

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

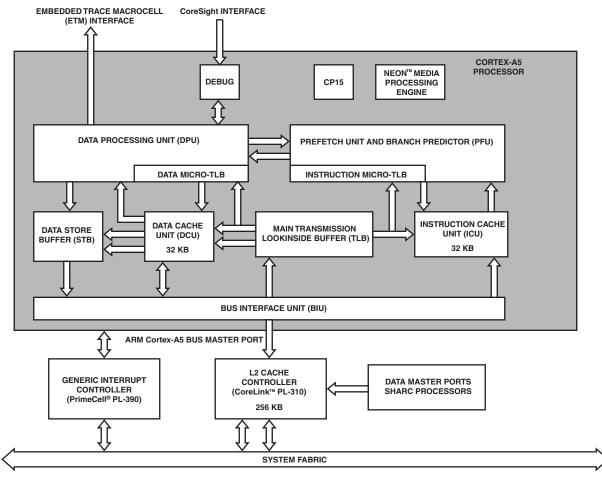
Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

2000	
Product Status	Active
Туре	Floating Point
Interface	CAN, EBI/EMI, Ethernet, DAI, I ² C, MMC/SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	300MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	640kB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	349-LFBGA, CSPBGA
Supplier Device Package	349-CSPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-sc584kbcz-3a

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ARM CORTEX-A5 PROCESSOR

The ARM Cortex-A5 processor (see Figure 2) is a high performance processor with the following features:

- Instruction cache unit (32 Kb) and data L1 cache unit (32 Kb)
- In order pipeline with dynamic branch prediction
- ARM, Thumb, and ThumbEE instruction set support
- ARM TrustZone[®] security extensions

- Harvard L1 memory system with a memory management unit (MMU)
- ARM v7 debug architecture
- Trace support through an embedded trace macrocell (ETM) interface
- Extension—vector floating-point unit (IEEE 754) with trapless execution
- Extension—media processing engine (MPE) with NEON[™] technology
- Extension—Jazelle hardware acceleration

TO OTHER CORES

Figure 2. ARM Cortex-A5 Processor Block Diagram

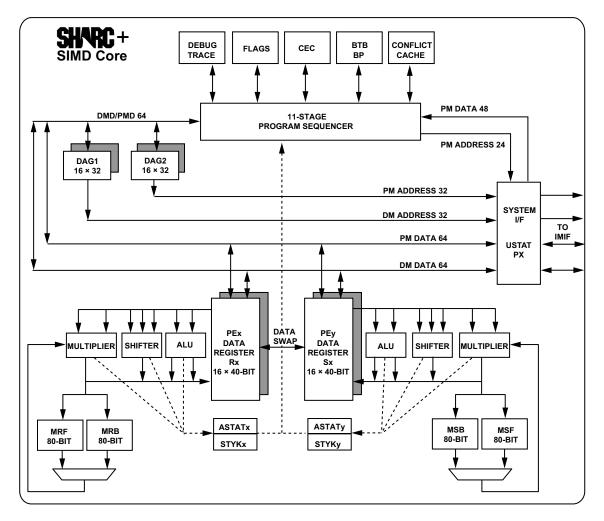


Figure 4. SHARC+ SIMD Core Block Diagram

L1 Memory

Figure 5 shows the ADSP-SC58x/ADSP-2158x memory map. Each SHARC+ core has a tightly coupled L1 SRAM of up to 5 Mb. Each SHARC+ core can access code and data in a single cycle from this memory space. The ARM Cortex-A5 core can also access this memory space with multicycle accesses.

In the SHARC+ core private address space, both cores have L1 memory.

SHARC+ core memory-mapped register (CMMR) address space is 0x 0000 0000 through 0x 0003 FFFF in Normal Word (32-bit). Each block can be configured for different combinations of code and data storage. Of the 5 Mb SRAM, up to 1024 Kb can be configured for data memory (DM), program memory (PM), and instruction cache. Each memory block supports single-cycle, independent accesses by the core processor and I/O processor. The memory architecture, in combination with its separate on-chip buses, allows two data transfers from the core and one from the DMA engine in a single cycle. The SRAM of the processor can be configured as a maximum of 160k words of 32-bit data, 320k words of 16-bit data, 106.7k words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to 5 Mb. All of the memory can be accessed as 8-bit, 16-bit, 32-bit, 48-bit, or 64-bit words. Support of a 16-bit floating-point storage format doubles the amount of data that can be stored on chip.

Conversion between the 32-bit floating-point and 16-bit floating-point formats is performed in a single instruction. While each memory block can store combinations of code and data, accesses are most efficient when one block stores data using the DM bus for transfers, and the other block stores instructions and data using the PM bus for transfers.

Using the DM and PM buses, with each bus dedicated to a memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache. The system configuration is flexible, but a typical configuration is 512 Kb DM, 128 Kb PM, and 128 Kb of instruction cache, with the remaining L1 memory configured as SRAM. Each addressable memory space outside the L1 memory can be accessed either directly or via cache.

The processing elements are referred to as PEx and PEy data registers and each contain an arithmetic logic unit (ALU), multiplier, shifter, and register file. PEx is always active and PEy is enabled by setting the PEYEN mode bit in the mode control register (MODE1).

Single instruction multiple data (SIMD) mode allows the processors to execute the same instruction in both processing elements, but each processing element operates on different data. This architecture efficiently executes math intensive DSP algorithms. In addition to all the features of previous generation SHARC cores, the SHARC+ core also provides a new and simpler way to execute an instruction only on the PEy data register.

SIMD mode also affects the way data transfers between memory and processing elements because to sustain computational operation in the processing elements requires twice the data bandwidth. Therefore, entering SIMD mode doubles the bandwidth between memory and the processing elements. When using the DAGs to transfer data in SIMD mode, two data values transfer with each memory or register file access.

