

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Active
Туре	Floating Point
Interface	CAN, EBI/EMI, Ethernet, DAI, I ² C, MMC/SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	450MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	640kB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	349-LFBGA, CSPBGA
Supplier Device Package	349-CSPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-sc584bbcz-4a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Memory Direct Memory Access (MDMA)

The processor supports various MDMA operations, including,

- Standard bandwidth MDMA channels with CRC protection (32-bit bus width, runs on SCLK0)
- Enhanced bandwidth MDMA channel (32-bit bus width, runs on SYSCLK)
- Maximum bandwidth MDMA channels (64-bit bus width, run on SYCLK, one channel can be assigned to the FFT accelerator)

Extended Memory DMA

Extended memory DMA supports various operating modes such as delay line (which allows processor reads and writes to external delay line buffers and to the external memory) with limited core interaction and scatter/gather DMA (writes to and from noncontiguous memory blocks).

Cyclic Redundant C ode (CRC) Protection

The cyclic redundant codes (CRC) protection modules allow system software to calculate the signature of code, data, or both in memory, the content of memory-mapped registers, or periodic communication message objects. Dedicated hardware circuitry compares the signature with precalculated values and triggers appropriate fault events.

For example, every 100 ms the system software initiates the signature calculation of the entire memory contents and compares these contents with expected, precalculated values. If a mismatch occurs, a fault condition is generated through the processor core or the trigger routing unit.

The CRC is a hardware module based on a CRC32 engine that computes the CRC value of the 32-bit data-words presented to it. The source channel of the memory to memory DMA (in memory scan mode) provides data. The data can be optionally forwarded to the destination channel (memory transfer mode). The main features of the CRC peripheral are as follows:

- Memory scan mode
- Memory transfer mode
- Data verify mode
- Data fill mode
- User-programmable CRC32 polynomial
- Bit/byte mirroring option (endianness)
- Fault/error interrupt mechanisms
- 1D and 2D fill block to initialize an array with constants
- 32-bit CRC signature of a block of a memory or an MMR block

Event Handling

The processors provide event handling that supports both nesting and prioritization. Nesting allows multiple event service routines to be active simultaneously. Prioritization ensures that servicing a higher priority event takes precedence over servicing a lower priority event. The processors provide support for five different types of events:

- An emulation event causes the processors to enter emulation mode, allowing command and control of the processors through the JTAG interface.
- A reset event resets the processors.
- An exceptions event occur synchronously to program flow (in other words, the exception is taken before the instruction is allowed to complete). Conditions triggered on the one side by the SHARC+ core, such as data alignment (SIMD/long word) or compute violations (fixed or floating point), and illegal instructions cause core exceptions. Conditions triggered on the other side by the SEC, such as error correcting codes (ECC)/parity/watchdog/system clock, cause system exceptions.
- An interrupts event occurs asynchronously to program flow. They are caused by input signals, timers, and other peripherals, as well as by an explicit software instruction.

System Event Controller (SEC)

Both SHARC+ cores feature a system event controller. The SEC features include the following:

- Comprehensive system event source management including interrupt enable, fault enable, priority, core mapping, and source grouping
- A distributed programming model where each system event source control and all status fields are independent of each other
- Determinism where all system events have the same propagation delay and provide unique identification of a specific system event source
- A slave control port that provides access to all SEC registers for configuration, status, and interrupt/fault services
- Global locking that supports a register level protection model to prevent writes to locked registers
- Fault management including fault action configuration, time out, external indication, and system reset

Trigger Routing Unit (TRU)

The trigger routing unit (TRU) provides system-level sequence control without core intervention. The TRU maps trigger masters (generators of triggers) to trigger slaves (receivers of triggers). Slave endpoints can be configured to respond to triggers in various ways. Common applications enabled by the TRU include,

- Automatically triggering the start of a DMA sequence after a sequence from another DMA channel completes
- Software triggering
- Synchronization of concurrent activities

blocks on the processor. The digital audio interface carries three types of information: audio data, nonaudio data (compressed data), and timing information.

The S/PDIF interface supports one stereo channel or compressed audio streams. The S/PDIF transmitter and receiver are AES3 compliant and support the sample rate from 24 KHz to 192 KHz. The S/PDIF receiver supports professional jitter standards.

The S/PDIF receiver/transmitter has no separate DMA channels. It receives audio data in serial format and converts it into a biphase encoded signal. The serial data input to the receiver/transmitter can be formatted as left justified, I²S, or right justified with word widths of 16, 18, 20, or 24 bits. The serial data, clock, and frame sync inputs to the S/PDIF receiver/transmitter are routed through the signal routing unit (SRU). They can come from various sources, such as the SPORTs, external pins, and the precision clock generators (PCGs), and are controlled by the SRU control registers.

Precision Clock Generators (PCG)

The precision clock generators (PCG) consist of four units: units A/B located in the DAI0 block, and units C/D located in the DAI1 block. The PCG can generate a pair of signals (clock and frame sync) derived from a clock input signal (CLKIN1-0, SCLK0, or DAI pin buffer). Each unit can also access the opposite DAI unit. All units are identical in functionality and operate independently of each other. The two signals generated by each unit are normally used as a serial bit clock/frame sync pair.

Enhanced Parallel Peripheral Interface (EPPI)

The processors provide an enhanced parallel peripheral interface (EPPI) that supports data widths up to 24 bits. The EPPI supports direct connection to TFT LCD panels, parallel ADCs and DACs, video encoders and decoders, image sensor modules, and other general-purpose peripherals.

The features supported in the EPPI module include the following:

- Programmable data length of 8 bits, 10 bits, 12 bits, 14 bits, 16 bits, 18 bits, and 24 bits per clock.
- Various framed, nonframed, and general-purpose operating modes. Frame syncs can be generated internally or can be supplied by an external device.
- ITU-656 status word error detection and correction for ITU-656 receive modes and ITU-656 preamble and status word decoding.
- Optional packing and unpacking of data to/from 32 bits from/to 8 bits, 16 bits, and 24 bits. If packing/unpacking is enabled, configure endianness to change the order of packing/unpacking of the bytes/words.
- RGB888 can be converted to RGB666 or RGB565 for transmit modes.
- Various deinterleaving/interleaving modes for receiving/transmitting 4:2:2 YCrCb data.
- Configurable LCD data enable output available on Frame Sync 3.

