

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Floating Point
Interface	CAN, EBI/EMI, Ethernet, DAI, I ² C, MMC/SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	450MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	640kB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	529-LFBGA, CSPBGA
Supplier Device Package	529-CSPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-sc589bbcz-4b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Memory Direct Memory Access (MDMA)

The processor supports various MDMA operations, including,

- Standard bandwidth MDMA channels with CRC protection (32-bit bus width, runs on SCLK0)
- Enhanced bandwidth MDMA channel (32-bit bus width, runs on SYSCLK)
- Maximum bandwidth MDMA channels (64-bit bus width, run on SYCLK, one channel can be assigned to the FFT accelerator)

Extended Memory DMA

Extended memory DMA supports various operating modes such as delay line (which allows processor reads and writes to external delay line buffers and to the external memory) with limited core interaction and scatter/gather DMA (writes to and from noncontiguous memory blocks).

Cyclic Redundant C ode (CRC) Protection

The cyclic redundant codes (CRC) protection modules allow system software to calculate the signature of code, data, or both in memory, the content of memory-mapped registers, or periodic communication message objects. Dedicated hardware circuitry compares the signature with precalculated values and triggers appropriate fault events.

For example, every 100 ms the system software initiates the signature calculation of the entire memory contents and compares these contents with expected, precalculated values. If a mismatch occurs, a fault condition is generated through the processor core or the trigger routing unit.

The CRC is a hardware module based on a CRC32 engine that computes the CRC value of the 32-bit data-words presented to it. The source channel of the memory to memory DMA (in memory scan mode) provides data. The data can be optionally forwarded to the destination channel (memory transfer mode). The main features of the CRC peripheral are as follows:

- Memory scan mode
- Memory transfer mode
- Data verify mode
- Data fill mode
- User-programmable CRC32 polynomial
- Bit/byte mirroring option (endianness)
- Fault/error interrupt mechanisms
- 1D and 2D fill block to initialize an array with constants
- 32-bit CRC signature of a block of a memory or an MMR block

Event Handling

The processors provide event handling that supports both nesting and prioritization. Nesting allows multiple event service routines to be active simultaneously. Prioritization ensures that servicing a higher priority event takes precedence over servicing a lower priority event. The processors provide support for five different types of events:

- An emulation event causes the processors to enter emulation mode, allowing command and control of the processors through the JTAG interface.
- A reset event resets the processors.
- An exceptions event occur synchronously to program flow (in other words, the exception is taken before the instruction is allowed to complete). Conditions triggered on the one side by the SHARC+ core, such as data alignment (SIMD/long word) or compute violations (fixed or floating point), and illegal instructions cause core exceptions. Conditions triggered on the other side by the SEC, such as error correcting codes (ECC)/parity/watchdog/system clock, cause system exceptions.
- An interrupts event occurs asynchronously to program flow. They are caused by input signals, timers, and other peripherals, as well as by an explicit software instruction.

System Event Controller (SEC)

Both SHARC+ cores feature a system event controller. The SEC features include the following:

- Comprehensive system event source management including interrupt enable, fault enable, priority, core mapping, and source grouping
- A distributed programming model where each system event source control and all status fields are independent of each other
- Determinism where all system events have the same propagation delay and provide unique identification of a specific system event source
- A slave control port that provides access to all SEC registers for configuration, status, and interrupt/fault services
- Global locking that supports a register level protection model to prevent writes to locked registers
- Fault management including fault action configuration, time out, external indication, and system reset

Trigger Routing Unit (TRU)

The trigger routing unit (TRU) provides system-level sequence control without core intervention. The TRU maps trigger masters (generators of triggers) to trigger slaves (receivers of triggers). Slave endpoints can be configured to respond to triggers in various ways. Common applications enabled by the TRU include,

- Automatically triggering the start of a DMA sequence after a sequence from another DMA channel completes
- Software triggering
- Synchronization of concurrent activities

SECURITY FEATURES

The following sections describe the security features of the ADSP-SC58x/ADSP-2158x processors.

