_CLKIN1	
TM0_ACI5	DAI0_CRS_PB04_O	
TM0_ACLK5	DAI0_CRS_PB03_O	
TM0_ACI6	DAI1_CRS_PB04_O	
TM0_ACLK6	DAI1_CRS_PB03_O	
TM0_ACI7	CNT0_TO	
TM0_ACLK7	SYS_CLKIN0	

Signal Name	Description	Port	Pin Name
VDD_PCIE	PCIE Supply Voltage	Not Muxed	VDD_PCIE
VDD_PCIE_RX	PCIE RX Supply Voltage	Not Muxed	VDD_PCIE_RX
VDD_PCIE_TX	PCIE TX Supply Voltage	Not Muxed	VDD_PCIE_TX
VDD_RTC	RTC VDD	Not Muxed	VDD_RTC
VDD_USB	USB VDD	Not Muxed	VDD_USB

Table 19. ADSP-SC58x/ADSP-2158x 529-Ball CSP_BGA Signal Descriptions (Continued)

GPIO MULTIPLEXING FOR THE 529-BALL CSP_BGA PACKAGE

Table 20 through Table 26 identify the pin functions that are multiplexed on the general-purpose I/O pins of the 529-ball CSP_BGA package.

Table 20. Signal Multiplexing for Port A

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function2	Function 3	Function Input Tap
PA_00	ETH0_TXD0			SMC0_A21	
PA_01	ETH0_TXD1			SMC0_A20	
PA_02	ETH0_MDC			SMC0_A24	
PA_03	ETH0_MDIO			SMC0_A23	
PA_04	ETH0_RXD0			SMC0_A19	
PA_05	ETH0_RXD1			SMC0_A18	
PA_06	ETH0_RXCLK_REFCLK			SMC0_A17	
PA_07	ETH0_CRS			SMC0_A16	
PA_08	ETH0_RXD2			SMC0_A12	
PA_09	ETH0_RXD3			SMC0_A11	
PA_10	ETH0_TXEN			SMC0_A22	
PA_11	ETH0_TXCLK			SMC0_A15	
PA_12	ETH0_TXD2			SMC0_A14	
PA_13	ETH0_TXD3			SMC0_A13	
PA_14	ETH0_PTPPPS3	SINC0_D0		SMC0_A10	
PA_15	ETH0_PTPPPS2	SINC0_D1		SMC0_A09	

Table 21. Signal Multiplexing for Port B

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PB_00	ETH0_PTPPPS1	SINC0_D2	PPI0_D14	SMC0_A08	TM0_ACLK3
PB_01	ETH0_PTPPPS0	SINC0_CLK0	PPI0_D15	SMC0_A07	TM0_ACLK4
PB_02	ETH0_PTPCLKIN0	UART1_TX	PPI0_D16	SMC0_A04	
PB_03	ETH0_PTPAUXIN0	UART1_RX	PPI0_D17	SMC0_A03	TM0_ACI1
PB_04	MLB0_CLK	SINC0_D3	PPI0_D12	SMC0_ARDY	ETH0_PTPAUXIN1
PB_05	MLB0_SIG		PPI0_D13	SMC0_A01	ETH0_PTPAUXIN2
PB_06	MLB0_DAT		PWM0_BH	SMC0_A02	ETH0_PTPAUXIN3
PB_07	LP1_D0	PWM0_AH	TM0_TMR3	SMC0_D15	
PB_08	LP1_D1	PWM0_AL	TM0_TMR4	SMC0_D14	
PB_09	LP1_D2		CAN1_TX	SMC0_D13	
PB_10	LP1_D3	TM0_TMR2	CAN1_RX	SMC0_D12	TM0_ACI4
PB_11	LP1_D4		PWM0_DH	SMC0_D11	CNT0_ZM
PB_12	LP1_D5		PWM0_DL	SMC0_D10	CNT0_UD
PB_13	LP1_D6		PWM0_CH	SMC0_D09	
PB_14	LP1_D7	TM0_TMR5	PWM0_CL	SMC0_D08	CNT0_DG
PB_15	LP1_ACK	PWM0_TRIP0	TM0_TMR1	SMC0_AWE	