Independent, Parallel Computation Units

Within each processing element is a set of pipelined computational units. The computational units consist of a multiplier, arithmetic/logic unit (ALU), and shifter. These units are arranged in parallel, maximizing computational throughput. These computational units support IEEE 32-bit single-precision floating-point, 40-bit extended-precision floating-point, IEEE 64-bit double-precision floating-point, and 32-bit fixed-point data formats.

A multifunction instruction set supports parallel execution of ALU and multiplier operations. In SIMD mode, the parallel ALU and multiplier operations occur in both processing elements per core.

All processing operations take one cycle to complete. For all floating-point operations, the processor takes two cycles to complete in case of data dependency. Double-precision floating-point data take two to six cycles to complete. The processor stalls for the appropriate number of cycles for an interlocked pipeline plus data dependency check.

Core Timer

Each SHARC+ processor core also has a timer. This extra timer is clocked by the internal processor clock and is typically used as a system tick clock for generating periodic operating system interrupts.

Data Register File

Each processing element contains a general-purpose data register file. The register files transfer data between the computation units and the data buses, and store intermediate results. These 10-port, 32-register register files (16 primary, 16 secondary), combined with the enhanced Harvard architecture of the processor, allow unconstrained data flow between computation units and internal memory. The registers in the PEx data register file are referred to as R0–R15 and in the PEy data register file as S0–S15.

Context Switch

Many of the registers of the processor have secondary registers that can activate during interrupt servicing for a fast context switch. The data, DAG, and multiplier result registers have secondary registers. The primary registers are active at reset, while control bits in MODE1 activate the secondary registers.

Universal Registers (USTAT)

General-purpose tasks use the universal registers. The four USTAT registers allow easy bit manipulations (set, clear, toggle, test, XOR) for all control and status peripheral registers.

The data bus exchange register (PX) permits data to pass between the 64-bit PM data bus and the 64-bit DM data bus or between the 40-bit register file and the PM or DM data bus. These registers contain hardware to handle the data width difference.

Data Address Generators With Zero-Overhead Hardware Circular Buffer Support

For indirect addressing and implementing circular data buffers in hardware, the ADSP-SC58x/ADSP-2158x processor uses the two data address generators (DAGs). Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The two DAGs of the processors contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets and 16 secondary sets). The DAGs automatically handle address pointer wraparound, reduce overhead, increase performance, and simplify implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set Architecture (ISA)

The ISA, a 48-bit instruction word, accommodates various parallel operations for concise programming. For example, the processors can conditionally execute a multiply, an add, and a subtract in both processing elements while branching and fetching up to four 32-bit values from memory—all in a single instruction. Additionally, the double-precision floating-point instruction set is an addition to the SHARC+ core.

Variable Instruction Set Architecture (VISA)

In addition to supporting the standard 48-bit instructions from previous SHARC processors, the SHARC+ core processors support 16-bit and 32-bit opcodes for many instructions, formerly 48-bit in the ISA. This feature, called variable instruction set architecture (VISA), drops redundant or unused bits within the 48-bit instruction to create more efficient and compact code. The program sequencer supports fetching these 16-bit and 32bit instructions from both internal and external memories. VISA is not an operating mode; it is only address dependent (refer to memory map ISA/VISA address spaces in Table 7). Furthermore, it allows jumps between ISA and VISA instruction fetches.

SECURITY FEATURES

The following sections describe the security features of the ADSP-SC58x/ADSP-2158x processors.

ARM TrustZone

The ADSP-SC58x processors provide TrustZone technology that is integrated into the ARM Cortex-A5 processors. The TrustZone technology enables a secure state that is extended throughout the system fabric.

Cryptographic Hardware Accelerators

The ADSP-SC58x/ADSP-2158x processors support standardsbased hardware accelerated encryption, decryption, authentication, and true random number generation.

Support for the hardware-accelerated cryptographic ciphers includes the following:

- AES in ECB, CBC, ICM, and CTR modes with 128-bit, 192-bit, and 256-bit keys
- DES in ECB and CBC mode with 56-bit key
- 3DES in ECB and CBC mode with 3x 56-bit key
- ARC4 in stateful, stateless mode, up to 128-bit key

Support for the hardware accelerated hash functions includes the following:

- SHA-1
- SHA-2 with 224-bit and 256-bit digests
- HMAC transforms for SHA-1 and SHA-2
- MD5

Public key accelerator (PKA) is available to offload computation intensive public key cryptography operations.

Both a hardware-based nondeterministic random number generator and pseudorandom number generator are available.

Secure boot is also available with 224-bit elliptic curve digital signatures ensuring integrity and authenticity of the boot stream. Optionally, ensuring confidentiality through AES-128 encryption is available.

Employ secure debug to allow only trusted users to access the system with debug tools.

CAUTION

This product includes security features that can be used to protect embedded nonvolatile memory contents and prevent execution of unauthorized code. When security is enabled on this device (either by the ordering party or the subsequent receiving parties), the ability of Analog Devices to conduct failure analysis on returned devices is limited. Contact Analog Devices for details on the failure analysis limitations for this device.

System Protection Unit (SPU)

The system protection unit (SPU) guards against accidental or unwanted access to an MMR space of the peripheral by providing a write protection mechanism. The user can choose and configure the protected peripherals as well as configure which of the four system MMR masters (two SHARC+ cores, memory DMA, and CoreSight debug) the peripherals are guarded against.

The SPU is also part of the security infrastructure. Along with providing write protection functionality, the SPU is employed to define which resources in the system are secure or nonsecure and to block access to secure resources from nonsecure masters.

System Memory Protection Unit (SMPU)

Synonymously, the system memory protection unit (SMPU) provides memory protection against read and/or write transactions to defined regions of memory. There are SMPU units in the ADSP-SC58x/ADSP-2158x processors for each memory space, except for SHARC L1 and SPI direct memory slave.