Universal Asynchronous Receiver/Transmitter (UART) Ports

The processors provide three full-duplex universal asynchronous receiver/transmitter (UART) ports, fully compatible with PC standard UARTs. Each UART port provides a simplified UART interface to other peripherals or hosts, supporting fullduplex, DMA supported, asynchronous transfers of serial data. A UART port includes support for five to eight data bits as well as no parity, even parity, or odd parity.

Optionally, an additional address bit can be transferred to interrupt only addressed nodes in multidrop bus (MDB) systems. A frame is terminated by a configurable number of stop bits.

The UART ports support automatic hardware flow control through the clear to send (CTS) input and request to send (RTS) output with programmable assertion first in, first out (FIFO) levels.

To help support the Local Interconnect Network (LIN) protocols, a special command causes the transmitter to queue a break command of programmable bit length into the transmit buffer. Similarly, the number of stop bits can be extended by a programmable interframe space.

Serial Peripheral Interface (SPI) Ports

The processors have three industry-standard SPI-compatible ports that allow the processors to communicate with multiple SPI-compatible devices.

The baseline SPI peripheral is a synchronous, four-wire interface consisting of two data pins, one device select pin, and a gated clock pin. The two data pins allow full-duplex operation to other SPI-compatible devices. An extra two (optional) data pins are provided to support quad SPI operation. Enhanced modes of operation, such as flow control, fast mode, and dual-I/O mode (DIOM), are also supported. A direct memory access (DMA) mode allows for transferring several words with minimal central processing unit (CPU) interaction.

With a range of configurable options, the SPI ports provide a glueless hardware interface with other SPI-compatible devices in master mode, slave mode, and multimaster environments. The SPI peripheral includes programmable baud rates, clock phase, and clock polarity. The peripheral can operate in a multimaster environment by interfacing with several other devices, acting as either a master device or a slave device. In a multimaster environment, the SPI peripheral uses open-drain outputs to avoid data bus contention. The flow control features enable slow slave devices to interface with fast master devices by providing an SPI ready pin (SPI_RDY) which flexibly controls the transfers.

The baud rate and clock phase/polarities of the SPI port are programmable. The port has integrated DMA channels for both transmit and receive data streams.

Link Ports (LP)

Two 8-bit wide link ports (LP) can connect to the link ports of other DSPs or peripherals. LP are bidirectional ports that have eight data lines, an acknowledge line, and a clock line.

SYSTEM ACCELERATION

The following sections describe the system acceleration blocks of the ADSP-SC58x/ADSP-2158x processors.

FFT/IFFT Accelerator

A high performance FFT/IFFT accelerator is available to improve the overall floating-point computation power of the ADSP-SC58x/ADSP-2158x processors.

The following features are available to improve the overall performance of the FFT/IFFT accelerator:

- Support for the IEEE-754/854 single-precision floatingpoint data format.
- Automatic twiddle factor generation to reduce system bandwidth.
- Support for a vector complex multiply for windowing and frequency domain filtering.
- Ability to pipeline the data flow. This allows the accelerator to bring in a new data set while the current data set is processed and the previous data set is sent out to memory. This can provide a significant system level performance improvement.
- Ability to output the result as the magnitude squared of the complex samples.
- Dedicated, high speed DMA controller with 64-bit buses that can read and write data from any memory space.

The FFT/IFFT accelerator can run concurrently with the other accelerators on the processor.

Finite Impulse Response (FIR) Accelerator

The finite impulse response (FIR) accelerator consists of a 1024 word coefficient memory, a 1024 word deep delay line for the data, and four MAC units. A controller manages the accelerator. The FIR accelerator runs at the peripheral clock frequency. The FIR accelerator can access all memory spaces and can run concurrently with the other accelerators on the processor.

Infinite Impulse Response (IIR) Accelerator

The infinite impulse response (IIR) accelerator consists of a 1440 word coefficient memory for storage of biquad coefficients, a data memory for storing the intermediate data, and one MAC unit. A controller manages the accelerator. The IIR accelerator runs at the peripheral clock frequency. The IIR accelerator can access all memory spaces and run concurrently with the other accelerators on the processor.

Harmonic Analysis Engine (HAE)

The harmonic analysis engine (HAE) block receives 8 kHz input samples from two source signals whose frequencies are between 45 Hz and 65 Hz. The HAE processes the input samples and produces output results. The output results consist of power quality measurements of the fundamental and up to 12 additional harmonics.

Sinus Cardinalis (SINC) Filter

The sinus cardinalis (SINC) filter module processes four bit streams using a pair of configurable SINC filters for each bit stream. The purpose of the primary SINC filter of each pair is to produce the filtered and decimated output for the pair. The output can decimate any integer rate between 8 and 256 times lower than the input rate. Greater decimation allows greater removal of noise, and, therefore, greater effective number of bits (ENOB).

Optional additional filtering outside the SINC module can further increase ENOB. The primary SINC filter output is accessible through transfer to processor memory, or to another peripheral, via DMA.

Each of the four channels is also provided with a low latency secondary filter with programmable positive and negative overrange detection comparators. These limit detection events can interrupt the core, generate a trigger, or signal a system fault.

Digital Transmission Content Protection (DTCP)

Contact Analog Devices for more information on DTCP.

SYSTEM DESIGN

The following sections provide an introduction to system design features and power supply issues.

Clock Management

The processors provide three operating modes, each with a different performance and power profile. Control of clocking to each of the processor peripherals reduces power consumption. The processors do not support any low power operation modes. Control of clocking to each of the processor peripherals can reduce the power consumption.

Reset Control Unit (RCU)

Reset is the initial state of the whole processor, or the core, and is the result of a hardware or software triggered event. In this state, all control registers are set to default values and functional units are idle. Exiting a full system reset starts with the core ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in functional requirements and clocking constraints define how reset signals are generated. Programs must guarantee that none of the reset functions put the system into an undefined state or causes resources to stall. This is particularly important when the core resets (programs must ensure that there is no pending system activity involving the core when it is reset).

From a system perspective, reset is defined by both the reset target and the reset source.

ADSP-SC58x/ADSP-2158x DETAILED SIGNAL DESCRIPTIONS

Table 11 provides a detailed description of each pin.

