

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Floating Point
Interface	CAN, EBI/EMI, Ethernet, DAI, I ² C, MMC/SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	500MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	640kB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	529-LFBGA, CSPBGA
Supplier Device Package	529-CSPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-sc587bbcz-5b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ARM CORTEX-A5 PROCESSOR

The ARM Cortex-A5 processor (see Figure 2) is a high performance processor with the following features:

- Instruction cache unit (32 Kb) and data L1 cache unit (32 Kb)
- In order pipeline with dynamic branch prediction
- ARM, Thumb, and ThumbEE instruction set support
- ARM TrustZone[®] security extensions

- Harvard L1 memory system with a memory management unit (MMU)
- ARM v7 debug architecture
- Trace support through an embedded trace macrocell (ETM) interface
- Extension—vector floating-point unit (IEEE 754) with trapless execution
- Extension—media processing engine (MPE) with NEON[™] technology
- Extension—Jazelle hardware acceleration

TO OTHER CORES

Figure 2. ARM Cortex-A5 Processor Block Diagram

Figure 4. SHARC+ SIMD Core Block Diagram

L1 Memory

Figure 5 shows the ADSP-SC58x/ADSP-2158x memory map. Each SHARC+ core has a tightly coupled L1 SRAM of up to 5 Mb. Each SHARC+ core can access code and data in a single cycle from this memory space. The ARM Cortex-A5 core can also access this memory space with multicycle accesses.

In the SHARC+ core private address space, both cores have L1 memory.

SHARC+ core memory-mapped register (CMMR) address space is 0x 0000 0000 through 0x 0003 FFFF in Normal Word (32-bit). Each block can be configured for different combinations of code and data storage. Of the 5 Mb SRAM, up to 1024 Kb can be configured for data memory (DM), program memory (PM), and instruction cache. Each memory block supports single-cycle, independent accesses by the core processor and I/O processor. The memory architecture, in combination with its separate on-chip buses, allows two data transfers from the core and one from the DMA engine in a single cycle. The SRAM of the processor can be configured as a maximum of 160k words of 32-bit data, 320k words of 16-bit data, 106.7k words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to 5 Mb. All of the memory can be accessed as 8-bit, 16-bit, 32-bit, 48-bit, or 64-bit words. Support of a 16-bit floating-point storage format doubles the amount of data that can be stored on chip.

Conversion between the 32-bit floating-point and 16-bit floating-point formats is performed in a single instruction. While each memory block can store combinations of code and data, accesses are most efficient when one block stores data using the DM bus for transfers, and the other block stores instructions and data using the PM bus for transfers.

Using the DM and PM buses, with each bus dedicated to a memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache. The system configuration is flexible, but a typical configuration is 512 Kb DM, 128 Kb PM, and 128 Kb of instruction cache, with the remaining L1 memory configured as SRAM. Each addressable memory space outside the L1 memory can be accessed either directly or via cache.

ADC Control Module (ACM) Interface

The ADC control module (ACM) provides an interface that synchronizes the controls between the processors and an ADC. The analog-to-digital conversions are initiated by the processors, based on external or internal events.

The ACM allows for flexible scheduling of sampling instants and provides precise sampling signals to the ADC.

The ACM synchronizes the ADC conversion process, generating the ADC controls, the ADC conversion start signal, and other signals. The actual data acquisition from the ADC is done by an internal DAI routing of the ACM with the SPORT0 block.

The processors interface directly to many ADCs without any glue logic required.

3-Phase Pulse Width Modulator (PWM) Units

The pulse width modulator (PWM) module is a flexible and programmable waveform generator. With minimal CPU intervention, the PWM generates complex waveforms for motor control, pulse coded modulation (PCM), DAC conversions, power switching, and power conversion. The PWM module has four PWM pairs capable of 3-phase PWM generation for source inverters for ac induction and dc brushless motors.

Each of the three 3-phase PWM generation units features the following:

- 16-bit center-based PWM generation unit
- Programmable PWM pulse width
- Single update mode with an option for asymmetric duty
- Programmable dead time and switching frequency
- Programmable dead time per channel
- Twos complement implementation which permits smooth transition to full on and full off states
- Dedicated asynchronous PWM shutdown signal

Ethernet Media Access Controller (EMAC)

The processor features two ethernet media access controllers (EMACs): 10/100 Ethernet and 10/100/1000/AVB Ethernet with precision time protocol IEEE 1588.

The processors can directly connect to a network through embedded fast EMAC that supports 10-BaseT (10 Mb/sec), 100-BaseT (100 Mb/sec) and 1000-BaseT (1 Gb/sec) operations. The 10/100 EMAC peripheral on the processors is fully compliant to the IEEE 802.3-2002 standard. The peripheral provides programmable features designed to minimize supervision, bus use, or message processing by the rest of the processor system.