The SMPU is also part of the security infrastructure. It allows the user to protect against arbitrary read and/or write transactions and allows regions of memory to be defined as secure and prevent nonsecure masters from accessing those memory regions.

SAFETY FEATURES

The ADSP-SC58x/ADSP-2158x processors are designed to support functional safety applications. While the level of safety is mainly dominated by the system concept, the following primitives are provided by the processors to build a robust safety concept.

Multiparity Bit Protected SHARC+ Core L1 Memories

In the SHARC+ core L1 memory space, whether SRAM or cache, multiple parity bits protect each word to detect the single event upsets that occur in all RAMs. Parity does not protect the cache tags.

Error Correcting Codes (ECC) Protected L2 Memories

Error correcting codes (ECC) correct single event upsets. A single error correct-double error detect (SEC-DED) code protects the L2 memory. By default, ECC is enabled, but it can be disabled on a per bank basis. Single-bit errors correct transparently. If enabled, dual-bit errors can issue a system event or fault. ECC protection is fully transparent to the user, even if L2 memory is read or written by 8-bit or 16-bit entities.

Cyclic Redundant Code (CRC) Protected Memories

While parity bit and ECC protection mainly protect against random soft errors in L1 and L2 memory cells, the cyclic redundant code (CRC) engines can protect against systematic errors (pointer errors) and static content (instruction code) of L1, L2, and even L3 memories (DDR2, LPDDR). The processors feature two CRC engines that are embedded in the memory to memory DMA controllers.

Signal Name	Direction	Description
SMC_ABE[n]	Output	Byte Enable n. Indicates whether the lower or upper byte of a memory is being accessed. When an
		asynchronous write is made to the upper byte of a 16-bit memory, $\overline{SMC}ABE1 = 0$ and $\overline{SMC}ABE0 = 1$. When an asynchronous write is made to the lower byte of a 16-bit memory, $\overline{SMC}ABE1 = 1$ and $\overline{SMC}ABE0 = 0$.
SMC_AMS[n]	Output	Memory Select n. Typically connects to the chip select of a memory device.
SMC_AOE	Output	Output Enable. Asserts at the beginning of the setup period of a read access.
SMC_ARDY	Input	Asynchronous Ready. Flow control signal used by memory devices to indicate to the SMC when further transactions may proceed.
SMC_ARE	Output	Read Enable. Asserts at the beginning of a read access.
SMC_AWE	Output	Write Enable. Asserts for the duration of a write access period.
SMC_A[nn]	Output	Address n. Address bus.
SMC_D[nn]	InOut	Data n. Bidirectional data bus.
SPI_CLK	InOut	Clock. Input in slave mode, output in master mode.
SPI_D2	InOut	Data 2. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.
SPI_D3	InOut	Data 3. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.
SPI_MISO	InOut	Master In, Slave Out. Transfers serial data. Operates in the same direction as SPI_MOSI in dual and quad modes. Open-drain when ODM mode is enabled.
SPI_MOSI	InOut	Master Out, Slave In. Transfers serial data. Operates in the same direction as SPI_MISO in dual and quad modes. Open-drain when ODM mode is enabled.
SPI_RDY	InOut	Ready. Optional flow signal. Output in slave mode, input in master mode.
SPI_SEL[n]	Output	Slave Select Output n. Used in master mode to enable the desired slave.
<u>SPI_SS</u>	Input	Slave Select Input. Slave mode—acts as the slave select input. Master mode—optionally serves as an error detection input for the SPI when there are multiple masters.
SPT_ACLK	InOut	Channel A Clock. Data and frame sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_AD0	InOut	Channel A Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_AD1	InOut	Channel A Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_AFS	InOut	Channel A Frame Sync. The frame sync pulse initiates shifting of the serial data. This signal is either generated internally or externally.
SPT_ATDV	Output	Channel A Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.
SPT_BCLK	InOut	Channel B Clock. Data and frame sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_BD0	InOut	Channel B Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_BD1	InOut	Channel B Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_BFS	InOut	Channel B Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.
SPT_BTDV	Output	Channel B Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.
SYS_BMODE[n]	Input	Boot Mode Control n. Selects the boot mode of the processor.
SYS_CLKIN0	Input	Clock/Crystal Input.
SYS_CLKIN1	Input	Clock/Crystal Input.
SYS_CLKOUT	Output	Processor Clock Output. Outputs internal clocks. Clocks may be divided down. See the CGU chapter of the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference for more details.

Table 11. ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions (Continued)

Signal Name	Direction	Description
SYS_FAULT	InOut	Active-High Fault Output. Indicates internal faults or senses external faults depending on the
		operating mode.
SYS_FAULT	InOut	Active-Low Fault Output. Indicates internal faults or senses external faults depending on the
		operating mode.
SYS_HWRST	Input	Processor Hardware Reset Control. Resets the device when asserted.
SYS_RESOUT	Output	Reset Output. Indicates the device is in the reset state.
SYS_XTAL0	Output	Crystal Output.
SYS_XTAL1	Output	Crystal Output.
TM_ACI[n]	Input	Alternate Capture Input n. Provides an additional input for WIDCAP, WATCHDOG, and PININT modes.
TM_ACLK[n]	Input	Alternate Clock n. Provides an additional time base for an individual timer.
TM_CLK	Input	Clock. Provides an additional global time base for all GP timers.
TM_TMR[n]	InOut	Timer n. The main input/output signal for each timer.
TRACE_CLK	Output	Trace Clock. Clock output.
TRACE_D[nn]	Output	Trace Data n. Unidirectional data bus.
TWI_SCL	InOut	Serial Clock. Clock output when master, clock input when slave.
TWI_SDA	InOut	Serial Data. Receives or transmits data.
UART_CTS	Input	Clear to Send. Flow control signal.
UART_RTS	Output	Request to Send. Flow control signal.
UART_RX	Input	Receive. Receives input. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
UART_TX	Output	Transmit. Transmits output. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
USB_CLKIN	Input	Clock/Crystal Input. This clock input is multiplied by a PLL to form the USB clock. See data sheet specifications for frequency/tolerance information.
USB_DM	InOut	Data –. Bidirectional differential data line.
USB_DP	InOut	Data +. Bidirectional differential data line.
USB_ID	Input	OTG ID. Senses whether the controller is a host or device. This signal is pulled low when an A-type plug is sensed (signifying that the USB controller is the A device). The input is high when a B-type plug is sensed (signifying that the USB controller is the B device).
USB_VBC	Output	VBUS Control. Controls an external voltage source to supply VBUS when in host mode. Can be configured as open-drain. Polarity is configurable as well.
USB_VBUS	InOut	Bus Voltage. Connects to bus voltage in host and device modes.
USB_XTAL	Output	Crystal. Drives an external crystal. Must be left unconnected if an external clock is driving USB_CLKIN.