 Table 11. ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions

Signal Name	Direction	Description
ACM_A[n]	Output	ADC Control Signals. Function varies by mode.
ACM_T[n]	Input	External Trigger n. Input for external trigger events.
C1_FLG[n]	InOut	SHARC+ Core 1 Flag Pin.
C2_FLG[n]	InOut	SHARC+ Core 2 Flag Pin.
CAN_RX	Input	Receive. Typically an external CAN transceiver RX output.
CAN_TX	Output	Transmit. Typically an external CAN transceiver TX input.
CNT_DG	Input	Count Down and Gate. Depending on the mode of operation, this input acts either as a count down signal or a gate signal.
		Gate—stops the GP counter from incrementing or decrementing.
CNT_UD	Input	Count Up and Direction. Depending on the mode of operation, this input acts either as a count up signal or a direction signal. Count up—this input causes the GP counter to increment. Direction—selects whether the GP counter is incrementing or decrementing.
CNT_ZM	Input	Count Zero Marker. Input that connects to the zero marker output of a rotary device or detects the pressing of a pushbutton.
DAI_PIN[nn]	InOut	Pin n. The digital applications interfaces (DAI0 and DAI1) connect various peripherals to any of the DAI0_PINxx and DAI1_PINxx pins. Programs make these connections using the signal routing unit (SRU). Both DAI units are symmetric. The shared DAIx_PIN03 and DAIx_PIN04 pins allow routing between both DAI units.
DMC_A[nn]	Output	Address n. Address bus.
DMC_BA[n]	Output	Bank Address n. Defines which internal bank an activate, read, write or precharge command is applied to on the dynamic memory. Bank Address n also defines which mode registers (MR, EMR, EMR2, and/or EMR3) load during the load mode register command.
DMC_CAS	Output	Column Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the CAS input of dynamic memory.
DMC_CK	Output	Clock. Outputs DCLK to external dynamic memory.
DMC_CKE	Output	Clock Enable. Active high clock enables. Connects to the dynamic memory's CKE input.
DMC_CK	Output	Clock (Complement). Complement of DMC_CK.
DMC_CS[n]	Output	Chip Select n. Commands are recognized by the memory only when this signal is asserted.
DMC_DQ[nn]	InOut	Data n. Bidirectional data bus.
DMC_LDM	Output	Data Mask for Lower Byte. Mask for DMC_DQ07:DMC_DQ00 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.
DMC_LDQS	InOut	Data Strobe for Lower Byte. DMC_DQ07:DMC_DQ00 data strobe. Output with write data. Input with read data. Can be single-ended or differential depending on register settings.
DMC_LDQS	InOut	Data Strobe for Lower Byte (Complement). Complement of LDQS. Not used in single-ended mode.
DMC_ODT	Output	On-Die Termination. Enables dynamic memory termination resistances when driven high (assuming the memory is properly configured).
DMC_RAS	Output	Row Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the RAS input of dynamic memory.
DMC_RESET	Output	Reset (DDR3 Only).
DMC_RZQ	InOut	External Calibration Resistor Connection.
DMC_UDM	Output	Data Mask for Upper Byte. Mask for DMC_DQ15:DMC_DQ08 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.
DMC_UDQS	InOut	Data Strobe for Upper Byte. DMC_DQ15:DMC_DQ08 data strobe. Output with write data. Input with read data. Not used in single-ended mode.

Signal Name	Description	Port	Pin Name
DAI1_PIN01	DAI1 Pin 1	Not Muxed	DAI1_PIN01
DAI1_PIN02	DAI1 Pin 2	Not Muxed	DAI1_PIN02
DAI1_PIN03	DAI1 Pin 3	Not Muxed	DAI1_PIN03
DAI1_PIN04	DAI1 Pin 4	Not Muxed	DAI1_PIN04
DAI1_PIN05	DAI1 Pin 5	Not Muxed	DAI1_PIN05
DAI1_PIN06	DAI1 Pin 6	Not Muxed	DAI1_PIN06
DAI1_PIN07	DAI1 Pin 7	Not Muxed	DAI1_PIN07
DAI1_PIN08	DAI1 Pin 8	Not Muxed	DAI1_PIN08
DAI1_PIN09	DAI1 Pin 9	Not Muxed	DAI1_PIN09
DAI1_PIN10	DAI1 Pin 10	Not Muxed	DAI1_PIN10
DAI1_PIN11	DAI1 Pin 11	Not Muxed	DAI1_PIN11
DAI1_PIN12	DAI1 Pin 12	Not Muxed	DAI1_PIN12
DAI1_PIN19	DAI1 Pin 19	Not Muxed	DAI1_PIN19
DAI1_PIN20	DAI1 Pin 20	Not Muxed	DAI1_PIN20
DMC0_A00	DMC0 Address 0	Not Muxed	DMC0_A00
DMC0_A01	DMC0 Address 1	Not Muxed	DMC0_A01
DMC0_A02	DMC0 Address 2	Not Muxed	DMC0_A02
DMC0_A03	DMC0 Address 3	Not Muxed	DMC0_A03
DMC0_A04	DMC0 Address 4	Not Muxed	DMC0_A04
DMC0_A05	DMC0 Address 5	Not Muxed	DMC0_A05
DMC0_A06	DMC0 Address 6	Not Muxed	DMC0_A06
DMC0_A07	DMC0 Address 7	Not Muxed	DMC0_A07
DMC0_A08	DMC0 Address 8	Not Muxed	DMC0_A08
DMC0_A09	DMC0 Address 9	Not Muxed	DMC0_A09
DMC0_A10	DMC0 Address 10	Not Muxed	DMC0_A10
DMC0_A11	DMC0 Address 11	Not Muxed	DMC0_A11
DMC0_A12	DMC0 Address 12	Not Muxed	DMC0_A12
DMC0_A13	DMC0 Address 13	Not Muxed	DMC0_A13
DMC0_A14	DMC0 Address 14	Not Muxed	DMC0_A14
DMC0_A15	DMC0 Address 15	Not Muxed	DMC0_A15
DMC0_BA0	DMC0 Bank Address 0	Not Muxed	DMC0_BA0
DMC0_BA1	DMC0 Bank Address 1	Not Muxed	DMC0_BA1
DMC0_BA2	DMC0 Bank Address 2	Not Muxed	DMC0_BA2
DMC0_CAS	DMC0 Column Address Strobe	Not Muxed	DMC0_CAS
DMC0_CK	DMC0 Clock	Not Muxed	DMC0_CK
DMC0_CKE	DMC0 Clock enable	Not Muxed	DMC0_CKE
DMC0_CK	DMC0 Clock (complement)	Not Muxed	DMC0_CK
DMC0_CS0	DMC0 Chip Select 0	Not Muxed	DMC0_CS0
DMC0_DQ00	DMC0 Data 0	Not Muxed	DMC0_DQ00
DMC0_DQ01	DMC0 Data 1	Not Muxed	DMC0_DQ01
DMC0_DQ02	DMC0 Data 2	Not Muxed	DMC0_DQ02
DMC0_DQ03	DMC0 Data 3	Not Muxed	DMC0_DQ03
DMC0_DQ04	DMC0 Data 4	Not Muxed	DMC0_DQ04
DMC0_DQ05	DMC0 Data 5	Not Muxed	DMC0_DQ05
DMC0_DQ06	DMC0 Data 6	Not Muxed	DMC0_DQ06
DMC0_DQ07	DMC0 Data 7	Not Muxed	DMC0_DQ07
DMC0_DQ08	DMC0 Data 8	Not Muxed	DMC0_DQ08
DMC0_DQ09	DMC0 Data 9	Not Muxed	DMC0_DQ09

Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
SMC0_D02	SMC0 Data 2	E	PE_10
SMC0_D03	SMC0 Data 3	E	PE_09
SMC0_D04	SMC0 Data 4	E	PE_00
SMC0_D05	SMC0 Data 5	D	PD_15
SMC0_D06	SMC0 Data 6	D	PD_14
SMC0_D07	SMC0 Data 7	D	PD_00
SMC0_D08	SMC0 Data 8	В	PB_14
SMC0_D09	SMC0 Data 9	В	PB_13
SMC0_D10	SMC0 Data 10	В	PB_12
SMC0_D11	SMC0 Data 11	В	PB_11
SMC0_D12	SMC0 Data 12	В	PB_10
SMC0_D13	SMC0 Data 13	В	PB_09
SMC0_D14	SMC0 Data 14	В	PB_08
SMC0_D15	SMC0 Data 15	В	PB_07
SPI0_CLK	SPI0 Clock	с	PC_09
SPI0_MISO	SPI0 Master In, Slave Out	с	PC_10
SPI0_MOSI	SPI0 Master Out, Slave In	с	PC_11
SPI0_RDY	SPI0 Ready	с	PC_12
SPI0_SEL1	SPI0 Slave Select Output 1	с	PC_07
SPI0_SEL2	SPI0 Slave Select Output 2	D	PD_01
SPI0_SEL3	SPI0 Slave Select Output 3	с	PC_12
SPI0_SEL4	SPI0 Slave Select Output 4	с	PC_00
SPI0_SEL5	SPI0 Slave Select Output 5	E	PE_01
SPI0_SEL6	SPI0 Slave Select Output 6	E	PE_02
SPI0_SEL7	SPI0 Slave Select Output 7	E	PE_03
SPIO_SS	SPI0 Slave Select Input	D	PD_01
SPI1_CLK	SPI1 Clock	E	PE_13
SPI1_MISO	SPI1 Master In, Slave Out	E	PE_14
SPI1_MOSI	SPI1 Master Out, Slave In	E	PE_15
SPI1_RDY	SPI1 Ready	E	PE_08
SPI1_SEL1	SPI1 Slave Select Output 1	С	PC_13
SPI1_SEL2	SPI1 Slave Select Output 2	E	PE_07
SPI1_SEL3	SPI1 Slave Select Output 3	E	PE_11
SPI1_SEL4	SPI1 Slave Select Output 4	E	PE_12
SPI1_SEL5	SPI1 Slave Select Output 5	E	PE_08
SPI1_SS	SPI1 Slave Select Input	E	PE_11
SPI2_CLK	SPI2 Clock	С	PC_01
SPI2_D2	SPI2 Data 2	С	PC_04
SPI2_D3	SPI2 Data 3	С	PC_05
SPI2_MISO	SPI2 Master In, Slave Out	С	PC_02
SPI2_MOSI	SPI2 Master Out, Slave In	С	PC_03
SPI2_RDY	SPI2 Ready	E	PE_12
SPI2_SEL1	SPI2 Slave Select Output 1	С	PC_06
SPI2_SEL2	SPI2 Slave Select Output 2	E	PE_03
SPI2_SEL3	SPI2 Slave Select Output 3	E	PE_04
SPI2_SEL4	SPI2 Slave Select Output 4	E	PE_05
SPI2_SEL5	SPI2 Slave Select Output 5	E	PE_06
SPI2_SS	SPI2 Slave Select Input	С	PC_06

Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP_BGA Signal Descriptions (Continued)

Multiplexed Multiplexed Multiplexed Multiplexed Multiplexed Signal Name **Function 0 Function 1 Function 2 Function 3 Function Input Tap** SPI0_SEL4 SMC0_ARE PC_00 LP1_CLK PWM0_BL PC_01 SPI2_CLK PC_02 SPI2_MISO PC_03 SPI2_MOSI SPI2_D2 PC_04 SPI2_D3 PC_05 SPI2_SEL1 SPI2_SS PC_06 PC_07 CAN0_RX SPI0_SEL1 SMC0_AMS2 TM0_ACI3 SMC0_AMS3 PC_08 CAN0_TX SPI0_CLK PC_09 PC_10 SPI0_MISO PC_11 SPI0_MOSI TM0_CLK PC_12 SPI0_SEL3 SPI0_RDY ACM0_T0 SMC0_A25 UARTO_TX SPI1_SEL1 PC_13 ACM0_A0 PC_14 UARTO_RX ACM0_A1 TM0_ACI0 UARTO_RTS SMC0_AMS0 PC_15 PPI0_FS3 ACM0_A2

Table 15.Signal Multiplexing for Port C

Table 16. Signal Multiplexing for Port D

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PD_00	UARTO_CTS	PPI0_D23	ACM0_A3	SMC0_D07	
PD_01	SPI0_SEL2		ACM0_A4	SMC0_AOE	SPI0_SS
PD_02	LP0_D0	PWM1_TRIP0	TRACE0_D00		
PD_03	LP0_D1	PWM1_AH	TRACE0_D01		
PD_04	LP0_D2	PWM1_AL	TRACE0_D02		
PD_05	LP0_D3	PWM1_BH	TRACE0_D03		
PD_06	LP0_D4	PWM1_BL	TRACE0_D04		
PD_07	LP0_D5	PWM1_CH	TRACE0_D05		
PD_08	LP0_D6	PWM1_CL	TRACE0_D06		TM0_ACLK1
PD_09	LP0_D7	PWM1_DH	TRACE0_D07		TM0_ACLK2
PD_10	LP0_CLK	PWM1_DL	TRACE0_CLK		
PD_11	LP0_ACK	PWM1_SYNC			
PD_12	UART2_TX		PPI0_D19	SMC0_A06	
PD_13	UART2_RX		PPI0_D18	SMC0_A05	TM0_ACI2
PD_14	PPI0_D11	PWM2_TRIP0	MLB0_CLKOUT	SMC0_D06	
PD_15	PPI0_D10	PWM2_CH		SMC0_D05	