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PC_00	LP1_CLK	PWM0_BL	SPI0_SEL4	SMC0_ARE	
PC_01	SPI2_CLK				
PC_02	SPI2_MISO				
PC_03	SPI2_MOSI				
PC_04	SPI2_D2				
PC_05	SPI2_D3				
PC_06	SPI2_SEL1				SPI2_SS
PC_07	CAN0_RX	SPI0_SEL1		SMC0_AMS2	TM0_ACI3
PC_08	CAN0_TX			SMC0_AMS3	
PC_09	SPI0_CLK				
PC_10	SPI0_MISO				
PC_11	SPI0_MOSI				TM0_CLK
PC_12	SPI0_SEL3	SPI0_RDY	ACM0_T0	SMC0_A25	
PC_13	UART0_TX	SPI1_SEL1	ACM0_A0		
PC_14	UART0_RX		ACM0_A1		TM0_ACI0
PC_15	UART0_RTS	PPI0_FS3	ACM0_A2	SMC0_AMS0	

Table 22. Signal Multiplexing for Port C

Table 23. Signal Multiplexing for Port D

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PD_00	UART0_CTS	PPI0_D23	ACM0_A3	SMC0_D07	
PD_01	SPI0_SEL2		ACM0_A4	SMC0_AOE	SPI0_SS
PD_02	LP0_D0	PWM1_TRIP0	TRACE0_D00		
PD_03	LP0_D1	PWM1_AH	TRACE0_D01		
PD_04	LP0_D2	PWM1_AL	TRACE0_D02		
PD_05	LP0_D3	PWM1_BH	TRACE0_D03		
PD_06	LP0_D4	PWM1_BL	TRACE0_D04		
PD_07	LP0_D5	PWM1_CH	TRACE0_D05		
PD_08	LP0_D6	PWM1_CL	TRACE0_D06		TM0_ACLK1
PD_09	LP0_D7	PWM1_DH	TRACE0_D07		TM0_ACLK2
PD_10	LP0_CLK	PWM1_DL	TRACE0_CLK		
PD_11	LP0_ACK	PWM1_SYNC			
PD_12	UART2_TX		PPI0_D19	SMC0_A06	
PD_13	UART2_RX		PPI0_D18	SMC0_A05	TM0_ACI2
PD_14	PPI0_D11	PWM2_TRIP0	MLB0_CLKOUT	SMC0_D06	
PD_15	PPI0_D10	PWM2_CH		SMC0_D05	

Table 24. Signal Multiplexing for Port E

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PE_00	PPI0_D09	PWM2_CL		SMC0_D04	
PE_01	PPI0_FS2	SPI0_SEL5	UART1_CTS	C1_FLG0	
PE_02	PPI0_FS1	SPI0_SEL6	UART1_RTS	C2_FLG0	

ADSP-SC58X/ADSP-2158X DESIGNER QUICK REFERENCE

Table 27 provides a quick reference summary of pin related information for circuit board design. The columns in this table provide the following information:

- The signal name column includes the signal name for every pin and the GPIO multiplexed pin function, where applicable.
- The type column identifies the I/O type or supply type of the pin. The abbreviations used in this column are a (analog), s (supply), g (ground) and Input, Output, and InOut.
- The driver type column identifies the driver type used by the corresponding pin. The driver types are defined in the Output Drive Currents section of this data sheet.
- The int term column specifies the termination present when the processor is not in the reset state.