Table 11. ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
UART1_RTS	UART1 Request to Send	E	PE_02
UART1_RX	UART1 Receive	В	PB_03
UART1_TX	UART1 Transmit	В	PB_02
UART2_CTS	UART2 Clear to Send	E	PE_11
UART2_RTS	UART2 Request to Send	E	PE_10
UART2_RX	UART2 Receive	D	PD_13
UART2_TX	UART2 Transmit	D	PD_12
USB0_CLKIN	USB0 Clock/Crystal Input	Not Muxed	USB_CLKIN
USB0_DM	USB0 Negative Data (–)	Not Muxed	USB0_DM
USB0_DP	USB0 Positive Data (+)	Not Muxed	USB0_DP
USB0_ID	USB0 OTG ID	Not Muxed	USB0_ID
USB0_VBC	USB0 VBUS Control	Not Muxed	USB0_VBC
USB0_VBUS	USB0 Bus Voltage	Not Muxed	USB0_VBUS
USB0_XTAL	USB0 Crystal	Not Muxed	USB_XTAL
VDD_DMC	DMC VDD	Not Muxed	VDD_DMC
VDD_HADC	HADC VDD	Not Muxed	VDD_HADC
VDD_USB	USB VDD	Not Muxed	VDD_USB

Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
PI0_D00	EPPIO Data 0	E	PE_12
PI0_D01	EPPI0 Data 1	E	PE_11
PI0_D02	EPPI0 Data 2	E	PE_10
PI0_D03	EPPIO Data 3	E	PE_09
PI0_D04	EPPIO Data 4	E	PE_08
PI0_D05	EPPIO Data 5	E	PE_07
PI0_D06	EPPIO Data 6	E	PE_06
PI0_D07	EPPIO Data 7	E	PE_05
PI0_D08	EPPIO Data 8	E	PE_04
PI0_D09	EPPIO Data 9	E	PE_00
PI0_D10	EPPIO Data 10	D	PD_15
PI0_D11	EPPIO Data 11	D	PD_14
PI0_D12	EPPIO Data 12	В	PB_04
PI0_D13	EPPIO Data 13	В	PB_05
 PI0_D14	EPPI0 Data 14	В	 PB_00
 PI0_D15	EPPIO Data 15	В	 PB_01
PI0_D16	EPPI0 Data 16	В	PB_02
PI0_D17	EPPIO Data 17	В	PB_03
PI0_D18	EPPIO Data 18	D	PD_13
PI0_D19	EPPIO Data 19	D	PD_12
PI0_D20	EPPIO Data 20	E	PE_13
PI0_D21	EPPIO Data 21	E	PE_14
PI0_D22	EPPIO Data 22	E	PE_15
PI0_D23	EPPIO Data 23	D	PD_00
PI0_FS1	EPPI0 Frame Sync 1 (HSYNC)	E	PE_02
PI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	E	PE_01
PI0_FS3	EPPIO Frame Sync 3 (FIELD)	C	PC_15
WM0_AH	PWM0 Channel A High Side	В	PB_07
WM0_AL	PWM0 Channel A Low Side	В	PB_08
WM0_BH	PWM0 Channel B High Side	В	PB_06
WM0_BL	PWM0 Channel B Low Side	C	PC_00
WM0_CH	PWM0 Channel C High Side	В	PB_13
WM0_CL	PWM0 Channel C Low Side	В	
	PWM0 Channel D High Side		PB_14
WM0_DH	5	В	PB_11
WM0_DL	PWM0 Channel D Low Side	В	PB_12
WM0_SYNC	PWM0 PWMTMR Grouped	E	PE_09
WM0_TRIP0	PWM0 Shutdown Input 0	В	PB_15
WM1_AH	PWM1 Channel A High Side	D	PD_03
WM1_AL	PWM1 Channel A Low Side	D	PD_04
WM1_BH	PWM1 Channel B High Side	D	PD_05
WM1_BL	PWM1 Channel B Low Side	D	PD_06
WM1_CH	PWM1 Channel C High Side	D	PD_07
WM1_CL	PWM1 Channel C Low Side	D	PD_08
WM1_DH	PWM1 Channel D High Side	D	PD_09
WM1_DL	PWM1 Channel D Low Side	D	PD_10
WM1_SYNC	PWM1 PWMTMR Grouped	D	PD_11
WM1_TRIP0	PWM1 Shutdown Input 0	D	PD_02
WM2_AH	PWM2 Channel A High Side	F	PF_07

Table 19. ADSP-SC58x/ADSP-2158x 529-Ball CSP_BGA Signal Descriptions (Continued)