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PE_00	PPI0_D09	PWM2_CL		SMC0_D04	
PE_01	PPI0_FS2	SPI0_SEL5	UART1_CTS	C1_FLG0	
PE_02	PPI0_FS1	SPI0_SEL6	UART1_RTS	C2_FLG0	
PE_03	PPI0_CLK	SPI0_SEL7	SPI2_SEL2	C1_FLG1	
PE_04	PPI0_D08	PWM2_DH	SPI2_SEL3	C2_FLG1	
PE_05	PPI0_D07	PWM2_SYNC	SPI2_SEL4	C1_FLG2	
PE_06	PPI0_D06		SPI2_SEL5	C2_FLG2	
PE_07	PPI0_D05		SPI1_SEL2	C1_FLG3	
PE_08	PPI0_D04	SPI1_SEL5	SPI1_RDY	C2_FLG3	
PE_09	PPI0_D03	PWM0_SYNC	TM0_TMR0	SMC0_D03	
PE_10	PPI0_D02	PWM2_DL	UART2_RTS	SMC0_D02	
PE_11	PPI0_D01	SPI1_SEL3	UART2_CTS	SMC0_D01	SPI1_SS
PE_12	PPI0_D00	SPI1_SEL4	SPI2_RDY	SMC0_D00	
PE_13	SPI1_CLK		PPI0_D20	SMC0_AMS1	
PE_14	SPI1_MISO		PPI0_D21	SMC0_ABE0	
PE_15	SPI1_MOSI		PPI0_D22	SMC0_ABE1	

Table 17. Signal Multiplexing for Port E

Table 18 shows the internal timer signal routing. This table applies to both the 349-ball and 529-ball CSP_BGA packages.

Table 18. Internal Timer Signal Routing

Timer Input Signal	Internal Source
TM0_ACLK0	SYS_CLKIN1
TM0_ACI5	DAI0_CRS_PB04_O
TM0_ACLK5	DAI0_CRS_PB03_O
TM0_ACI6	DAI1_CRS_PB04_O
TM0_ACLK6	DAI1_CRS_PB03_O
TM0_ACI7	CNT0_TO
TM0_ACLK7	SYS_CLKIN0

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DMC1_UDM	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Data Mask for Upper Byte Notes: No notes
DMC1_UDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data Strobe for Upper Byte Notes: External weak pull-down required in LPDDR mode
DMC1_UDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data Strobe for Upper Byte (complement) Notes: No notes
DMC1_VREF	а		none	none	none	VDD_DMC	Desc: DMC1 Voltage Reference Notes: No notes
DMC1_WE	Output	В	none	none	none		Desc: DMC1 Write Enable Notes: No notes
GND	g	NA	none	none	none		Desc: Ground Notes: No notes
HADC0_VIN0	а	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 0
							Notes: If Input not used connect to GND
HADC0_VIN1	а	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 1
							Notes: If Input not used connect to GND
HADC0_VIN2	a	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 2 Notes: If Input not used connect
	2	ΝΔ	none	none	none		to GND
	a		none	none	none		channel 3
	2	ΝΑ	nono	nono	nono		to GND
	a		none	none	none		channel 4 Notes: If Input not used connect
HADC0 VIN5	а	NA	none	none	none	VDD HADC	to GND Desc: HADC0 Analog Input at
							channel 5 Notes: If Input not used connect
HADC0_VIN6	a	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 6
							Notes: If Input not used connect to GND
HADC0_VIN7	a	NA	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 7
							Notes: If Input not used connect to GND

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
PB_09	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 9 CAN1 Transmit LP1 Data 2 SMC0 Data 13
PB_10	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 10 CAN1 Receive LP1 Data 3 SMC0 Data 12 TIMER0 Timer 2 TIMER0 Alternate Capture Input 4 Notes: No notes
PB_11	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 11 LP1 Data 4 PWM0 Channel D High Side SMC0 Data 11 CNT0 Count Zero Marker
PB_12	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 12 LP1 Data 5 PWM0 Channel D Low Side SMC0 Data 10 CNT0 Count Up and Direction
PB_13	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 13 LP1 Data 6 PWM0 Channel C High Side SMC0 Data 9
PB_14	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 14 LP1 Data 7 PWM0 Channel C Low Side SMC0 Data 8 TIMER0 Timer 5 CNT0 Count Down and Gate Notes: No notes
PB_15	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 15 LP1 Acknowledge PWM0 Shutdown Input 0 SMC0 Write Enable TIMER0 Timer 1 Notes: No notes
PCIE0_CLKM	Input	NA	PullDown	none	none	VDD_PCIE	Desc: PCIE0 CLK - Notes: No notes
PCIE0_CLKP	Input	NA	PullDown	none	none	VDD_PCIE	Desc: PCIE0 CLK + Notes: No notes
PCIE0_REF	a	NA	PullDown	none	none	VDD_PCIE	Desc: PCIE0 Reference Notes: No notes
PCIE0_RXM	Input	NA	PullDown	none	none	VDD_PCIE_RX	Desc: PCIE0 RX -
PCIE0_RXP	Input	NA	PullDown	none	none	VDD_PCIE_RX	Desc: PCIE0 RX +
PCIE0_TXM	InOut	J	PullDown	none	none	VDD_PCIE_TX	Desc: PCIE0 TX -
PCIE0_TXP	InOut	J	PullDown	none	none	VDD_PCIE_TX	Desc: PCIE0 TX + Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

DDR2 SDRAM Clock and Control Cycle Timing

Table 51 and Figure 17 show DDR2 SDRAM clock and control cycle timing, related to the DMC.

Table 51. DDR2 SDRAM Clock and Control Cycle Timing, VDD DMCx Nominal 1.8 V¹

			400 MHz ²	
Parameter		Min	Max	Unit
Switching Chara	cteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	2.5		ns
t _{CH (abs)} ³	Minimum Clock Pulse Width	0.44	0.56	t _{CK}
t _{CL (abs)} ³	Maximum Clock Pulse Width	0.44	0.56	t _{CK}
t _{IS}	Control/Address Setup Relative to DMCx_CK Rise	175		ps
t _{IH}	Control/Address Hold Relative to DMCx_CK Rise	250		ps

¹Specifications apply to both DMC0 and DMC1.

²In order to ensure proper operation of the DDR2, all the DDR2 guidelines must be strictly followed. See "Interfacing DDR3/DDR2/LPDDR Memory to ADSP-SC5xx/215xx Processors" (EE-387).