- The reset term column specifies the termination present when the processor is in the reset state.
- The reset drive column specifies the active drive on the signal when the processor is in the reset state.
- The power domain column specifies the power supply domain in which the signal resides.
- The description and notes column identifies any special requirements or characteristics for a signal. These recommendations apply whether or not the hardware block associated with the signal is featured on the product. If no special requirements are listed, the signal can be left unconnected if it is not used. For multiplexed general-purpose I/O pins, this column identifies the functions available on the pin.

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DAI0_PIN01	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 1
							Notes: No notes
DAI0_PIN02	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 2
							Notes: No notes
DAI0_PIN03	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 3
							Notes: No notes
DAI0_PIN04	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 4
							Notes: No notes
DAI0_PIN05	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 5
							Notes: No notes
DAI0_PIN06	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 6
							Notes: No notes
DAI0_PIN07	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 7
							Notes: No notes
DAI0_PIN08	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 8
							Notes: No notes
DAI0_PIN09	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 9
							Notes: No notes
DAI0_PIN10	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 10
							Notes: No notes
DAI0_PIN11	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 11
							Notes: No notes
DAI0_PIN12	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 12
							Notes: No notes
DAI0_PIN13	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 13
							Notes: No notes
DAI0_PIN14	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 14
							Notes: No notes
DAI0_PIN15	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 15
							Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference

				450 N	lHz	
Parameter		Conditions	Min	Тур	Max	Unit
I _{DD_IDLE}	V _{DD_INT} Current in Idle	$\label{eq:fcclk} \begin{aligned} f_{CCLK} &= 450 \text{ MHz} \\ ASF_{SHARC1} &= 0.31 \\ ASF_{SHARC2} &= 0.31 \\ ASF_{A5} &= 0.29 \\ f_{SYSCLK} &= 225 \text{ MHz} \\ f_{SCLK0/1} &= 112.5 \text{ MHz} \\ (Other clocks are disabled) \\ No peripheral or DMA activity \\ T_J &= 25^{\circ}\text{C} \\ V_{DD_INT} &= 1.1 \text{ V} \end{aligned}$		495		mA
I _{DD_TYP}	V _{DD_INT} Current	$f_{CCLK} = 450 \text{ MHz}$ $ASF_{SHARC1} = 1.0$ $ASF_{SHARC2} = 1.0$ $ASF_{AS} = 0.73$ $f_{SYSCLK} = 225 \text{ MHz}$ $f_{SCLK0/1} = 112.5 \text{ MHz}$ (Other clocks are disabled) FFT accelerator operating at f_{SYSCLK/4} DMA data rate = 600 MB/s $T_J = 25^{\circ}C$ $V_{DDINT} = 1.1 \text{ V}$		1112		mA
I _{DD_INT} ¹¹	V _{DD_INT} Current	$f_{CCLK} > 0 \text{ MHz}$ $f_{SCLK0/1} \ge 0 \text{ MHz}$			See I _{DD_INT_TOT} equation in the Total Internal Power Dissi- pation section.	

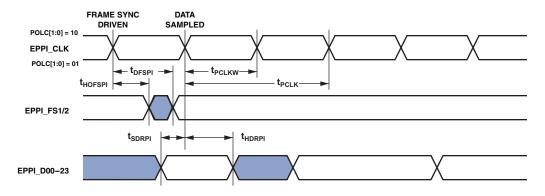
¹Applies to all output and bidirectional pins except TWI, DMC, USB, PCIe, and MLB.

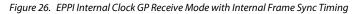
²See the Output Drive Currents section for typical drive current capabilities.

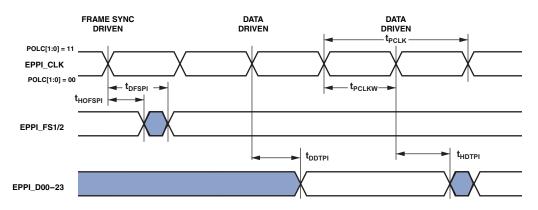
³Applies to all DMC output and bidirectional signals in DDR2 mode.