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DAI0_PIN16	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 16
							Notes: No notes
DAI0_PIN17	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 17
							Notes: No notes
DAI0_PIN18	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 18
							Notes: No notes
DAI0_PIN19	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 19
							Notes: No notes
DAI0_PIN20	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 20
							Notes: No notes
DAI1_PIN01	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 1
							Notes: No notes
DAI1_PIN02	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 2
							Notes: No notes
DAI1_PIN03	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 3
							Notes: No notes
DAI1_PIN04	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 4
							Notes: No notes
DAI1_PIN05	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 5
							Notes: No notes
DAI1_PIN06	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 6
							Notes: No notes
DAI1_PIN07	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 7
							Notes: No notes
DAI1_PIN08	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 8
							Notes: No notes
DAI1_PIN09	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 9
							Notes: No notes
DAI1_PIN10	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 10
							Notes: No notes
DAI1_PIN11	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 11
							Notes: No notes
DAI1_PIN12	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 12
							Notes: No notes
DAI1_PIN13	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 13
							Notes: No notes
DAI1_PIN14	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 14
							Notes: No notes
DAI1_PIN15	InOut	A	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 15
							Notes: No notes
DAI1_PIN16	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 16
							Notes: No notes
DAI1_PIN17	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 17
							Notes: No notes
DAI1_PIN18	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 18
							Notes: No notes
DAI1_PIN19	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 19
			1				Notes: No notes

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DAI1_PIN20	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI1 Pin 20
							Notes: No notes
DMC0_A00	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 0
		-					Notes: No notes
DMC0_A01	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 1
	Output	D					Notes: No notes Desc: DMC0 Address 2
DMC0_A02	Output	В	none	none	none	VDD_DMC	Notes: No notes
DMC0_A03	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 3
DIVICO_A03	Output	D	none	none	none	VDD_DIVIC	Notes: No notes
DMC0_A04	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 4
Diffeo_rio i	output	U	none	none	none	VDD_DIMC	Notes: No notes
DMC0_A05	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 5
		-					Notes: No notes
DMC0_A06	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 6
_						_	Notes: No notes
DMC0_A07	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 7
							Notes: No notes
DMC0_A08	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 8
							Notes: No notes
DMC0_A09	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 9
							Notes: No notes
DMC0_A10	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 10
							Notes: No notes
DMC0_A11	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 11
							Notes: No notes
DMC0_A12	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 12
	.						Notes: No notes
DMC0_A13	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 13 Notes: No notes
	Output	В	nono	nono	nono	VDD_DMC	Desc: DMC0 Address 14
DMC0_A14	Output	D	none	none	none	VDD_DIVIC	Notes: No notes
DMC0_A15	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Address 15
Diffeo_/rits	output	U	none	none	none	VDD_DIMC	Notes: No notes
DMC0_BA0	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Bank Address Input
		-					0
							Notes: No notes
DMC0_BA1	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Bank Address Input
							1
							Notes: No notes
DMC0_BA2	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Bank Address Input
							2 Notos: No notos
	0	P	nonc		n		Notes: No notes
DMC0_CAS	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Column Address Strobe
							Notes: No notes
DMC0_CK	Output	с	none	none	L	VDD_DMC	Desc: DMC0 Clock
		-					Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

Signal Name	Туре	Driver Type	Int Term	Reset Term	Reset Drive	Power Domain	Description and Notes
DMC0_UDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Upper Byte (complement) Notes: No notes
DMC0_VREF	а		none	none	none	VDD_DMC	Desc: DMC0 Voltage Reference Notes: No notes
DMC0_WE	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Write Enable Notes: No notes
DMC1_A00	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 0 Notes: No notes
DMC1_A01	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 1 Notes: No notes
DMC1_A02	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 2 Notes: No notes
DMC1_A03	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 3 Notes: No notes
DMC1_A04	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 4 Notes: No notes
DMC1_A05	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 5 Notes: No notes
DMC1_A06	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 6
DMC1_A07	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Address 7
DMC1_A08	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Address 8
DMC1_A09	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Address 9
DMC1_A10	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Address 10
DMC1_A11	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Address 11
DMC1_A12	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Address 12
DMC1_A13	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Address 13 Notes: No notes
DMC1_A14	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 14
DMC1_A15	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Address 15
DMC1_BA0	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Bank Address Input
DMC1_BA1	Output	В	none	none	none	VDD_DMC	0 Notes: No notes Desc: DMC1 Bank Address Input
_							1 Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

ABSOLUTE MAXIMUM RATINGS

Stresses at or above those listed in Table 41 may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 41. Absolute Maximum Ratings

Parameter	Rating
Internal (Core) Supply Voltage (V _{DD_INT})	-0.33 V to +1.26 V
External (I/O) Supply Voltage	–0.33 V to +3.60 V
(V _{DD_EXT})	
DDR2/LPDDR Controller Supply	–0.33 V to +1.90 V
Voltage (V _{DD_DMC})	
DDR3 Controller Supply Voltage	–0.33 V to +1.60 V
(V _{DD_DMC})	
USB PHY Supply Voltage (V _{DD_USB})	–0.33 V to +3.60 V
Real Time Clock Supply Voltage	–0.33 V to +3.60 V
(V _{DD_RTC})	
PCIe Transmit Supply Voltage	–0.33 V to +1.20 V
(V _{DD_PCIE_TX})	
PCIe Receive Supply Voltage	–0.33 V to +1.20 V
(V _{DD_PCIE_RX})	
PCIe Supply Voltage (V _{DD_PCIE})	–0.33 V to +3.60 V
HADC Supply Voltage (V _{DD_HADC})	–0.33 V to +3.60 V
HADC Reference Voltage (V _{HADC_REF})	–0.33 V to +3.60 V
DDR2/LPDDR Input Voltage ¹	–0.33 V to +1.90 V
DDR3 Input Voltage ¹	–0.33 V to +1.60 V
Digital Input Voltage ^{2, 3}	–0.33 V to +3.60 V
Output Voltage Swing	–0.33 V to V_{DD_EXT} +0.5 V
Analog Input Voltage	–0.2 V to V_DD_HADC +0.2 V
Storage Temperature Range	–65°C to +150°C
Junction Temperature While Biased	133°C

 $^1Applies only when V_{DD_DMC}$ is within specifications. When $_{VDD_DMC}$ is outside specifications, the range is $V_{DD_DMC}\pm0.2$ V.