Some standard features of the EMAC are as follows:

- Support and RMII/RGMII protocols for external PHYs
- Full-duplex and half-duplex modes
- Media access management (in half-duplex operation)
- Flow control
- Station management, including the generation of MDC/MDIO frames for read/write access to PHY registers

Some advanced features of the EMAC are as follows:

- Automatic checksum computation of IP header and IP payload fields of receive frames
- Independent 32-bit descriptor driven receive and transmit DMA channels
- Frame status delivery to memory through DMA, including frame completion semaphores for efficient buffer queue management in software
- Transmit DMA support for separate descriptors for MAC header and payload fields to eliminate buffer copy operations
- Convenient frame alignment modes
- 47 MAC management statistics counters with selectable clear on read behavior and programmable interrupts on half maximum value
- Advanced power management
- Magic packet detection and wakeup frame filtering
- Support for 802.3Q tagged VLAN frames
- Programmable MDC clock rate and preamble suppression

Audio Video Bridging (AVB) Support (10/100/1000 EMAC Only)

The 10/100/1000 EMAC supports the following audio video (AVB) features:

- Separate channels or queues for AV data transfer in 100 Mbps and 1000 Mbps modes
- IEEE 802.1-Qav specified credit-based shaper (CBS) algorithm for the additional transmit channels
- Configuring up to two additional channels (Channel 1 and Channel 2) on the transmit and receive paths for AV traffic. Channel 0 is available by default and carries the legacy best effort Ethernet traffic on the transmit side.
- Separate DMA, transmit and receive FIFO for AVB latency class
- Programmable control to route received VLAN tagged non AV packets to channels or queues

Precision Time Protocol (PTP) IEEE 1588 Support

The IEEE 1588 standard is a precision clock synchronization protocol for networked measurement and control systems. The processors include hardware support for IEEE 1588 with an integrated precision time protocol synchronization engine (PTP_TSYNC).

This engine provides hardware assisted time stamping to improve the accuracy of clock synchronization between PTP nodes. The main features of the engine are as follows:

- Support for both IEEE 1588-2002 and IEEE 1588-2008 protocol standards
- Hardware assisted time stamping capable of up to 12.5 ns resolution
- Lock adjustment

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING ON THE CRYSTAL AND LAYOUT. ANALYZE CAREFULLY. FOR FREQUENCIES ABOVE 33 MHz, THE SUGGESTED CAPACITOR VALUE OF 18 pF MUST BE TREATED AS A MAXIMUM.

Figure 7. External Crystal Connection

A third overtone crystal can be used for frequencies above 25 MHz. The circuit is then modified to ensure crystal operation only at the third overtone by adding a tuned inductor circuit, shown in Figure 7. A design procedure for the third overtone operation is discussed in detail in "Using Third Overtone Crystals with the ADSP-218x DSP" (EE-168). The same recommendations can be used for the USB crystal oscillator.

Clock Distribution Unit (CDU)

The two CGUs each provide outputs which feed a clock distribution unit (CDU). The clock outputs CLKO0–CLKO9 are connected to various targets. For more information, refer to the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference.

Power-Up

SYS_XTALx oscillations (SYS_CLKINx) start when power is applied to the VDD_EXT pins. The rising edge of SYS_HWRST starts on-chip PLL locking (PLL lock counter). The deassertion must apply only if all voltage supplies and SYS_CLKINx oscillations are valid (refer to the Power-Up Reset Timing section).

Clock Out/External Clock

The SYS_CLKOUT output pin has programmable options to output divided-down versions of the on-chip clocks. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_CLKIN0 input. Refer to the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference to change the default mapping of clocks.

Booting

The processors have several mechanisms for automatically loading internal and external memory after a reset. The boot mode is defined by the SYS_BMODE[n] input pins. There are two categories of boot modes. In master boot mode, the processors actively load data from serial memories. In slave boot modes, the processors receive data from external host devices.

The boot modes are shown in Table 9. These modes are implemented by the SYS_BMODE[n] bits of the reset configuration register and are sampled during power-on resets and software initiated resets.

In the ADSP-SC58x processors, the ARM Cortex-A5 (Core 0) controls the boot process, including loading all internal and external memory. Likewise, in the ADSP-2158x processors, the SHARC+ (Core 1) controls the boot function. The option for secure boot is available on all models.

Table 9. Boot Modes

SYS_BMODE[n] Setting	Boot Mode
000	No boot
001	SPI2 master
010	SPI2 slave
011	Reserved
100	Reserved
101	Reserved
110	Link0 slave
111	UART0 slave

Thermal Monitoring Unit (TMU)

The thermal monitoring unit (TMU) provides on-chip temperature measurement which is important in applications that require substantial power consumption. The TMU is integrated into the processor die and digital infrastructure using an MMRbased system access to measure the die temperature variations in real-time.