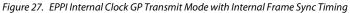
⁴Applies to all DMC output and bidirectional signals in DDR3 mode.

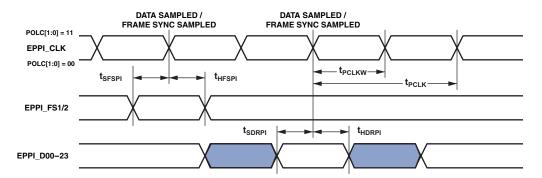
⁵ Applies to all DMC output and bidirectional signals in LPDDR mode.

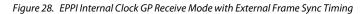

⁶Applies to input pins SYS_BMODE0-2, SYS_CLKIN0, SYS_CLKIN1, <u>SYS_HWRST</u>, JTG_TDI, JTG_TMS, and USB0_CLKIN.

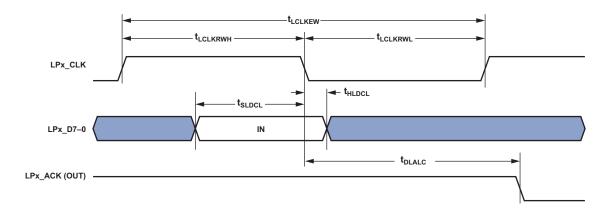

⁷ Applies to input pins with internal pull-ups including JTG_TDI, JTG_TMS, and JTG_TCK. ⁸ Applies to signals JTAG_TRST, USB0_VBUS, USB1_VBUS.


⁹ Applies to signals PA0-15, PB0-15, PC0-15, PD0-15, PE0-15, PG0-5, DAI0_PINx, DAI1_PINx, DMC0_DQx, DMC0_LDQS, DMC0_UDQS, DMC0_LDQS, DMC0_LDQS, DMC0_LDQS, DMC0_LDQS, SYS_FAULT, JTG_TDO, USB0_ID, USBx_DP, and USBx_VBC.


¹⁰Applies to all signal pins.


¹¹See "Estimating Power for ADSP-SC58x/2158x SHARC+ Processors" (EE-392) for further information.





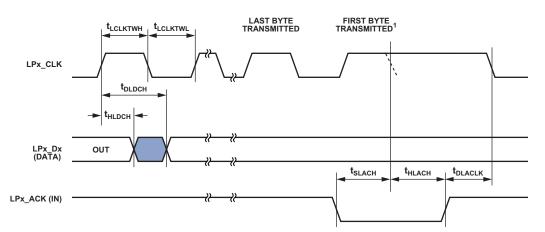

Figure 35. Link Ports—Receive

Table 63. Link Ports—Transmit¹

Parameter		Min	Мах	Unit
Timing Require	ements			
t _{SLACH}	LPx_ACK Setup Before LPx_CLK Low	$2 \times t_{CLKO8} + 13.5$		ns
t _{HLACH}	LPx_ACK Hold After LPx_CLK Low	-5.5		ns
Switching Cha	racteristics			
t _{DLDCH}	Data Delay After LPx_CLK High		1.6	ns
t _{HLDCH}	Data Hold After LPx_CLK High	-0.8		ns
t _{LCLKTWL} ²	LPx_CLK Width Low	$0.33 \times t_{LCLKTPROG}$	$0.6 \times t_{LCLKTPROG}$	ns
t _{LCLKTWH} 2	LPx_CLK Width High	$0.45 \times t_{LCLKTPROG}$	$0.66 \times t_{LCLKTPROG}$	ns
t _{LCLKTW} ²	LPx_CLK Period	$N \times t_{LCLKTPROG} - 0.5$		ns
t _{DLACLK}	LPx_CLK Low Delay After LPx_ACK High	t _{CLKO8} + 4	$2 \times t_{CLKO8} + 1 \times t_{LPCLK} + 10$	ns

¹Specifications apply to LP0 and LP1.