ARM TrustZone

The ADSP-SC58x processors provide TrustZone technology that is integrated into the ARM Cortex-A5 processors. The TrustZone technology enables a secure state that is extended throughout the system fabric.

Cryptographic Hardware Accelerators

The ADSP-SC58x/ADSP-2158x processors support standardsbased hardware accelerated encryption, decryption, authentication, and true random number generation.

Support for the hardware-accelerated cryptographic ciphers includes the following:

- AES in ECB, CBC, ICM, and CTR modes with 128-bit, 192-bit, and 256-bit keys
- DES in ECB and CBC mode with 56-bit key
- 3DES in ECB and CBC mode with 3x 56-bit key
- ARC4 in stateful, stateless mode, up to 128-bit key

Support for the hardware accelerated hash functions includes the following:

- SHA-1
- SHA-2 with 224-bit and 256-bit digests
- HMAC transforms for SHA-1 and SHA-2
- MD5

Public key accelerator (PKA) is available to offload computation intensive public key cryptography operations.

Both a hardware-based nondeterministic random number generator and pseudorandom number generator are available.

Secure boot is also available with 224-bit elliptic curve digital signatures ensuring integrity and authenticity of the boot stream. Optionally, ensuring confidentiality through AES-128 encryption is available.

Employ secure debug to allow only trusted users to access the system with debug tools.

CAUTION

This product includes security features that can be used to protect embedded nonvolatile memory contents and prevent execution of unauthorized code. When security is enabled on this device (either by the ordering party or the subsequent receiving parties), the ability of Analog Devices to conduct failure analysis on returned devices is limited. Contact Analog Devices for details on the failure analysis limitations for this device.

System Protection Unit (SPU)

The system protection unit (SPU) guards against accidental or unwanted access to an MMR space of the peripheral by providing a write protection mechanism. The user can choose and configure the protected peripherals as well as configure which of the four system MMR masters (two SHARC+ cores, memory DMA, and CoreSight debug) the peripherals are guarded against.

The SPU is also part of the security infrastructure. Along with providing write protection functionality, the SPU is employed to define which resources in the system are secure or nonsecure and to block access to secure resources from nonsecure masters.

System Memory Protection Unit (SMPU)

Synonymously, the system memory protection unit (SMPU) provides memory protection against read and/or write transactions to defined regions of memory. There are SMPU units in the ADSP-SC58x/ADSP-2158x processors for each memory space, except for SHARC L1 and SPI direct memory slave.

The SMPU is also part of the security infrastructure. It allows the user to protect against arbitrary read and/or write transactions and allows regions of memory to be defined as secure and prevent nonsecure masters from accessing those memory regions.

SAFETY FEATURES

The ADSP-SC58x/ADSP-2158x processors are designed to support functional safety applications. While the level of safety is mainly dominated by the system concept, the following primitives are provided by the processors to build a robust safety concept.

Multiparity Bit Protected SHARC+ Core L1 Memories

In the SHARC+ core L1 memory space, whether SRAM or cache, multiple parity bits protect each word to detect the single event upsets that occur in all RAMs. Parity does not protect the cache tags.

Error Correcting Codes (ECC) Protected L2 Memories

Error correcting codes (ECC) correct single event upsets. A single error correct-double error detect (SEC-DED) code protects the L2 memory. By default, ECC is enabled, but it can be disabled on a per bank basis. Single-bit errors correct transparently. If enabled, dual-bit errors can issue a system event or fault. ECC protection is fully transparent to the user, even if L2 memory is read or written by 8-bit or 16-bit entities.

Cyclic Redundant Code (CRC) Protected Memories

While parity bit and ECC protection mainly protect against random soft errors in L1 and L2 memory cells, the cyclic redundant code (CRC) engines can protect against systematic errors (pointer errors) and static content (instruction code) of L1, L2, and even L3 memories (DDR2, LPDDR). The processors feature two CRC engines that are embedded in the memory to memory DMA controllers.