TMU features include the following:

- · On-chip temperature sensing
- Programmable over temperature and under temperature limits
- Programmable conversion rate
- Averaging feature available

Power Supplies

The processors have separate power supply connections for:

- Internal (VDD_INT)
- External (VDD_EXT)
- USB (VDD_USB)
- HADC (VDD_HADC)
- RTC (VDD_RTC)

Signal Name	Description	Port	Pin Name
PPI0_D02	EPPIO Data 2	E	PE_10
PPI0_D03	EPPIO Data 3	E	PE_09
PPI0_D04	EPPIO Data 4	E	PE_08
PPI0_D05	EPPI0 Data 5	E	PE_07
PPI0_D06	EPPIO Data 6	E	PE_06
PPI0_D07	EPPIO Data 7	E	PE_05
PPI0_D08	EPPIO Data 8	E	PE_04
PPI0_D09	EPPI0 Data 9	E	PE_00
PPI0_D10	EPPI0 Data 10	D	PD_15
PPI0_D11	EPPI0 Data 11	D	PD_14
PPI0_D12	EPPI0 Data 12	В	PB_04
PPI0_D13	EPPI0 Data 13	В	PB_05
PPI0_D14	EPPI0 Data 14	В	PB_00
PPI0_D15	EPPI0 Data 15	В	PB_01
PPI0_D16	EPPI0 Data 16	В	PB_02
PPI0_D17	EPPI0 Data 17	В	PB_03
PPI0_D18	EPPI0 Data 18	D	PD_13
PPI0_D19	EPPI0 Data 19	D	PD_12
PPI0_D20	EPPI0 Data 20	E	PE_13
PPI0_D21	EPPI0 Data 21	E	PE_14
PPI0_D22	EPPI0 Data 22	E	PE_15
PPI0_D23	EPPI0 Data 23	D	PD_00
PPI0_FS1	EPPI0 Frame Sync 1 (HSYNC)	E	PE_02
PPI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	E	PE_01
PPI0_FS3	EPPI0 Frame Sync 3 (FIELD)	с	PC_15
PWM0_AH	PWM0 Channel A High Side	В	PB_07
PWM0_AL	PWM0 Channel A Low Side	В	PB_08
PWM0_BH	PWM0 Channel B High Side	В	PB_06
PWM0_BL	PWM0 Channel B Low Side	с	PC_00
PWM0_CH	PWM0 Channel C High Side	В	PB_13
PWM0_CL	PWM0 Channel C Low Side	В	PB_14
PWM0_DH	PWM0 Channel D High Side	В	PB_11
PWM0_DL	PWM0 Channel D Low Side	В	PB_12
PWM0_SYNC	PWM0 PWMTMR Grouped	E	PE_09
PWM0_TRIP0	PWM0 Shutdown Input 0	В	PB_15
PWM1_AH	PWM1 Channel A High Side	D	PD_03
PWM1_AL	PWM1 Channel A Low Side	D	PD_04
PWM1_BH	PWM1 Channel B High Side	D	PD_05
PWM1_BL	PWM1 Channel B Low Side	D	PD_06
PWM1_CH	PWM1 Channel C High Side	D	PD_07
PWM1_CL	PWM1 Channel C Low Side	D	PD_08
PWM1_DH	PWM1 Channel D High Side	D	PD_09
PWM1_DL	PWM1 Channel D Low Side	D	PD_10
PWM1_SYNC	PWM1 PWMTMR Grouped	D	PD_11
PWM1_TRIP0	PWM1 Shutdown Input 0	D	PD_02
PWM2_CH	PWM2 Channel C High Side	D	PD_15
PWM2_CL	PWM2 Channel C Low Side	E	PE_00
PWM2_DH	PWM2 Channel D High Side	E	PE_04

Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
PPI0_D00	EPPI0 Data 0	E	PE_12
PPI0_D01	EPPI0 Data 1	E	PE_11
PPI0_D02	EPPI0 Data 2	E	PE_10
PPI0_D03	EPPI0 Data 3	E	PE_09
PPI0_D04	EPPI0 Data 4	E	PE_08
PPI0_D05	EPPI0 Data 5	E	PE_07
PPI0_D06	EPPIO Data 6	E	PE_06
PPI0_D07	EPPI0 Data 7	E	PE_05
PPI0_D08	EPPI0 Data 8	E	PE_04
PPI0_D09	EPPI0 Data 9	E	PE_00
PPI0_D10	EPPI0 Data 10	D	PD_15
PPI0_D11	EPPI0 Data 11	D	PD_14
PPI0_D12	EPPI0 Data 12	В	PB_04
PPI0_D13	EPPI0 Data 13	В	PB_05
PPI0_D14	EPPI0 Data 14	В	PB_00
PPI0_D15	EPPI0 Data 15	В	PB_01
PPI0_D16	EPPI0 Data 16	В	PB_02
PPI0_D17	EPPI0 Data 17	В	PB_03
PPI0_D18	EPPI0 Data 18	D	PD_13
PPI0_D19	EPPI0 Data 19	D	PD_12
PPI0_D20	EPPI0 Data 20	E	PE_13
PPI0_D21	EPPI0 Data 21	E	PE_14
PPI0_D22	EPPI0 Data 22	E	PE_15
PPI0_D23	EPPI0 Data 23	D	PD_00
PPI0_FS1	EPPI0 Frame Sync 1 (HSYNC)	E	PE_02
PPI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	E	PE_01
PPI0_FS3	EPPI0 Frame Sync 3 (FIELD)	с	PC_15
PWM0_AH	PWM0 Channel A High Side	В	PB_07
PWM0_AL	PWM0 Channel A Low Side	В	PB_08
PWM0_BH	PWM0 Channel B High Side	В	PB_06
PWM0_BL	PWM0 Channel B Low Side	с	PC_00
PWM0_CH	PWM0 Channel C High Side	В	PB_13
PWM0_CL	PWM0 Channel C Low Side	В	PB_14
PWM0_DH	PWM0 Channel D High Side	В	PB_11
PWM0_DL	PWM0 Channel D Low Side	В	PB_12
PWM0_SYNC	PWM0 PWMTMR Grouped	E	PE_09
PWM0_TRIP0	PWM0 Shutdown Input 0	В	PB_15
PWM1_AH	PWM1 Channel A High Side	D	PD_03
PWM1_AL	PWM1 Channel A Low Side	D	PD_04
PWM1_BH	PWM1 Channel B High Side	D	PD_05
PWM1_BL	PWM1 Channel B Low Side	D	PD_06
PWM1_CH	PWM1 Channel C High Side	D	PD_07
PWM1_CL	PWM1 Channel C Low Side	D	PD_08
PWM1_DH	PWM1 Channel D High Side	D	PD_09
PWM1_DL	PWM1 Channel D Low Side	D	PD_10
PWM1_SYNC	PWM1 PWMTMR Grouped	D	PD_11
PWM1_TRIP0	PWM1 Shutdown Input 0	D	PD_02
PWM2_AH	PWM2 Channel A High Side	F	PF_07