 2 See Table 29 for details on the minimum period that can be programmed for t_{LCLKTPROG}.

The t_{sLACH} and t_{HLACH} specifications apply only to the LPx_CLK falling edge. If these specifications are met, LPx_CLK would extend and the dotted LPx_CLK falling edge would not occur as shown. The position of the dotted falling edge can be calculated using the t_{LCLKTWH} specification. t_{LCLKTWH} Min should be used for t_{sLACH} and t_{LCLKTWH} Max for t_{HLACH}.

Figure 36. Link Ports—Transmit

Table 65. Serial Ports—Internal Clock¹

Parameter		Min	Мах	Unit
Timing Requir	ements			
t _{SFSI}	Frame Sync Setup Before SPTx_CLK (Externally Generated Frame Sync in either Transmit or Receive Mode) ²	12		ns
t _{HFSI}	Frame Sync Hold After SPTx_CLK (Externally Generated Frame Sync in either Transmit or Receive Mode) ²	-0.5		ns
t _{SDRI}	Receive Data Setup Before SPTx_CLK ²	3.4		ns
t _{HDRI}	Receive Data Hold After SPTx_CLK ²	1.5		ns
Switching Cha	aracteristics			
t _{DFSI}	Frame Sync Delay After SPTx_CLK (Internally Generated Frame Sync in Transmit or Receive Mode) ³		3.5	ns
t _{HOFSI}	Frame Sync Hold After SPTx_CLK (Internally Generated Frame Sync in Transmit or Receive Mode) ³	-2.5		ns
t _{DDTI}	Transmit Data Delay After SPTx_CLK ³		3.5	ns
t _{HDTI}	Transmit Data Hold After SPTx_CLK ³	-2.5		ns
t _{SCLKIW}	SPTx_CLK Width ⁴	$0.5 \times t_{SPTCLKPROO}$	₅ – 1.5	ns
t _{SPTCLK}	SPTx_CLK Period ⁴	t _{SPTCLKPROG} – 1.5	i	ns

¹Specifications apply to all eight SPORTs.

²Referenced to the sample edge.

³Referenced to drive edge.

⁴See Table 29 for details on the minimum period that can be programmed for t_{SPTCLKPROG}.

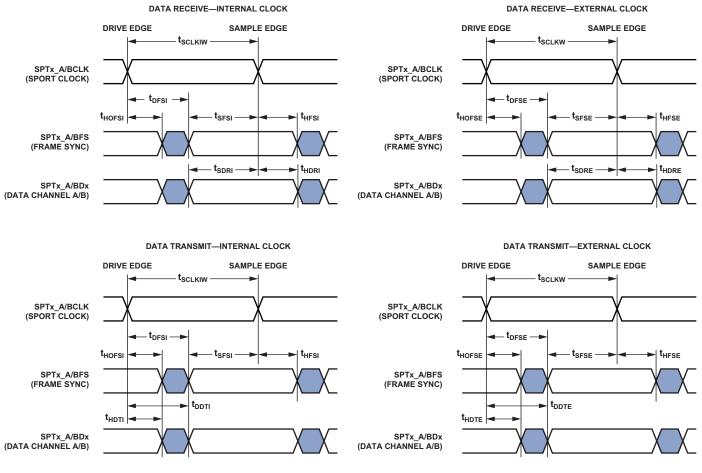


Figure 37. Serial Ports

Table 68. Serial Ports—External Late Frame Sync¹

Parameter Switching Characteristics		Min	Мах	Unit
t _{DDTLFSE}	Data Delay from Late External Transmit Frame Sync or External Receive Frame Sync with MCE = 1, MFD = 0^2		14	ns
t _{DDTENFS}	Data Enable for MCE = 1, MFD = 0^2	0.5		ns

¹Specifications apply to all eight SPORTs.

² The $t_{DDTLFSE}$ and $t_{DDTENFS}$ parameters apply to left justified as well as standard serial mode and MCE = 1, MFD = 0.