Signal Name	Direction	Description
SMC_ABE[n]	Output	Byte Enable n. Indicates whether the lower or upper byte of a memory is being accessed. When an asynchronous write is made to the upper byte of a 16-bit memory, $\overline{SMC}_{ABE1} = 0$ and $\overline{SMC}_{ABE0} = 1$. When an asynchronous write is made to the lower byte of a 16-bit memory, $\overline{SMC}_{ABE1} = 1$ and $\overline{SMC}_{ABE0} = 0$.
SMC_AMS[n]	Output	Memory Select n. Typically connects to the chip select of a memory device.
SMC_AOE	Output	Output Enable. Asserts at the beginning of the setup period of a read access.
SMC_ARDY	Input	Asynchronous Ready. Flow control signal used by memory devices to indicate to the SMC when further transactions may proceed.
SMC_ARE	Output	Read Enable. Asserts at the beginning of a read access.
SMC_AWE	Output	Write Enable. Asserts for the duration of a write access period.
SMC_A[nn]	Output	Address n. Address bus.
SMC_D[nn]	InOut	Data n. Bidirectional data bus.
SPI_CLK	InOut	Clock. Input in slave mode, output in master mode.
SPI_D2	InOut	Data 2. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.
SPI_D3	InOut	Data 3. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.
SPI_MISO	InOut	Master In, Slave Out. Transfers serial data. Operates in the same direction as SPI_MOSI in dual and quad modes. Open-drain when ODM mode is enabled.
SPI_MOSI	InOut	Master Out, Slave In. Transfers serial data. Operates in the same direction as SPI_MISO in dual and quad modes. Open-drain when ODM mode is enabled.
SPI_RDY	InOut	Ready. Optional flow signal. Output in slave mode, input in master mode.
SPI_SEL[n]	Output	Slave Select Output n. Used in master mode to enable the desired slave.
SPI_SS	Input	Slave Select Input. Slave mode—acts as the slave select input. Master mode—optionally serves as an error detection input for the SPI when there are multiple masters.
SPT_ACLK	InOut	Channel A Clock. Data and frame sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_AD0	InOut	Channel A Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_AD1	InOut	Channel A Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_AFS	InOut	Channel A Frame Sync. The frame sync pulse initiates shifting of the serial data. This signal is either generated internally or externally.
SPT_ATDV	Output	Channel A Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.
SPT_BCLK	InOut	Channel B Clock. Data and frame sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_BD0	InOut	Channel B Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_BD1	InOut	Channel B Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_BFS	InOut	Channel B Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.
SPT_BTDV	Output	Channel B Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.
SYS_BMODE[n]	Input	Boot Mode Control n. Selects the boot mode of the processor.
SYS_CLKIN0	Input	Clock/Crystal Input.
SYS_CLKIN1	Input	Clock/Crystal Input.
SYS_CLKOUT	Output	Processor Clock Output. Outputs internal clocks. Clocks may be divided down. See the CGU chapter of the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference for more details.

Table 11. ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions (Continued)