³As per JESD79-2E definition.

NOTE: CONTROL = DMCx_CS0, DMCx_CKE, DMCx_RAS, DMCx_CAS, AND DMCx_WE. ADDRESS = DMCx_A0-A15 AND DMCx_BA0-BA2.

Figure 17. DDR2 SDRAM Clock and Control Cycle Timing

Serial Ports (SPORT)

To determine whether a device is compatible with the SPORT at clock speed n, the following specifications must be confirmed: frame sync delay and frame sync setup and hold; data delay and data setup and hold; and serial clock (SPTx_CLK) width. In Figure 37, either the rising edge or the falling edge of SPTx_CLK (external or internal) can be used as the active sampling edge.

When externally generated, the SPORT clock is called f_{SPTCLKEXT}:

$$t_{SPTCLKEXT} = \frac{1}{f_{SPTCLKEXT}}$$

When internally generated, the programmed SPORT clock (f_{SPTCLKPROG}) frequency in MHz is set by the following equation where CLKDIV is a field in the SPORT_DIV register that can be set from 0 to 65535:

$$f_{SPTCLKPROG} = \frac{f_{SCLKO}}{(CLKDIV + 1)}$$

$$t_{SPTCLKPROG} = \frac{1}{f_{SPTCLKPROG}}$$

Table 64. Serial Ports-External Clock¹

Parameter		Min	Max	Unit
Timing Requi	rements			
t _{SFSE}	Frame Sync Setup Before SPTx_CLK (Externally Generated Frame Sync in either Transmit or Receive Mode) ²	2		ns
t _{HFSE}	Frame Sync Hold After SPTx_CLK (Externally Generated Frame Sync in either Transmit or Receive Mode) ²	2.7		ns
t _{SDRE}	Receive Data Setup Before Receive SPTx_CLK ²	2		ns
t _{HDRE}	Receive Data Hold After SPTx_CLK ²	2.7		ns
t _{SPTCLKW}	SPTx_CLK Width ³	$0.5 \times t_{SPTCLKEXT} - 1.5$		ns
t _{SPTCLK}	SPTx_CLK Period ³	t _{SPTCLKEXT} – 1.5		ns
Switching Ch	aracteristics			
t _{DFSE}	Frame Sync Delay After SPTx_CLK (Internally Generated Frame Sync in either Transmit or Receive Mode) ⁴		14.5	ns
t _{HOFSE}	Frame Sync Hold After SPTx_CLK (Internally Generated Frame Sync in either Transmit or Receive Mode) ⁴	2		ns
t _{DDTE}	Transmit Data Delay After Transmit SPTx_CLK ⁴		14	ns
t _{HDTE}	Transmit Data Hold After Transmit SPTx_CLK ⁴	2		ns

¹Specifications apply to all eight SPORTs.

²Referenced to sample edge.

³This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPTx_CLK. For the external SPTx_CLK ideal maximum frequency see the f_{SPTCLKEXT} specification in Table 29.

⁴Referenced to drive edge.

The SPTx_TDV output signal becomes active in SPORT multichannel mode. During transmit slots (enabled with active channel selection registers) the SPTx_TDV is asserted for communication with external devices.

Table 67. Serial Ports—TDV (Transmit Data Valid)¹

Parameter		Min	Мах	Unit
Switching Ch	paracteristics			
t _{DRDVEN}	Data Valid Enable Delay from Drive Edge of External Clock ²	2		ns
t _{DFDVEN}	Data Valid Disable Delay from Drive Edge of External Clock ²		14	ns
t _{DRDVIN}	Data Valid Enable Delay from Drive Edge of Internal Clock ²	-2.5		ns
t _{DFDVIN}	Data Valid Disable Delay from Drive Edge of Internal Clock ²		3.5	ns

¹Specifications apply to all eight SPORTs.

²Referenced to drive edge.

Figure 39. Serial Ports—Transmit Data Valid Internal and External Clock

Pulse Width Modulator (PWM) Timing

Table 83 and Figure 55 describe timing, related to the PWM.

Table 83. PWM Timing¹

Paramete	r	Min	Max	Unit
Timing Red	quirement			
t _{ES}	External Sync Pulse Width	$2 \times t_{SCLK0}$	$2 \times t_{SCLKO}$	
Switching	Characteristics			
t _{DODIS}	Output Inactive (off) After Trip Input ²		15	ns
t _{DOE}	Output Delay After External Sync ^{2, 3}	$2 \times t_{SCLK0} + 5.5$	$5 \times t_{SCLK0} + 14$	ns

¹All specifications apply to all three PWMs.

²PWM outputs are PWMx_AH, PWMx_AL, PWMx_BH, PWMx_BL, PWMx_CH, and PWMx_CL.

³When the external sync signal is synchronous to the peripheral clock, it takes fewer clock cycles for the output to appear compared to when the external sync signal is asynchronous to the peripheral clock.

Figure 55. PWM Timing

S/PDIF Receiver

The following section describes timing as it relates to the S/PDIF receiver.

Internal Digital PLL Mode

In the internal digital PLL mode, the internal digital PLL generates the 512 \times FS clock.

Table 98. S/PDIF Receiver Internal Digital PLL Mode Timing

Parameter		Min	Мах	Unit
Switching Characteristics				
t _{DFSI}	Frame Sync Delay After Serial Clock		5	ns
t _{HOFSI}	Frame Sync Hold After Serial Clock	-2		ns
t _{DDTI}	Transmit Data Delay After Serial Clock		5	ns
t _{HDTI}	Transmit Data Hold After Serial Clock	-2		ns

Figure 68. S/PDIF Receiver Internal Digital PLL Mode Timing

Debug Interface (JTAG Emulation Port) Timing

Table 103 and Figure 76 provide I/O timing related to the debug interface (JTAG Emulator Port).

Table 103. JTAG Emulation Port Timing

Parameter		Min	Max	Unit
Timing Requirements				
t _{TCK}	JTG_TCK Period	20		ns
t _{STAP}	JTG_TDI, JTG_TMS Setup Before JTG_TCK High	4		ns
t _{HTAP}	JTG_TDI, JTG_TMS Hold After JTG_TCK High	4		ns
t _{SSYS}	System Inputs Setup Before JTG_TCK High ¹	12		ns
t _{HSYS}	System Inputs Hold After JTG_TCK High ¹	5		ns
t _{TRSTW}	JTG_TRST Pulse Width (measured in JTG_TCK cycles) ²	4		Т _{СК}
Switching Characteristic	<u></u>			
t _{DTDO}	JTG_TDO Delay From JTG_TCK Low		13.5	ns
t _{DSYS}	System Outputs Delay After JTG_TCK Low ³		17	ns

¹ System Inputs = MLB0_CLKP, MLB0_DATP, MLB0_SIGP, DAI0_PIN20-01, DAI1_PIN20-01, DMC0_A15-0, DMC1_A15-0, DMC0_DQ15-0, DMC1_DQ15-0, DMC0_RESET, DMC1_RESET, PA_15-0, PB_15-0, PC_15-0, PE_15-0, PF_15-0, PG_5-0, SYS_BMODE2-0, SYS_FAULT, SYS_FAULT, SYS_RESOUT, TWI2-0_SCL, TWI2-0_SDA2.