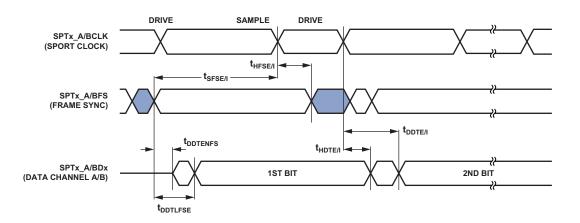


Figure 40. External Late Frame Sync

S/PDIF Transmitter Input Data Timing

The timing requirements for the S/PDIF transmitter are given in Table 96. Input signals are routed to the DAIx_PINx pins using the SRU. Therefore, the timing specifications provided below are valid at the DAIx_PINx pins.

Table 96.	S/PDIF	Transmitter	Input	Data	Timing
-----------	--------	-------------	-------	------	--------

Paramete	Parameter		Max	Unit
Timing Req	uirements			
t _{SISFS} ¹	Frame Sync Setup Before Serial Clock Rising Edge	3		ns
t _{SIHFS} 1	Frame Sync Hold After Serial Clock Rising Edge	3		ns
t _{SISD} 1	Data Setup Before Serial Clock Rising Edge	3		ns
t _{SIHD} 1	Data Hold After Serial Clock Rising Edge	3		ns
t _{SITXCLKW}	Transmit Clock Width	9		ns
t _{SITXCLK}	Transmit Clock Period	20		ns
t _{SISCLKW}	Clock Width	36		ns
t _{SISCLK}	Clock Period	80		ns

¹The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. The input of the PCG can be either CLKIN or any of the DAI pins.

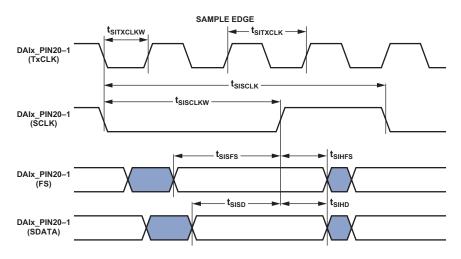


Figure 67. S/PDIF Transmitter Input Timing

Oversampling Clock (TxCLK) Switching Characteristics

The S/PDIF transmitter requires an oversampling clock input. This high frequency clock (TxCLK) input is divided down to generate the internal biphase clock.

Table 97.	Oversampling	Clock (TxCLK)	Switching Characteristics
-----------	--------------	---------------	---------------------------

Parameter		Мах	Unit
Switching Cha	racteristics		
f _{TXCLK_384}	Frequency for TxCLK = $384 \times$ Frame Sync	Oversampling ratio × frame sync $\leq 1/t_{SITXCLK}$	MHz
f _{TXCLK_256}	Frequency for TxCLK = $256 \times$ Frame Sync	49.2	MHz
f _{FS}	Frame Rate (FS)	192.0	kHz

S/PDIF Receiver

The following section describes timing as it relates to the S/PDIF receiver.

Internal Digital PLL Mode

In the internal digital PLL mode, the internal digital PLL generates the 512 \times FS clock.

Table 98. S/PDIF Receiver Internal Digital PLL Mode Timing

Parameter		Min	Мах	Unit
Switching Charac	teristics			
t _{DFSI}	Frame Sync Delay After Serial Clock		5	ns
t _{HOFSI}	Frame Sync Hold After Serial Clock	-2		ns
t _{DDTI}	Transmit Data Delay After Serial Clock		5	ns
t _{HDTI}	Transmit Data Hold After Serial Clock	-2		ns

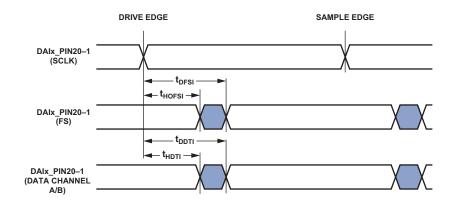


Figure 68. S/PDIF Receiver Internal Digital PLL Mode Timing

OUTPUT DRIVE CURRENTS

Figure 77 through Figure 89 show typical current-voltage characteristics for the output drivers of the ADSP-SC58x and ADSP-2158x processors. The curves represent the current drive capability of the output drivers as a function of output voltage.