		1	
Signal Name	Description	Port	Pin Name
DMC0_DQ10	DMC0 Data 10	Not Muxed	DMC0_DQ10
DMC0_DQ11	DMC0 Data 11	Not Muxed	DMC0_DQ11
DMC0_DQ12	DMC0 Data 12	Not Muxed	DMC0_DQ12
DMC0_DQ13	DMC0 Data 13	Not Muxed	DMC0_DQ13
DMC0_DQ14	DMC0 Data 14	Not Muxed	DMC0_DQ14
DMC0_DQ15	DMC0 Data 15	Not Muxed	DMC0_DQ15
DMC0_LDM	DMC0 Data Mask for Lower Byte	Not Muxed	DMC0_LDM
DMC0_LDQS	DMC0 Data Strobe for Lower Byte	Not Muxed	DMC0_LDQS
DMC0_LDQS	DMC0 Data Strobe for Lower Byte (complement)	Not Muxed	DMC0_LDQS
DMC0_ODT	DMC0 On-die termination	Not Muxed	DMC0_ODT
DMC0_RAS	DMC0 Row Address Strobe	Not Muxed	DMC0_RAS
DMC0_RESET	DMC0 Reset (DDR3 only)	Not Muxed	DMC0_RESET
DMC0_RZQ	DMC0 External calibration resistor connection	Not Muxed	DMC0_RZQ
DMC0_UDM	DMC0 Data Mask for Upper Byte	Not Muxed	DMC0_UDM
DMC0_UDQS	DMC0 Data Strobe for Upper Byte	Not Muxed	DMC0_UDQS
DMC0_UDQS	DMC0 Data Strobe for Upper Byte (complement)	Not Muxed	DMC0_UDQS
DMC0_VREF	DMC0 Voltage Reference	Not Muxed	DMC0_VREF
DMC0_WE	DMC0 Write Enable	Not Muxed	DMC0_WE
ETH0_CRS	ETH0 Carrier Sense/RMII Receive Data Valid	А	PA_07
ETH0 MDC	ETH0 Management Channel Clock	А	PA 02
ETH0 MDIO	ETH0 Management Channel Serial Data	А	PA 03
ETHO PTPAUXINO	ETH0 PTP Auxiliary Trigger Input 0	В	PB 03
ETHO PTPAUXIN1	ETHO PTP Auxiliary Trigger Input 1	В	PB 04
ETHO PTPAUXIN2	ETHO PTP Auxiliary Trigger Input 2	В	PB 05
ETHO PTPAUXIN3	ETHO PTP Auxiliary Trigger Input 3	В	PB 06
ETHO PTPCI KINO	FTH0 PTP Clock Input 0	B	PB 02
ETHO PTPPPS0	ETHO PTP Pulse Per Second Output 0	B	PB 01
FTH0_PTPPPS1	ETH0 PTP Pulse Per Second Output 1	B	PB 00
ETHO_PTPPPS2	ETHO PTP Pulse Per Second Output 2	A	PA 15
FTHO PTPPPS3	ETHO PTP Pulse Per Second Output 3	A	PA 14
	ETHO BXCLK (GigE) or BEECLK (10/100)	A	PA 06
	ETHO RXCTL (GigE) or CRS (10/100)	A	PA 07
ETHO BXDO	ETHO Receive Data 0	Δ	PA 04
ETHO BXD1	ETHO Receive Data 1	Δ	PA 05
	ETHO Receive Data 2	Δ	PA 08
	ETHO Receive Data 3	Δ	PA 09
	ETHO Transmit Clock	Δ	PΔ 11
	ETHO TYCTL (GigE) or TYEN (10/100)	^	DA 10
	ETHO Transmit Data 0	^	
	ETHO Transmit Data 0	^	PA_00
	ETHO Transmit Data 1	A A	FA_UI
	ETHO Transmit Data 2	A A	FA_12
	ETHO Transmit Enable	A 	PA_15
		A	
	InAUCO Analog Input at channel U		
	HADCO Analog Input at channel 1	Not Muxed	
	HADCO Analog Input at channel 2	Not Muxed	HADCO_VIN2
HADCO_VIN3	HADCU Analog Input at channel 3	Not Muxed	HADCO_VIN3
HADC0_VIN4	HADCU Analog Input at channel 4	Not Muxed	HADC0_VIN4

Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
PWM2_AL	PWM2 Channel A Low Side	F	PF_06
PWM2_BH	PWM2 Channel B High Side	F	PF_09
PWM2_BL	PWM2 Channel B Low Side	F	PF_08
PWM2_CH	PWM2 Channel C High Side	D	PD_15
PWM2_CL	PWM2 Channel C Low Side	E	PE_00
PWM2_DH	PWM2 Channel D High Side	E	PE_04
PWM2_DL	PWM2 Channel D Low Side	E	PE_10
PWM2_SYNC	PWM2 PWMTMR Grouped	E	PE_05
PWM2_TRIP0	PWM2 Shutdown Input 0	D	PD_14
GND	Ground	Not Muxed	GND
VDD_EXT	External Voltage Domain	Not Muxed	VDD_EXT
VDD_INT	Internal Voltage Domain	Not Muxed	VDD_INT
RTC0_CLKIN	RTC0 Crystal input / external oscillator connection	Not Muxed	RTC0_CLKIN
RTC0_XTAL	RTC0 Crystal output	Not Muxed	RTC0_XTAL
SINC0_CLK0	SINC0 Clock 0	В	PB_01
SINC0_D0	SINC0 Data 0	A	PA_14
SINC0_D1	SINC0 Data 1	A	PA_15
SINC0_D2	SINC0 Data 2	В	PB_00
SINC0_D3	SINC0 Data 3	В	PB_04
SMC0_A01	SMC0 Address 1	В	PB_05
SMC0_A02	SMC0 Address 2	В	PB_06
SMC0_A03	SMC0 Address 3	В	PB_03
SMC0_A04	SMC0 Address 4	В	PB_02
SMC0_A05	SMC0 Address 5	D	PD_13
SMC0_A06	SMC0 Address 6	D	PD_12
SMC0_A07	SMC0 Address 7	В	PB_01
SMC0_A08	SMC0 Address 8	В	PB_00
SMC0_A09	SMC0 Address 9	A	PA_15
SMC0_A10	SMC0 Address 10	A	PA_14
SMC0_A11	SMC0 Address 11	A	PA_09
SMC0_A12	SMC0 Address 12	А	PA_08
SMC0_A13	SMC0 Address 13	А	PA_13
SMC0_A14	SMC0 Address 14	А	PA_12
SMC0_A15	SMC0 Address 15	А	PA_11
SMC0_A16	SMC0 Address 16	Α	PA_07
SMC0_A17	SMC0 Address 17	Α	PA_06
SMC0_A18	SMC0 Address 18	A	PA_05
SMC0_A19	SMC0 Address 19	Α	PA_04
SMC0_A20	SMC0 Address 20	A	PA_01
SMC0_A21	SMC0 Address 21	Α	PA_00
SMC0_A22	SMC0 Address 22	A	PA_10
SMC0_A23	SMC0 Address 23	A	PA_03
SMC0_A24	SMC0 Address 24	A	PA_02
SMC0_A25	SMC0 Address 25	С	PC_12
SMC0_ABE0	SMC0 Byte Enable 0	E	PE_14
SMC0_ABE1	SMC0 Byte Enable 1	E	PE_15
SMC0_AMS0	SMC0 Memory Select 0	С	PC_15
SMC0_AMS1	SMC0 Memory Select 1	E	PE_13

Table 19. ADSP-SC58x/ADSP-2158x 529-Ball CSP_BGA Signal Descriptions (Continued)

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
DMC1_DQ09	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 9 Notes: No notes
DMC1_DQ10	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 10 Notes: No notes
DMC1_DQ11	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 11 Notes: No notes
DMC1_DQ12	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 12 Notes: No notes
DMC1_DQ13	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 13 Notes: No notes
DMC1_DQ14	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 14 Notes: No notes
DMC1_DQ15	InOut	В	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data 15 Notes: No notes
DMC1_LDM	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Data Mask for Lower Byte Notes: No notes
DMC1_LDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data Strobe for Lower Byte Notes: External weak pull-down required in LPDDR mode
DMC1_LDQS	InOut	С	Internal logic ensures that input signal does not float	none	none	VDD_DMC	Desc: DMC1 Data Strobe for Lower Byte (complement) Notes: No notes
DMC1_ODT	Output	В	none	none	none	VDD_DMC	Desc: DMC1 On-die termination Notes: No notes
DMC1_RAS	Output	В	none	none	none	VDD_DMC	Desc: DMC1 Row Address Strobe Notes: No notes
DMC1_RESET	InOut	В	none	none	none	VDD_DMC	Desc: DMC1 Reset (DDR3 only) Notes: No notes
DMC1_RZQ	a	В	none	none	none	VDD_DMC	Desc: DMC1 External calibration resistor connection Notes: Applicable for DDR2 and DDR3 only. External pull-down of 34 ohms need to be added.