²Applies to 100% transient duty cycle.

 $^3Applies only when V_{DD_EXT}$ is within specifications. When V_{DD_EXT} is outside specifications, the range is $V_{DD_EXT}\pm0.2$ V.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PACKAGE INFORMATION

The information presented in Figure 9 and Table 42 provides details about the package branding for the processors. For a complete listing of product availability, see the Ordering Guide section.

Figure 9. Product Information on Package¹

¹Exact brand may differ, depending on package type.

Table 42. Package Brand Information

Brand Key	Field Description
ADSP-SC589	Product name
t	Temperature range
рр	Package type
Z	RoHS compliant option
ссс	See the Ordering Guide section
VVVVV.X	Assembly lot code
n.n	Silicon revision
#	RoHS compliant designation
yyww	Date code

Asynchronous Write

Table 48 and Figure 15 show asynchronous memory write timing, related to the SMC.

Table 48. Asynchronous Memory Write

Parameter		Min	Max	Unit
Timing Requ	lirement			
t _{DARDYAWE} 1	SMC0_ARDY Valid After SMC0_AWE Low ²		$(WAT - 2.5) \times t_{SCLK0} - 17.5$	ns
Switching Cl	haracteristics			
t _{ENDAT}	DATA Enable After SMC0_AMSx Assertion	-3.5		ns
t _{DDAT}	DATA Disable After SMC0_AMSx Deassertion		2.5	ns
t _{AMSAWE}	ADDR/SMC0_AMSx Assertion Before SMC0_AWE Low ³	$(PREST + WST + PREAT) \times t_{SCLK0} - 2$		ns
t _{HAWE}	Output ⁴ Hold After SMC0_AWE High ⁵	WHT \times t _{SCLK0} – 3.5		ns
t _{WAWE} 6	SMC0_AWE Active Low Width ²	WAT \times t _{SCLK0} – 2		ns
t _{DAWEARDY} 1	SMC0_AWE High Delay After SMC0_ARDY Assertion	$2.5 \times t_{SCLKO}$	$3.5 \times t_{SCLK0} + 17.5$	ns

¹SMC_BxCTL.ARDYEN bit = 1.

²WAT value set using the SMC_BxTIM.WAT bits.

³PREST, WST, PREAT values set using the SMC_BXETIM.PREST bits, SMC_BXTIM.WST bits, SMC_BXETIM.PREAT bits, and the SMC_BXTIM.RAT bits.

⁴Output signals are DATA, SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_ABEx</u>.

⁵WHT value set using the SMC_BxTIM.WHT bits.

⁶SMC_BxCTL.ARDYEN bit = 0.

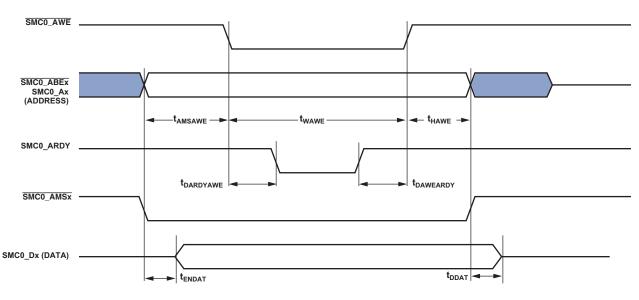


Figure 15. Asynchronous Write

Mobile DDR (LPDDR) SDRAM Clock and Control Cycle Timing

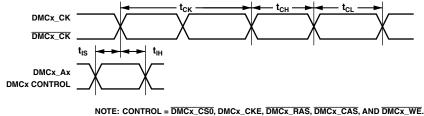
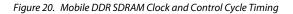

Table 54 and Figure 20 show mobile DDR SDRAM clock and control cycle timing, related to the DMC.

Table 54. Mobile DDR SDRAM Clock and Control Cycle Timing, V_{DD_DMCx} Nominal 1.8 V¹


			200 MHz ²	
Parameter		Min	Мах	Unit
Switching	Characteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	Minimum Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Maximum Clock Pulse Width	0.45	0.55	t _{CK}
^I IS	Control/Address Setup Relative to DMCx_CK Rise	1		ns
t _{IH}	Control/Address Hold Relative to DMCx_CK Rise	1		ns

¹Specifications apply to both DMC0 and DMC1.

²To ensure proper operation of LPDDR, all the LPDDR guidelines must be strictly followed. See "Interfacing DDR3/DDR2/LPDDR Memory to ADSP-SC5xx/215xx Processors" (EE-387).

DTE: CONTROL = DMCx_CS0, DMCx_CKE, DMCx_RAS, DMCx_CAS, AND DMC ADDRESS = DMCx_A0-A15 AND DMCx_BA0-BA2.