Table 19. ADSP-SC58x/ADSP-2158x 529-Ball CSP_BGA Signal Descriptions (Continued)

GPIO MULTIPLEXING FOR THE 529-BALL CSP_BGA PACKAGE

Table 20 through Table 26 identify the pin functions that are multiplexed on the general-purpose I/O pins of the 529-ball CSP_BGA package.

Table 20. Signal Multiplexing for Port A

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function2	Function 3	Function Input Tap
PA_00	ETH0_TXD0			SMC0_A21	
PA_01	ETH0_TXD1			SMC0_A20	
PA_02	ETH0_MDC			SMC0_A24	
PA_03	ETH0_MDIO			SMC0_A23	
PA_04	ETH0_RXD0			SMC0_A19	
PA_05	ETH0_RXD1			SMC0_A18	
PA_06	ETH0_RXCLK_REFCLK			SMC0_A17	
PA_07	ETH0_CRS			SMC0_A16	
PA_08	ETH0_RXD2			SMC0_A12	
PA_09	ETH0_RXD3			SMC0_A11	
PA_10	ETH0_TXEN			SMC0_A22	
PA_11	ETH0_TXCLK			SMC0_A15	
PA_12	ETH0_TXD2			SMC0_A14	
PA_13	ETH0_TXD3			SMC0_A13	
PA_14	ETH0_PTPPPS3	SINC0_D0		SMC0_A10	
PA_15	ETH0_PTPPPS2	SINC0_D1		SMC0_A09	

Table 21. Signal Multiplexing for Port B

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PB_00	ETH0_PTPPPS1	SINC0_D2	PPI0_D14	SMC0_A08	TM0_ACLK3
PB_01	ETH0_PTPPPS0	SINC0_CLK0	PPI0_D15	SMC0_A07	TM0_ACLK4
PB_02	ETH0_PTPCLKIN0	UART1_TX	PPI0_D16	SMC0_A04	
PB_03	ETH0_PTPAUXIN0	UART1_RX	PPI0_D17	SMC0_A03	TM0_ACI1
PB_04	MLB0_CLK	SINC0_D3	PPI0_D12	SMC0_ARDY	ETH0_PTPAUXIN1
PB_05	MLB0_SIG		PPI0_D13	SMC0_A01	ETH0_PTPAUXIN2
PB_06	MLB0_DAT		PWM0_BH	SMC0_A02	ETH0_PTPAUXIN3
PB_07	LP1_D0	PWM0_AH	TM0_TMR3	SMC0_D15	
PB_08	LP1_D1	PWM0_AL	TM0_TMR4	SMC0_D14	
PB_09	LP1_D2		CAN1_TX	SMC0_D13	
PB_10	LP1_D3	TM0_TMR2	CAN1_RX	SMC0_D12	TM0_ACI4
PB_11	LP1_D4		PWM0_DH	SMC0_D11	CNT0_ZM
PB_12	LP1_D5		PWM0_DL	SMC0_D10	CNT0_UD
PB_13	LP1_D6		PWM0_CH	SMC0_D09	
PB_14	LP1_D7	TM0_TMR5	PWM0_CL	SMC0_D08	CNT0_DG
PB_15	LP1_ACK	PWM0_TRIP0	TM0_TMR1	SMC0_AWE	