Output drive currents for PCIe pins are compliant with PCIe Gen1 and Gen2 x1 lane data rate specifications. Output drive currents for MLB pins are compliant with MOST150 LVDS specifications. Output drive currents for USB pins are compliant with the USB 2.0 specifications.

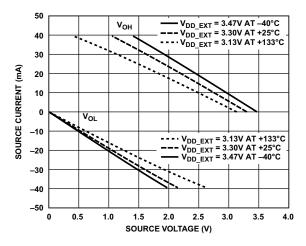


Figure 77. Driver Type A Current (3.3 V V_{DD_EXT})

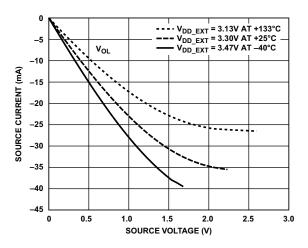


Figure 78. Driver Type D Current (3.3 V V_{DD_EXT})

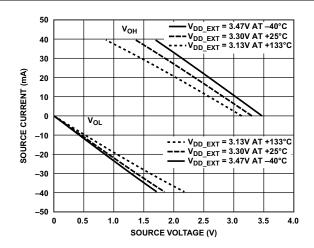
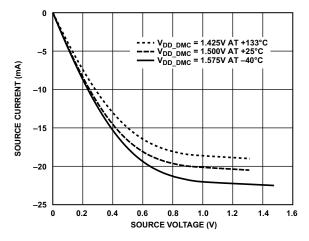



Figure 79. Driver Type H Current (3.3 V V_{DD_EXT})

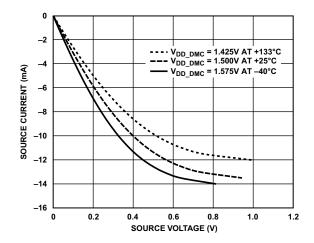


Figure 80. Driver Type B and Driver Type C (DDR3 Drive Strength 40 Ω)

Figure 81. Driver Type B and Driver Type C (DDR3 Drive Strength 60Ω)

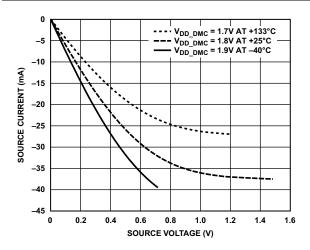


Figure 88. Driver Type B and Device Driver C (LPDDR)

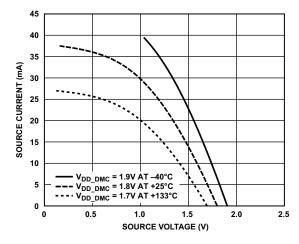


Figure 89. Driver Type B and Device Driver C (LPDDR)

TEST CONDITIONS

All timing requirements appearing in this data sheet were measured under the conditions described in this section. Figure 90 shows the measurement point for ac measurements (except output enable/disable). The measurement point, V_{MEAS} , is V_{DD} EXT/2 for V_{DD} EXT (nominal) = 3.3 V.

(Except Output Enable/Disable)

Output Enable Time Measurement

Output balls are considered enabled when they make a transition from a high impedance state to the point when they start driving. The output enable time, t_{ENA} , is the interval from the point when a reference signal reaches a high or low voltage level to the point when the output starts driving (see Figure 91).