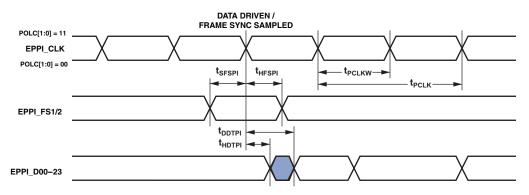


Figure 29. EPPI Internal Clock GP Transmit Mode with External Frame Sync Timing

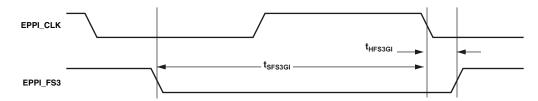
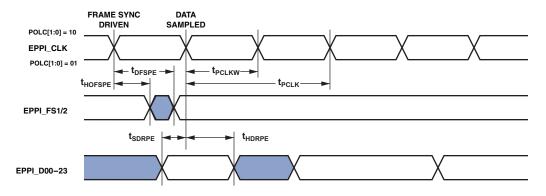
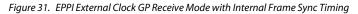




Figure 30. Clock Gating Mode with Internal Clock and External Frame Sync Timing

Parameter		Min Max		Unit
Timing Re	quirements			
t _{PCLKW}	EPPI_CLK Width ¹	$0.5 \times t_{PCLKEXT}$ –	0.5	ns
t _{PCLK}	EPPI_CLK Period ¹	t _{PCLKEXT} – 1		ns
t _{SFSPE}	External FS Setup Before EPPI_CLK	2		ns
t _{HFSPE}	External FS Hold After EPPI_CLK	3.7		ns
t _{SDRPE}	Receive Data Setup Before EPPI_CLK	2		ns
t _{HDRPE}	Receive Data Hold After EPPI_CLK	3.7		ns
Switching	Characteristics			
t _{DFSPE}	Internal FS Delay After EPPI_CLK		15.3	ns
t _{HOFSPE}	Internal FS Hold After EPPI_CLK	2.4		ns
t _{DDTPE}	Transmit Data Delay After EPPI_CLK		15.3	ns
t _{HDTPE}	Transmit Data Hold After EPPI_CLK	2.4		ns

¹This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external EPPI_CLK. For the external EPPI_CLK ideal maximum frequency see the f_{PCLKEXT} specification in Table 29.

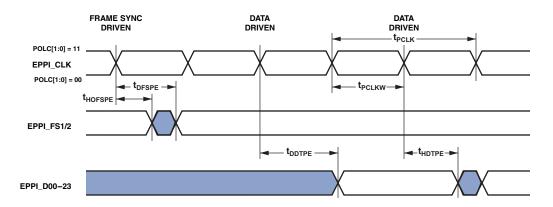
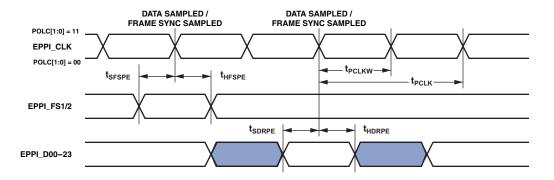


Figure 32. EPPI External Clock GP Transmit Mode with Internal Frame Sync Timing



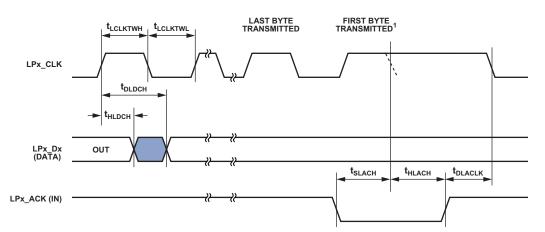

Figure 33. EPPI External Clock GP Receive Mode with External Frame Sync Timing

Table 63. Link Ports—Transmit¹

Parameter		Min	Мах	Unit
Timing Require	ements			
t _{SLACH}	LPx_ACK Setup Before LPx_CLK Low	$2 \times t_{CLKO8} + 13.5$		ns
t _{HLACH}	LPx_ACK Hold After LPx_CLK Low	-5.5		ns
Switching Cha	racteristics			
t _{DLDCH}	Data Delay After LPx_CLK High		1.6	ns
t _{HLDCH}	Data Hold After LPx_CLK High	-0.8		ns
t _{LCLKTWL} ²	LPx_CLK Width Low	$0.33 \times t_{LCLKTPROG}$	$0.6 \times t_{LCLKTPROG}$	ns
t _{LCLKTWH} 2	LPx_CLK Width High	$0.45 \times t_{LCLKTPROG}$	$0.66 \times t_{LCLKTPROG}$	ns
t _{LCLKTW} ²	LPx_CLK Period	$N \times t_{LCLKTPROG} - 0.5$		ns
t _{DLACLK}	LPx_CLK Low Delay After LPx_ACK High	t _{CLKO8} + 4	$2 \times t_{CLKO8} + 1 \times t_{LPCLK} + 10$	ns

¹Specifications apply to LP0 and LP1.

 2 See Table 29 for details on the minimum period that can be programmed for t_{LCLKTPROG}.

The t_{sLACH} and t_{HLACH} specifications apply only to the LPx_CLK falling edge. If these specifications are met, LPx_CLK would extend and the dotted LPx_CLK falling edge would not occur as shown. The position of the dotted falling edge can be calculated using the t_{LCLKTWH} specification. t_{LCLKTWH} Min should be used for t_{sLACH} and t_{LCLKTWH} Max for t_{HLACH}.

Figure 36. Link Ports—Transmit

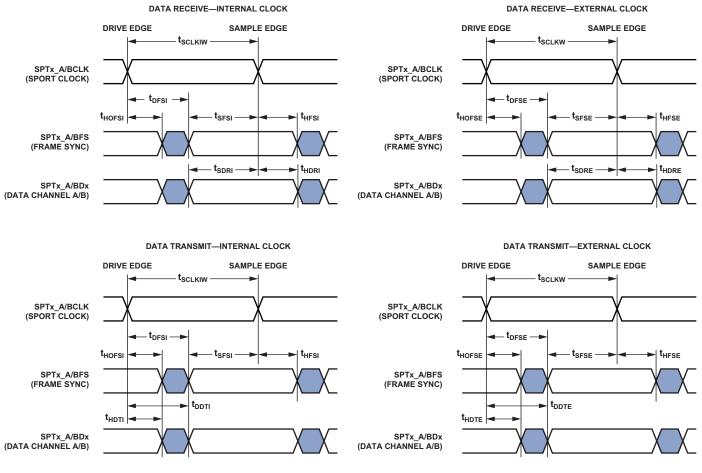


Figure 37. Serial Ports

General-Purpose I/O Port Timing

Table 78 and Figure 51 describe I/O timing, related to the general-purpose I/O port (PORT).