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PE_03	PPI0_CLK	SPI0_SEL7	SPI2_SEL2	C1_FLG1	
PE_04	PPI0_D08	PWM2_DH	SPI2_SEL3	C2_FLG1	
PE_05	PPI0_D07	PWM2_SYNC	SPI2_SEL4	C1_FLG2	
PE_06	PPI0_D06		SPI2_SEL5	C2_FLG2	
PE_07	PPI0_D05		SPI1_SEL2	C1_FLG3	
PE_08	PPI0_D04	SPI1_SEL5	SPI1_RDY	C2_FLG3	
PE_09	PPI0_D03	PWM0_SYNC	TM0_TMR0	SMC0_D03	
PE_10	PPI0_D02	PWM2_DL	UART2_RTS	SMC0_D02	
PE_11	PPI0_D01	SPI1_SEL3	UART2_CTS	SMC0_D01	SPI1_SS
PE_12	PPI0_D00	SPI1_SEL4	SPI2_RDY	SMC0_D00	
PE_13	SPI1_CLK		PPI0_D20	SMC0_AMS1	
PE_14	SPI1_MISO		PPI0_D21	SMC0_ABE0	
PE_15	SPI1_MOSI		PPI0_D22	SMC0_ABE1	

Table 24. Signal Multiplexing for Port E (Continued)

Table 25. Signal Multiplexing for Port F

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PF_00	TM0_TMR6	SPI1_SEL6			
PF_01	TM0_TMR7	SPI1_SEL7			
PF_02	MSI0_D0	HADC0_EOC_DOUT			
PF_03	MSI0_D1	HADC0_MUX2			
PF_04	MSI0_D2	HADC0_MUX1			
PF_05	MSI0_D3	HADC0_MUX0			
PF_06	MSI0_D4	PWM2_AL			
PF_07	MSI0_D5	PWM2_AH			
PF_08	MSI0_D6	PWM2_BL			
PF_09	MSI0_D7	PWM2_BH			
PF_10	MSI0_CMD				
PF_11	MSI0_CLK				
PF_12	MSI0_CD				
PF_13	ETH1_CRS	TRACE0_D08	TRACE0_D00	MSI0_INT	
PF_14	ETH1_MDC	TRACE0_D09	TRACE0_D01		
PF_15	ETH1_MDIO	TRACE0_D10	TRACE0_D02		

Table 26. Signal Multiplexing for Port G

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PG_00	ETH1_REFCLK	TRACE0_CLK			
PG_01	ETH1_TXEN	TRACE0_D11	TRACE0_D03		
PG_02	ETH1_TXD0	TRACE0_D12	TRACE0_D04		
PG_03	ETH1_TXD1	TRACE0_D13	TRACE0_D05		
PG_04	ETH1_RXD0	TRACE0_D14	TRACE0_D06		
PG_05	ETH1_RXD1	TRACE0_D15	TRACE0_D07		

ADSP-SC58X/ADSP-2158X DESIGNER QUICK REFERENCE

Table 27 provides a quick reference summary of pin related information for circuit board design. The columns in this table provide the following information:

- The signal name column includes the signal name for every pin and the GPIO multiplexed pin function, where applicable.
- The type column identifies the I/O type or supply type of the pin. The abbreviations used in this column are a (analog), s (supply), g (ground) and Input, Output, and InOut.
- The driver type column identifies the driver type used by the corresponding pin. The driver types are defined in the Output Drive Currents section of this data sheet.
- The int term column specifies the termination present when the processor is not in the reset state.

- The reset term column specifies the termination present when the processor is in the reset state.
- The reset drive column specifies the active drive on the signal when the processor is in the reset state.
- The power domain column specifies the power supply domain in which the signal resides.
- The description and notes column identifies any special requirements or characteristics for a signal. These recommendations apply whether or not the hardware block associated with the signal is featured on the product. If no special requirements are listed, the signal can be left unconnected if it is not used. For multiplexed general-purpose I/O pins, this column identifies the functions available on the pin.

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DAI0_PIN01	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 1
							Notes: No notes
DAI0_PIN02	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 2
							Notes: No notes
DAI0_PIN03	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 3
							Notes: No notes
DAI0_PIN04	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 4
							Notes: No notes
DAI0_PIN05	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 5
							Notes: No notes
DAI0_PIN06	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 6
							Notes: No notes
DAI0_PIN07	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 7
							Notes: No notes
DAI0_PIN08	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 8
							Notes: No notes
DAI0_PIN09	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 9
							Notes: No notes
DAI0_PIN10	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 10
							Notes: No notes
DAI0_PIN11	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 11
							Notes: No notes
DAI0_PIN12	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 12
							Notes: No notes
DAI0_PIN13	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 13
							Notes: No notes
DAI0_PIN14	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 14
							Notes: No notes
DAI0_PIN15	InOut	А	PullDown	none	none	VDD_EXT	Desc: DAI0 Pin 15
							Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DMC0_DQ11	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data 11 Notes: No notes
DMC0_DQ12	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data 12 Notes: No notes
DMC0_DQ13	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data 13 Notes: No notes
DMC0_DQ14	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data 14 Notes: No notes
DMC0_DQ15	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data 15 Notes: No notes
DMC0_LDM	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Data Mask for Lower Byte Notes: No notes
DMC0_LDQS	InOut	с	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Lower Byte (complement) Notes: No notes
DMC0_LDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Lower Byte Notes: External weak pull-down required in LPDDR mode
DMC0_ODT	Output	В	none	none	none	VDD_DMC	Desc: DMC0 On-die termination Notes: No notes
DMC0_RAS	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Row Address Strobe Notes: No notes
DMC0_RESET	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Reset (DDR3 only) Notes: No notes
DMC0_RZQ	a	В	none	none	none	VDD_DMC	Desc: DMC0 External calibration resistor connection Notes: Applicable for DDR2 and DDR3 only. External pull-down of 34 ohms need to be added.
DMC0_UDM	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Data Mask for Upper Byte Notes: No notes
DMC0_UDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Upper Byte Notes: External weak pull-down required in LPDDR mode