²50 MHz maximum.

³System Outputs = DMC0_A15-0, DMC0_BA2-0, DMC0_CAS, DMC0_CK, DMC0_CKE, DMC0_CSO, DMC0_DQ15-0, DMC0_LDM, DMC0_LDQS, DMC0_ODT, DMC0_RAS, DMC0_RESET, DMC0_UDM, DMC0_UDQS, DMC0_WE, DMC1_A15-0, DMC1_BA2-0, DMC1_CAS, DMC1_CK, DMC1_CKE, DMC1_CSO, DMC1_DQ15-0, DMC1_LDM, DMC1_LDQS, DMC1_ODT, DMC1_RAS, DMC1_RESET, DMC1_UDM, DMC1_UDQS, DMC1_WE, MLB0_DATP, MLB0_SIGP, PA_15-0, PB_15-0, PC_15-0, PCIE_TXP, PD_15-0, PE_15-0, PG_5-0, SYS_BMODE2-0, SYS_CLKOUT, SYS_FAULT, SYS_RESOUT.

Figure 76. JTAG Port Timing

Example System Hold Time Calculation

To determine the data output hold time in a particular system, first calculate t_{DECAY} using the previous equation. Choose ΔV to be the difference between the output voltage of the processor and the input threshold for the device requiring the hold time. C_L is the total bus capacitance (per data line) and I_L is the total leakage or three-state current (per data line). The hold time will be t_{DECAY} plus the various output disable times as specified in the Timing Specifications section.

Capacitive Loading

Output delays and holds are based on standard capacitive loads of an average of 6 pF on all balls (see Figure 92). V_{LOAD} is equal to $V_{DD_EXT}/2$. Figure 93 through Figure 97 show how output rise time varies with capacitance. The delay and hold specifications given must be derated by a factor derived from these figures. The graphs in these figures may not be linear outside the ranges shown.

NOTES:

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 92. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

Figure 93. Driver Type A Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance (V_{DD EXT} = 3.3 V)

Figure 94. Driver Type H Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance ($V_{DD_EXT} = 3.3 V$)

Figure 95. Driver Type B and Driver Type C Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance (V_{DD} DMC = 1.8 V) for LPDDR

Figure 96. Driver Type B and Driver Type C Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance (V_{DD_DMC} = 1.8 V) for DDR2

ENVIRONMENTAL CONDITIONS

To determine the junction temperature on the application PCB, use the following equation:

$$T_J = T_{CASE} + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C). T_{CASE} = case temperature (°C) measured at top center of package.

 Ψ_{IT} = from Table 104 and Table 105.

 P_D = power dissipation (see the Total Internal Power Dissipation section for the method to calculate P_D).

Values of θ_{JA} are provided for package comparison and PCB design considerations. θ_{JA} can be used for a first order approximation of T_J by the following equation:

$$T_J = T_A + (\theta_{JA} \times P_D)$$

where T_A = ambient temperature (°C).

Values of θ_{JC} are provided for package comparison and PCB design considerations when an external heat sink is required.

In Table 104 and Table 105, airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6. The junction to case measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 6-layer PCB with 101.6 mm \times 152.4 mm dimensions.

Table 104. Thermal Characteristics for 349 CSP_BGA

Parameter	Conditions	Тур	Unit
θ _{JA}	0 linear m/s air flow	13.3	°C/W
θ_{JA}	1 linear m/s air flow	12.1	°C/W
θ_{JA}	2 linear m/s air flow	11.6	°C/W
θ」		3.65	°C/W
Ψ _{JT}	0 linear m/s air flow	0.08	°C/W
Ψ _{JT}	1 linear m/s air flow	0.12	°C/W
Ψ _{JT}	2 linear m/s air flow	0.14	°C/W

Table 105.	Thermal	Characteristics	for 529	CSP_BGA
------------	---------	-----------------	---------	---------

Parameter	Conditions	Тур	Unit
θ_{JA}	0 linear m/s air flow	13.4	°C/W
θ_{JA}	1 linear m/s air flow	12.1	°C/W
θJA	2 linear m/s air flow	11.6	°C/W
θ _{JC}		3.63	°C/W
Ψ_{JT}	0 linear m/s air flow	0.08	°C/W
Ψ_{JT}	1 linear m/s air flow	0.11	°C/W
Ψ _{JT}	2 linear m/s air flow	0.13	°C/W

Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.
PA_14	AA17	PD_14	E22	VDD_DMC	G09	VDD_INT	J20
_ PA_15	Y19	 PD_15	F21	VDD_DMC	G10	VDD_INT	K06
 PB_00	Y15	PE_00	F22	VDD_DMC	G11	VDD_INT	K20
PB_01	Y17	PE_01	G21	VDD_DMC	G12	VDD_INT	L04
 PB_02	AA16	PE_02	G22	VDD_DMC	G13	VDD_INT	L06
PB_03	AA18	PE_03	H21	VDD_DMC	G14	VDD_INT	L19
PB_04	Y16	PE_04	H22	VDD_DMC	G15	VDD_INT	M04
PB_05	AA15	PE_05	J21	VDD_DMC	G16	VDD_INT	M06
PB_06	Y14	PE_06	J22	VDD_DMC	G17	VDD_INT	M19
PB_07	U03	PE_07	K22	VDD_DMC	H06	VDD_INT	U09
PB_08	Y02	PE_08	K21	VDD_DMC	H07	VDD_INT	U10
PB_09	Y01	PE_09	L22	VDD_DMC	H17	VDD_INT	U11
PB_10	W01	PE_10	L21	VDD_DMC	J06	VDD_INT	U12
PB_11	W02	PE_11	L20	VDD_EXT	J17	VDD_INT	U13
PB_12	V02	PE_12	M22	VDD_EXT	K17	VDD_INT	W11
PB_13	V01	PE_13	M20	VDD_EXT	L17	VDD_INT	W12
PB_14	R03	PE_14	N22	VDD_EXT	M17	VDD_USB	U08
PB_15	R02	PE_15	M21	VDD_EXT	N06		
PC_00	N03	SYS_BMODE0	N02	VDD_EXT	N17		
PC_01	L01	SYS_BMODE1	P02	VDD_EXT	P06		
PC_02	K02	SYS_BMODE2	T02	VDD_EXT	P17		
PC_03	K01	SYS_CLKIN0	U01	VDD_EXT	R06		
PC_04	G03	SYS_CLKIN1	P01	VDD_EXT	R17		
PC_05	J01	SYS_CLKOUT	C17	VDD_EXT	T06		
PC_06	J02	SYS_FAULT	H03	VDD_EXT	T17		
PC_07	H02	SYS_FAULT	K03	VDD_EXT	U06		
PC_08	H01	SYS_HWRST	L02	VDD_EXT	U07		
PC_09	L03	SYS_RESOUT	U02	VDD_EXT	U14		
PC_10	G02	SYS_XTAL0	T01	VDD_EXT	U15		
PC_11	F02	SYS_XTAL1	N01	VDD_EXT	U16		
PC_12	G01	TWI0_SCL	Y09	VDD_EXT	U17		
PC_13	B18	TWI0_SDA	AA10	VDD_HADC	Y11		
PC_14	C16	TWI1_SCL	AB08	VDD_INT	D11		
PC_15	C18	TWI1_SDA	Y10	VDD_INT	D12		
PD_00	A19	TWI2_SCL	AA08	VDD_INT	E20		
PD_01	C15	TWI2_SDA	AA09	VDD_INT	F07		
PD_02	B19	USB0_DM	AB07	VDD_INT	F08		
PD_03	A20	USB0_DP	AB06	VDD_INT	F09		
PD_04	C19	USB0_ID	AA06	VDD_INT	F10		
PD_05	B20	USB0_VBC	Y08	VDD_INT	F12		
PD_06	A21	USB0_VBUS	AA07	VDD_INT	F13		
PD_07	C21	USB_CLKIN	AB04	VDD_INT	F14		
PD_08	B22	USB_XTAL	AB05	VDD_INT	F15		
PD_09	D21	VDD_DMC	F06	VDD_INT	F16		
PD_10	D20	VDD_DMC	F11	VDD_INT	F17		
PD_11	C22	VDD_DMC	G06	VDD_INT	F20		
PD_12	D22	VDD_DMC	G07	VDD_INT	G20		
PD_13	E21	VDD_DMC	G08	VDD_INT	H20		

Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.
GND	L16	GND	T08	PA_02	AB23	PC_11	K02
GND	L17	GND	T09	PA_03	AC22	PC_12	L02
GND	M07	GND	T10	PA_04	AB22	PC_13	C20
GND	M08	GND	T11	PA_05	AA20	PC_14	D21
GND	M09	GND	T12	PA_06	AB21	PC_15	E20
GND	M10	GND	T13	PA_07	AC20	PD_00	B22
GND	M11	GND	T14	PA_08	AC21	PD_01	C21
GND	M12	GND	T15	PA_09	AA19	PD_02	F21
GND	M13	GND	T16	PA_10	Y19	PD_03	J19
GND	M14	GND	T17	PA_11	AB20	PD_04	B23
GND	M15	GND	U07	PA_12	Y18	PD_05	C23
GND	M16	GND	U08	PA_13	Y17	PD_06	C22
GND	M17	GND	U09	PA_14	Y16	PD_07	J20
GND	N07	GND	U10	PA_15	AB19	PD_08	E21
GND	N08	GND	U11	PB_00	AA18	PD_09	D23
GND	N09	GND	U12	PB_01	AC19	PD_10	D22
GND	N10	GND	U13	PB_02	AA15	PD_11	E23
GND	N11	GND	U14	PB_03	AA17	PD_12	F23
GND	N12	GND	U15	PB_04	AA16	PD_13	F22
GND	N13	GND	U16	PB_05	Y15	PD_14	E22
GND	N14	GND	U17	PB_06	AA14	PD_15	K20
GND	N15	GND	Y14	PB_07	AA02	PE_00	G23
GND	N16	GND	AC01	PB_08	AA01	PE_01	G22
GND	N17	GND	AC14	PB_09	W02	PE_02	H23
GND	P07	GND	AC23	PB_10	Y02	PE_03	L20
GND	P08	HADC0_VIN0	Y12	PB_11	Y01	PE_04	G20
GND	P09	HADC0_VIN1	AA12	PB_12	W01	PE_05	H22
GND	P10	HADC0_VIN2	AB13	PB_13	V02	PE_06	F20
GND	P11	HADC0_VIN3	AB14	PB_14	T04	PE_07	J23
GND	P12	HADC0_VIN4	V12	PB_15	T02	PE_08	M19
GND	P13	HADC0_VIN5	AA13	PCIE0_CLKM	AC04	PE_09	L22
GND	P14	HADC0_VIN6	W12	PCIE0_CLKP	AC05	PE_10	K23
GND	P15	HADC0_VIN7	Y13	PCIE0_REF	AA07	PE_11	M20
GND	P16	HADC0_VREFN	AB12	PCIE0_RXM	AC03	PE_12	H21
GND	P17	HADC0_VREFP	AC12	PCIE0_RXP	AC02	PE_13	G21
GND	R07	JTG_TCK	P04	PCIE0_TXM	AC07	PE_14	L23
GND	R08	JTG_TDI	P02	PCIE0_TXP	AC06	PE_15	N20
GND	R09	JTG_TDO	P01	PC_00	U03	PF_00	M22
GND	R10	JTG_TMS	N01	PC_01	M01	PF_01	J22
GND	R11	JTG_TRST	N02	PC_02	M03	PF_02	M23
GND	R12	MLB0_CLKN	AB18	PC_03	N04	PF_03	M21
GND	R13	MLB0_CLKP	AC18	PC_04	L01	PF_04	N21
GND	R14	MLB0_DATN	AB17	PC_05	M02	PF_05	N22
GND	R15	MLB0_DATP	AC17	PC_06	K03	PF_06	K22
GND	R16	MLB0_SIGN	AB16	PC_07	L03	PF_07	N23
GND	R17	MLB0_SIGP	AC16	PC_08	J04	PF_08	P20
GND	T03	PA_00	Y20	PC_09	K04	PF_09	L21
GND	T07	PA_01	AA21	PC_10	L04	PF_10	P19