Table 78. General-Purpose Port Timing

Paramete	er	Min	Мах	Unit
Timing Rea	quirement			
t _{WFI}	General-Purpose Port Pin Input Pulse Width	$2 \times t_{SCLK0} - 1$.	5	ns

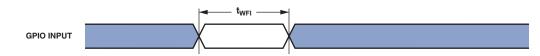


Figure 51. General-Purpose Port Timing

General-Purpose I/O Timer Cycle Timing

Table 79, Table 80, and Figure 52 describe timer expired operations related to the general-purpose timer (TIMER). The input signal is asynchronous in Width Capture Mode and External Clock Mode and has an absolute maximum input frequency of $f_{SCLK}/4$ MHz. The Width Value value is the timer period assigned in the TMx_TMRn_WIDTH register and can range from 1 to $2^{32} - 1$. When externally generated, the TMx_CLK clock is called $f_{TMRCLKEXT}$:

 $t_{TMRCLKEXT} = \frac{1}{f_{TMRCLKEXT}}$

Table 79. Timer Cycle Timing (Internal Mode)

Parameter		Min	Мах	Unit
Timing Re	quirements			
t _{WL}	Timer Pulse Width Input Low (Measured In SCLK Cycles) ¹	$2 \times t_{SCLK}$		ns
t _{WH} Timer Pulse Width Input High (Measured In SCLK Cycles) ¹		$2 \times t_{SCLK}$		ns
Switching	Characteristic			
t _{HTO}	Timer Pulse Width Output (Measured In SCLK Cycles) ²	t _{SCLK} × WIDTH – 1.5	t _{SCLK} × WIDTH + 1.5	ns

¹The minimum pulse width applies for timer signals in width capture and external clock modes.

²WIDTH refers to the value in the TMRx_WIDTH register (it can vary from 1 to 2³² - 1).

Table 80. Timer Cycle Timing (External Mode)

Parameter		Min	Max	Unit	
Timing Requ	Timing Requirements				
t _{WL}	Timer Pulse Width Input Low (Measured In EXT_CLK Cycles) ¹	$2 \times t_{EXT_{CLK}}$		ns	
t _{WH}	Timer Pulse Width Input High (Measured In EXT_CLK Cycles) ¹	$2 \times t_{EXT_{CLK}}$		ns	
t _{EXT_CLK}	Timer External Clock Period ²	t _{TMRCLKEXT}		ns	
Switching Ch	naracteristic				
t _{HTO}	Timer Pulse Width Output (Measured In EXT_CLK Cycles) ³	t _{EXT_CLK} × WIDTH – 1.5	t _{EXT_CLK} × WIDTH + 1.5	ns	

¹The minimum pulse width applies for timer signals in width capture and external clock modes.

² This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external TMR_CLK. For the external TMR_CLK maximum frequency see the f_{TMRCLKEXT} specification in Table 29.

³WIDTH refers to the value in the TMRx_WIDTH register (it can vary from 1 to $2^{32} - 1$).

S/PDIF Transmitter Input Data Timing

The timing requirements for the S/PDIF transmitter are given in Table 96. Input signals are routed to the DAIx_PINx pins using the SRU. Therefore, the timing specifications provided below are valid at the DAIx_PINx pins.

Table 96.	S/PDIF	Transmitter	Input	Data	Timing
-----------	--------	-------------	-------	------	--------

Paramete	Parameter		Max	Unit
Timing Req	uirements			
t _{SISFS} ¹	Frame Sync Setup Before Serial Clock Rising Edge	3		ns
t _{SIHFS} 1	Frame Sync Hold After Serial Clock Rising Edge	3		ns
t _{SISD} 1	Data Setup Before Serial Clock Rising Edge	3		ns
t _{SIHD} 1	Data Hold After Serial Clock Rising Edge	3		ns
t _{SITXCLKW}	Transmit Clock Width	9		ns
t _{SITXCLK}	Transmit Clock Period	20		ns
t _{SISCLKW}	Clock Width	36		ns
t _{SISCLK}	Clock Period	80		ns

¹The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. The input of the PCG can be either CLKIN or any of the DAI pins.

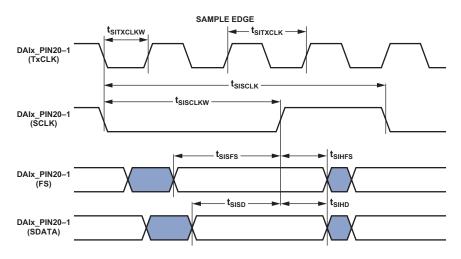


Figure 67. S/PDIF Transmitter Input Timing

Oversampling Clock (TxCLK) Switching Characteristics

The S/PDIF transmitter requires an oversampling clock input. This high frequency clock (TxCLK) input is divided down to generate the internal biphase clock.

Table 97.	Oversampling	Clock (TxCLK)	Switching Characteristics
-----------	--------------	---------------	---------------------------

Parameter		Мах	Unit
Switching Cha	racteristics		
f _{TXCLK_384}	Frequency for TxCLK = $384 \times$ Frame Sync	Oversampling ratio × frame sync $\leq 1/t_{SITXCLK}$	MHz
f _{TXCLK_256}	Frequency for TxCLK = $256 \times$ Frame Sync	49.2	MHz
f _{FS}	Frame Rate (FS)	192.0	kHz