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DMC0_UDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Upper Byte (complement) Notes: No notes
DMC0_VREF	a		none	none	none	VDD_DMC	Desc: DMC0 Voltage Reference Notes: No notes
DMC0_WE	Output	В	none	none	none	VDD_DMC	Desc: DMC0 Write Enable Notes: No notes
DMC1_A00	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 0 Notes: No notes
DMC1_A01	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 1 Notes: No notes
DMC1_A02	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 2 Notes: No notes
DMC1_A03	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 3 Notes: No notes
DMC1_A04	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 4 Notes: No notes
DMC1_A05	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 5 Notes: No notes
DMC1_A06	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 6 Notes: No notes
DMC1_A07	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 7 Notes: No notes
DMC1_A08	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 8 Notes: No notes
DMC1_A09	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 9 Notes: No notes
DMC1_A10	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 10 Notes: No notes
DMC1_A11	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 11 Notes: No notes
DMC1_A12	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 12 Notes: No notes
DMC1_A13	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 13 Notes: No notes
DMC1_A14	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 14 Notes: No notes
DMC1_A15	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Address 15 Notes: No notes
DMC1_BA0	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Bank Address Input 0
DMC1_BA1	Output	В	none	none	none	VDD_DMC	Notes: No notes Desc: DMC1 Bank Address Input 1 Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

Clock and Reset Timing

Table 44 and Figure 11 describe clock and reset operations related to the CGU and RCU. Per the CCLK, SYSCLK, SCLK, DCLK, and OCLK timing specifications in Table 29, combinations of SYS_CLKIN and clock multipliers must not select clock rates in excess of the maximum instruction rate of the processor.

Table 44. Clock and Reset Timing

Parameter Timing Requirements		Min	Max	Unit
f _{CKIN}	SYS_CLKINx Frequency (Crystal) ^{1, 2, 3}	20	50	MHz
	SYS_CLKINx Frequency (External CLKIN) ^{1, 2, 3}	20	50	MHz
t _{CKINL}	CLKIN Low Pulse ¹	10		ns
t _{CKINH}	CLKIN High Pulse ¹	10		ns
t _{WRST}	RESET Asserted Pulse Width Low ⁴	$11 \times t_{CKIN}$		ns

¹Applies to PLL bypass mode and PLL nonbypass mode.

² The t_{CKIN} period (see Figure 11) equals 1/f_{CKIN}.

 3 If the CGU_CTL.DF bit is set, the minimum f_{CKIN} specification is 40 MHz.

⁴Applies after power-up sequence is complete. See Table 43 and Figure 10 for power-up reset timing.

Figure 11. Clock and Reset Timing

DDR3 SDRAM Read Cycle Timing

Table 58 and Figure 24 show mobile DDR3 SDRAM read cycle timing, related to the DMC.

Table 58. DDR3 SDRAM Read Cycle Timing VDD_DMCx Nominal 1.5 V¹

		450	MHz ²	
Parameter		Min	Max	Unit
Timing Require	ments			
t _{DQSQ}	DMCx_DQS to DMCx_DQ Skew for DMCx_DQS and Associated DMCx_DQ Signals		0.2	ns
t _{QH}	DMCx_DQ, DMCx_DQS Output Hold Time From DMCx_DQS	0.38		t _{CK}
t _{RPRE}	Read Preamble	0.9		t _{CK}
t _{RPST}	Read Postamble	0.3		t _{CK}

¹Specifications apply to both DMC0 and DMC1.

²To ensure proper operation of the DDR3, all the DDR3 guidelines must be strictly followed. See "Interfacing DDR3/DDR2/LPDDR Memory to ADSP-SC5xx/215xx Processors" (EE-387).

NOTE: CONTROL = DMCx_CS0, DMCx_CKE, DMCx_RAS, DMCx_CAS, AND DMCx_WE. ADDRESS = DMCx_A00-13 AND DMCx_BA0-1.

Figure 24. DDR3 SDRAM Controller Input AC Timing

Enhanced Parallel Peripheral Interface (EPPI) Timing

Table 60 and Table 61 and Figure 26 through Figure 34 describe enhanced parallel peripheral interface (EPPI) timing operations. In Figure 26 through Figure 34, POLC[1:0] represents the setting of the EPPI_CTL register, which sets the sampling/driving edges of the EPPI clock.