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
PA_15	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTA Position 15 EMAC0 PTP Pulse-Per-Second Output 2 SINC0 Data 1 SMC0 Address 9 Notes: No notes
PB_00	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 0 EMAC0 PTP Pulse-Per-Second Output 1 EPPI0 Data 14 SINC0 Data 2 SMC0 Address 8 TIMER0 Alternate Clock 3
PB_01	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 1 EMAC0 PTP Pulse-Per-Second Output 0 EPPI0 Data 15 SINC0 Clock 0 SMC0 Address 7 TIMER0 Alternate Clock 4
PB_02	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 2 EMACO PTP Clock Input 0 EPPI0 Data 16 SMC0 Address 4 UART1 Transmit Notes: No notes
PB_03	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 3 EMAC0 PTP Auxiliary Trigger Input 0 EPPI0 Data 17 SMC0 Address 3 UART1 Receive TIMER0 Alternate Capture Input 1 Notes: No notes
PB_04	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 4 EPPI0 Data 12 MLB0 Single-Ended Clock SINC0 Data 3 SMC0 Asynchronous Ready EMAC0 PTP Auxiliary Trigger Input 1 Notes: No notes
PB_05	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 5 EPPI0 Data 13 MLB0 Single-Ended Signal SMC0 Address 1 EMAC0 PTP Auxiliary Trigger Input 2 Notes: No notes
PB_06	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 6 MLB0 Single-Ended Data PWM0 Channel B High Side SMC0 Address 2 EMAC0 PTP Auxiliary Trigger Input 3 Notes: No notes
PB_07	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 7 LP1 Data 0 PWM0 Channel A High Side SMC0 Data 15 TIMER0 Timer 3 Notes: No notes
PB_08	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTB Position 8 LP1 Data 1 PWM0 Channel A Low Side SMC0 Data 14 TIMER0 Timer 4 Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset		Description
Signal Name	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
PC_13	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTC Position 13 ACM0 ADC Control Signals SPI1 Slave Select Output 1 UART0 Transmit Notes: No notes
PC_14	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTC Position 14 ACM0 ADC Control Signals UART0 Receive TIMER0 Alternate Capture Input 0 Notes: No notes
PC_15	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTC Position 15 ACM0 ADC Control Signals EPPI0 Frame Sync 3 (FIELD) SMC0 Memory Select 0 UART0 Request to Send Notes: No notes
PD_00	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTD Position 0 ACM0 ADC Control Signals EPPI0 Data 23 SMC0 Data 7 UART0 Clear to Send Notes: No notes
PD_01	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTD Position 1 ACM0 ADC Control Signals SMC0 Output Enable SPI0 Slave Select Output 2 SPI0 Slave Select Input Notes: No notes
PD_02	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTD Position 2 LP0 Data 0 PWM1 Shutdown Input 0 TRACE0 Trace Data 0 Notes: No notes
PD_03	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTD Position 3 LP0 Data 1 PWM1 Channel A High Side TRACE0 Trace Data 1 Notes: No notes
PD_04	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTD Position 4 LP0 Data 2 PWM1 Channel A Low Side TRACE0 Trace Data 2
PD_05	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTD Position 5 LP0 Data 3 PWM1 Channel B High Side TRACE0 Trace Data 3
PD_06	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTD Position 6 LP0 Data 4 PWM1 Channel B Low Side TRACE0 Trace Data 4 Notes: No notes
PD_07	InOut	A	PullDown	none	none	VDD_EXT	Desc: PORTD Position 7 LP0 Data 5 PWM1 Channel C High Side TRACE0 Trace Data 5 Notes: No notes