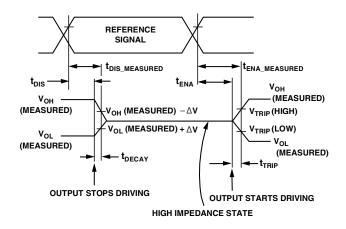


Figure 91. Output Enable/Disable

The time t_{ENA_MEASURED} is the interval from when the reference signal switches to when the output voltage reaches V_{TRIP} (high) or V_{TRIP} (low). For V_{DD_EXT} (nominal) = 3.3 V, V_{TRIP} (high) is 1.9 V, and V_{TRIP} (low) is 1.4 V. Time, t_{TRIP}, is the interval from when the output starts driving to when the output reaches the V_{TRIP} (high) or V_{TRIP} (low) trip voltage.

Time t_{ENA} is calculated as shown in the equation:

$$t_{ENA} = t_{ENA_MEASURED} - t_{TRIP}$$

If multiple balls (such as the data bus) are enabled, the measurement value is that of the first ball to start driving.

Output Disable Time Measurement

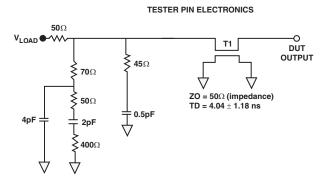
Output balls are considered disabled when they stop driving, go into a high impedance state, and start to decay from the output high or low voltage. The output disable time, t_{DIS} , is the difference between t_{DIS} MEASURED and t_{DECAY} (see Figure 91).

$$t_{DIS} = t_{DIS_MEASURED} - t_{DECAS}$$

The time for the voltage on the bus to decay by ΔV is dependent on the capacitive load, C_{L_2} and the load current, I_L . This decay time can be approximated by the following equation:

$$t_{DECAY} = (C_L \Delta V) / I_L$$

The time t_{DECAY} is calculated with test loads C_L and I_L , with ΔV equal to 0.25 V for V_{DD EXT} (nominal) = 3.3 V.


The time $t_{DIS_MEASURED}$ is the interval from when the reference signal switches, to when the output voltage decays ΔV from the measured output high or output low voltage.

Example System Hold Time Calculation

To determine the data output hold time in a particular system, first calculate t_{DECAY} using the previous equation. Choose ΔV to be the difference between the output voltage of the processor and the input threshold for the device requiring the hold time. C_L is the total bus capacitance (per data line) and I_L is the total leakage or three-state current (per data line). The hold time will be t_{DECAY} plus the various output disable times as specified in the Timing Specifications section.

Capacitive Loading

Output delays and holds are based on standard capacitive loads of an average of 6 pF on all balls (see Figure 92). V_{LOAD} is equal to $V_{DD_EXT}/2$. Figure 93 through Figure 97 show how output rise time varies with capacitance. The delay and hold specifications given must be derated by a factor derived from these figures. The graphs in these figures may not be linear outside the ranges shown.

NOTES:

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 92. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

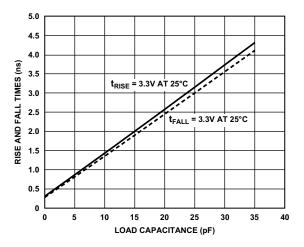


Figure 93. Driver Type A Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance (V_{DD EXT} = 3.3 V)

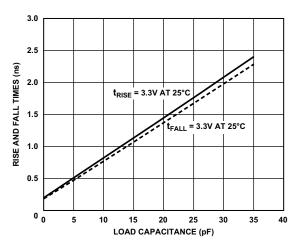


Figure 94. Driver Type H Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance ($V_{DD_EXT} = 3.3 V$)

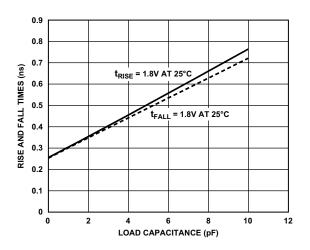


Figure 95. Driver Type B and Driver Type C Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance (V_{DD} DMC = 1.8 V) for LPDDR