When internally generated, the programmed PPI clock ($f_{PCLKPROG}$) frequency in MHz is set by the following equation where VALUE is a field in the EPPI_CLKDIV register that can be set from 0 to 65535:

$$f_{PCLKPROG} = \frac{f_{SCLK0}}{(VALUE + 1)}$$

 $t_{PCLKPROG} = \frac{1}{f_{PCLKPROG}}$

When externally generated, the EPPI_CLK is called f_{PCLKEXT}:

$$t_{PCLKEXT} = \frac{1}{f_{PCLKEXT}}$$

Table 60. Enhanced Parallel Peripheral Interface (EPPI)—Internal Clock

Parameter		Min	Max	Unit
Timing Requi	rements			
t _{SFSPI}	External FS Setup Before EPPI_CLK	6.5		ns
t _{HFSPI}	External FS Hold After EPPI_CLK	0		ns
t _{SDRPI}	Receive Data Setup Before EPPI_CLK	6.5		ns
t _{HDRPI}	Receive Data Hold After EPPI_CLK	0		ns
t _{SFS3GI}	External FS3 Input Setup Before EPPI_CLK Fall Edge in Clock Gating Mode	14		ns
t _{HFS3GI}	External FS3 Input Hold Before EPPI_CLK Fall Edge in Clock Gating Mode	0		ns
Switching Ch	aracteristics			
t _{PCLKW}	EPPI_CLK Width ¹	$0.5 \times t_{PCLKPROG} - 1.5$		ns
t _{PCLK}	EPPI_CLK Period ¹	t _{PCLKPROG} – 1.5		ns
t _{DFSPI}	Internal FS Delay After EPPI_CLK		3.5	ns
t _{HOFSPI}	Internal FS Hold After EPPI_CLK	-0.5		ns
t _{DDTPI}	Transmit Data Delay After EPPI_CLK		3.5	ns
t _{HDTPI}	Transmit Data Hold After EPPI_CLK	-0.5		ns

¹See Table 29 for details on the minimum period that can be programmed for t_{PCLKPROG}.

Figure 29. EPPI Internal Clock GP Transmit Mode with External Frame Sync Timing

Figure 30. Clock Gating Mode with Internal Clock and External Frame Sync Timing

Parameter	·	Min	Мах	Unit
Timing Req	uirements			
t _{PCLKW}	EPPI_CLK Width ¹	$0.5 imes t_{PCLKEXT} - 0.5$		ns
t _{PCLK}	EPPI_CLK Period ¹	t _{PCLKEXT} – 1		ns
t _{SFSPE}	External FS Setup Before EPPI_CLK	2		ns
t _{HFSPE}	External FS Hold After EPPI_CLK	3.7		ns
t _{SDRPE}	Receive Data Setup Before EPPI_CLK	2		ns
t _{HDRPE}	Receive Data Hold After EPPI_CLK	3.7		ns
Switching C	Characteristics			
t _{DFSPE}	Internal FS Delay After EPPI_CLK		15.3	ns
t _{HOFSPE}	Internal FS Hold After EPPI_CLK	2.4		ns
t _{DDTPE}	Transmit Data Delay After EPPI_CLK		15.3	ns
t _{HDTPE}	Transmit Data Hold After EPPI_CLK	2.4		ns

¹This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external EPPI_CLK. For the external EPPI_CLK ideal maximum frequency see the f_{PCLKEXT} specification in Table 29.

Serial Ports (SPORT)

To determine whether a device is compatible with the SPORT at clock speed n, the following specifications must be confirmed: frame sync delay and frame sync setup and hold; data delay and data setup and hold; and serial clock (SPTx_CLK) width. In Figure 37, either the rising edge or the falling edge of SPTx_CLK (external or internal) can be used as the active sampling edge.

When externally generated, the SPORT clock is called f_{SPTCLKEXT}:

$$t_{SPTCLKEXT} = \frac{1}{f_{SPTCLKEXT}}$$

When internally generated, the programmed SPORT clock (f_{SPTCLKPROG}) frequency in MHz is set by the following equation where CLKDIV is a field in the SPORT_DIV register that can be set from 0 to 65535:

$$f_{SPTCLKPROG} = \frac{f_{SCLKO}}{(CLKDIV + 1)}$$

$$t_{SPTCLKPROG} = \frac{1}{f_{SPTCLKPROG}}$$

Table 64. Serial Ports-External Clock¹

Parameter		Min	Max	Unit
Timing Requi	rements			
t _{SFSE}	Frame Sync Setup Before SPTx_CLK (Externally Generated Frame Sync in either Transmit or Receive Mode) ²	2		ns
t _{HFSE}	Frame Sync Hold After SPTx_CLK (Externally Generated Frame Sync in either Transmit or Receive Mode) ²	2.7		ns
t _{SDRE}	Receive Data Setup Before Receive SPTx_CLK ²	2		ns
t _{HDRE}	Receive Data Hold After SPTx_CLK ²	2.7		ns
t _{SPTCLKW}	SPTx_CLK Width ³	$0.5 \times t_{SPTCLKEXT} - 1.5$		ns
t _{SPTCLK}	SPTx_CLK Period ³	t _{SPTCLKEXT} – 1.5		ns
Switching Ch	aracteristics			
t _{DFSE}	Frame Sync Delay After SPTx_CLK (Internally Generated Frame Sync in either Transmit or Receive Mode) ⁴		14.5	ns
t _{HOFSE}	Frame Sync Hold After SPTx_CLK (Internally Generated Frame Sync in either Transmit or Receive Mode) ⁴	2		ns
t _{DDTE}	Transmit Data Delay After Transmit SPTx_CLK ⁴		14	ns
t _{HDTE}	Transmit Data Hold After Transmit SPTx_CLK ⁴	2		ns

¹Specifications apply to all eight SPORTs.