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

Circuit Name a	T	Driver	Int	Reset	Reset	Dama Damain	Description
	Туре	Туре	Term	Term	Drive	Power Domain	and Notes
USB_XIAL	а		none	none	none		Desc: USB0/USB1 Crystal
							Notes: Services both USB0 and
VDD_DIVIC	S	NA	none	none	none		Desc: DIVIC VDD
							Notes: No notes
VDD_EXT	S	NA	none	none	none		Desc: External Voltage Domain
							Notes: No notes
VDD_HADC	S	NA	none	none	none		Desc: HADC VDD
							Notes: No notes
VDD_INT	S	NA	none	none	none		Desc: Internal Voltage Domain
							Notes: No notes
VDD_PCIE	s	NA	none	none	none		Desc: PCIE Supply Voltage
							Notes: Connect to GND if not used ¹
VDD_PCIE_RX	s	NA	none	none	none		Desc: PCIE RX Supply Voltage
						Notes: Connect to GND if not used ¹	
VDD_PCIE_TX	s	NA	none	none	none		Desc: PCIE TX Supply Voltage
						Notes: Connect to GND if not used ¹	
VDD_RTC	s	NA	none	none	none		Desc: RTC VDD
							Notes: No notes
VDD_USB	s	NA	none	none	none		Desc: USB VDD
							Notes: Connect to VDD_EXT when USB is not used

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

¹Guidance also applies to models that do not feature the associated hardware block. See Table 2 or Table 3 for further information.

ELECTRICAL CHARACTERISTICS

	450 MHz		IHz			
Parameter		Conditions	Min	Тур	Max	Unit
V _{OH} ¹	High Level Output Voltage	At $V_{DD_{EXT}}$ = minimum, I_{OH} = -1.0 mA ²	2.4			V
V _{OL} ¹	Low Level Output Voltage	At $V_{DD_{EXT}}$ = minimum, I_{OL} = 1.0 mA ²			0.4	V
V _{OH_DDR2} ³	High Level Output Voltage for DDR2 DS = 40 Ω	At V_{DD_DDR} = minimum, I_{OH} = -5.8 mA	1.38			V
V _{OL_DDR2} ³	Low Level Output Voltage for DDR2 DS = 40 Ω	At V_{DD_DDR} = minimum, I_{OL} = 5.8 mA			0.32	V
V _{OH_DDR2} ³	High Level Output Voltage for DDR2 DS = 60 Ω	At V_{DD_DDR} = minimum, I_{OH} = -3.4 mA	1.38			V
V _{OL_DDR2} ³	Low Level Output Voltage for DDR2 DS = 60 Ω	At V_{DD_DDR} = minimum, I_{OL} = 3.4 mA			0.32	V
V _{OH_DDR3} ⁴	High Level Output Voltage for DDR3 DS = 40 Ω	At V_{DD_DDR} = minimum, I_{OH} = -5.8 mA	1.105			V
V _{OL_DDR3} ⁴	Low Level Output Voltage for DDR3 DS = 40 Ω	At V_{DD_DDR} = minimum, I_{OL} = 5.8 mA			0.32	V
V _{OH_DDR3} ⁴	High Level Output Voltage for DDR3 DS = 60 Ω	At V_{DD_DDR} = minimum, I_{OH} = -3.4 mA	1.105			V
V _{OL_DDR3} ⁴	Low Level Output Voltage for DDR3 DS = 60 Ω	At V_{DD_DDR} = minimum, I_{OL} = 3.4 mA			0.32	V
$V_{OH_LPDDR}^5$	High Level Output Voltage for LPDDR	At V_{DD_DDR} = minimum, I_{OH} = -6.0 mA	1.38			V
V _{OL_LPDDR} ⁵	Low Level Output Voltage for LPDDR	At V_{DD_DDR} = minimum, I_{OL} = 6.0 mA			0.32	V
I _{IH} ^{6, 7}	High Level Input Current	At V_{DD_EXT} = maximum, $V_{IN} = V_{DD_EXT}$ maximum			10	μΑ
I _{IL} 6	Low Level Input Current	At $V_{DD_{EXT}} = maximum$, $V_{IN} = 0 V$			10	μΑ
I _{IL_PU} ⁷	Low Level Input Current Pull-up	At V_{DD_EXT} = maximum, V_{IN} = 0 V			200	μA
I _{IH_PD} ⁸	High Level Input Current Pull-down	At V_{DD_EXT} = maximum, V_{IN} = 0 V			200	μΑ
I _{OZH} 9	Three-State Leakage Current	At $V_{DD_{EXT}}/V_{DD_{DDR}} = maximum,$ $V_{IN} = V_{DD_{EXT}}/V_{DD_{DDR}} maximum$			10	μΑ
I _{OZL} ⁹	Three-State Leakage Current	at V_{DD_EXT}/V_{DD_DDR} = maximum, $V_{IN} = 0 V$			10	μΑ
C _{IN} ¹⁰	Input Capacitance	$T_{CASE} = 25^{\circ}C$			5	pF