²Referenced to sample edge.

³This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPTx_CLK. For the external SPTx_CLK ideal maximum frequency see the f_{SPTCLKEXT} specification in Table 29.

⁴Referenced to drive edge.

Figure 43. SPI Port—Master Timing

Figure 49. SPIx_CLK Switching Diagram After SPIx_RDY Assertion

S/PDIF Transmitter Input Data Timing

The timing requirements for the S/PDIF transmitter are given in Table 96. Input signals are routed to the DAIx_PINx pins using the SRU. Therefore, the timing specifications provided below are valid at the DAIx_PINx pins.

Table 96.	S/PDIF	Transmitter	Input	Data	Timing
-----------	--------	-------------	-------	------	--------

Parameter		Min	Max	Unit
Timing Requ	irements			
t _{SISFS} ¹	Frame Sync Setup Before Serial Clock Rising Edge	3		ns
t _{SIHFS} ¹	Frame Sync Hold After Serial Clock Rising Edge	3		ns
t _{SISD} ¹	Data Setup Before Serial Clock Rising Edge	3		ns
t _{SIHD} 1	Data Hold After Serial Clock Rising Edge	3		ns
t _{SITXCLKW}	Transmit Clock Width	9		ns
t _{SITXCLK}	Transmit Clock Period	20		ns
t _{SISCLKW}	Clock Width	36		ns
t _{SISCLK}	Clock Period	80		ns

¹The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. The input of the PCG can be either CLKIN or any of the DAI pins.

Figure 67. S/PDIF Transmitter Input Timing

Oversampling Clock (TxCLK) Switching Characteristics

The S/PDIF transmitter requires an oversampling clock input. This high frequency clock (TxCLK) input is divided down to generate the internal biphase clock.

Table 97.	Oversamplin	g Clock (TxC	LK) Switching	Characteristics
-----------	-------------	--------------	---------------	-----------------

Parameter		Max	Unit
Switching Char	acteristics		
f _{TXCLK_384}	Frequency for TxCLK = $384 \times$ Frame Sync	Oversampling ratio × frame sync $\leq 1/t_{SITXCLK}$	MHz
f _{TXCLK_256}	Frequency for TxCLK = $256 \times$ Frame Sync	49.2	MHz
f _{FS}	Frame Rate (FS)	192.0	kHz

Figure 88. Driver Type B and Device Driver C (LPDDR)

Figure 89. Driver Type B and Device Driver C (LPDDR)

TEST CONDITIONS

All timing requirements appearing in this data sheet were measured under the conditions described in this section. Figure 90 shows the measurement point for ac measurements (except output enable/disable). The measurement point, V_{MEAS} , is V_{DD} EXT/2 for V_{DD} EXT (nominal) = 3.3 V.

Figure 90. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Enable Time Measurement

Output balls are considered enabled when they make a transition from a high impedance state to the point when they start driving. The output enable time, t_{ENA} , is the interval from the point when a reference signal reaches a high or low voltage level to the point when the output starts driving (see Figure 91).

Figure 91. Output Enable/Disable

The time t_{ENA_MEASURED} is the interval from when the reference signal switches to when the output voltage reaches V_{TRIP} (high) or V_{TRIP} (low). For V_{DD_EXT} (nominal) = 3.3 V, V_{TRIP} (high) is 1.9 V, and V_{TRIP} (low) is 1.4 V. Time, t_{TRIP}, is the interval from when the output starts driving to when the output reaches the V_{TRIP} (high) or V_{TRIP} (low) trip voltage.

Time t_{ENA} is calculated as shown in the equation:

$$t_{ENA} = t_{ENA_MEASURED} - t_{TRIP}$$

If multiple balls (such as the data bus) are enabled, the measurement value is that of the first ball to start driving.

Output Disable Time Measurement

Output balls are considered disabled when they stop driving, go into a high impedance state, and start to decay from the output high or low voltage. The output disable time, t_{DIS} , is the difference between t_{DIS} MEASURED and t_{DECAY} (see Figure 91).

$$t_{DIS} = t_{DIS_MEASURED} - t_{DECAS}$$

The time for the voltage on the bus to decay by ΔV is dependent on the capacitive load, C_{L_2} and the load current, I_L . This decay time can be approximated by the following equation:

$$t_{DECAY} = (C_L \Delta V) / I_L$$

The time t_{DECAY} is calculated with test loads C_L and I_L , with ΔV equal to 0.25 V for V_{DD} EXT (nominal) = 3.3 V.

The time $t_{DIS_MEASURED}$ is the interval from when the reference signal switches, to when the output voltage decays ΔV from the measured output high or output low voltage.