Total Internal Power Dissipation

Total power dissipation has two components:

- 1. Static, including leakage current
- 2. Dynamic, due to transistor switching characteristics for each clock domain

Many operating conditions can also affect power dissipation, including temperature, voltage, operating frequency, and processor activity. The following equation describes the internal current consumption.

$I_{DD_INT_TOT} =$	$I_{DD_INT_STATIC} + I_{DD_INT_CCLK_SHARC1_DYN} +$
	I _{DD_INT_CCLK_SHARC2_DYN} + I _{DD_INT_CCLK_A5_DYN} +
	$I_{DD_INT_DCLK_DYN} + I_{DD_INT_SYSCLK_DYN} +$
	$I_{DD_INT_SCLK0_DYN} + I_{DD_INT_SCLK1_DYN} +$
	$I_{DD_INT_OCLK_DYN} + I_{DD_INT_ACCL_DYN} +$
	$I_{DD_INT_USB_DYN} + I_{DD_INT_MLB_DYN} +$
	$I_{DD_INT_GIGE_DYN} + I_{DD_INT_DMA_DR_DYN} +$
	I _{DD_INT_PCIE_DYN}

 $I_{DD_INT_STATIC}$ is the sole contributor to the static power dissipation component and is specified as a function of voltage $(V_{DD} \ _{INT})$ and junction temperature (T_I) in Table 31.

Table 31. Static Current—I_{DD_INT_STATIC} (mA)

	Voltage (V _{DD_INT})				
(°C) رT	1.05	1.10	1.15		
-40	7	8	10		
-20	12	14	17		
-10	16	19	23		
0	21	25	30		
10	28	33	39		
25	42	49	58		
40	63	73	84		
55	92	106	122		
70	133	152	175		
85	190	216	247		
100	269	305	346		
105	302	342	387		
115	376	425	480		
125	466	525	592		
133	552	621	700		

The other 14 addends in the $I_{DD_INT_TOT}$ equation comprise the dynamic power dissipation component and fall into four broad categories: application-dependent currents, clock currents, currents from high-speed peripheral operation, and data transmission currents.

Application Dependent Current

The application dependent currents include the dynamic current in the core clock domain of the two SHARC+ cores and the ARM Cortex-A5 core, as well as the dynamic current in the accelerator block.

Dynamic current consumed by the core is subject to an activity scaling factor (ASF) that represents application code running on the processor cores (see Table 32 and Table 33). The ASF is combined with the CCLK frequency and V_{DD_INT} dependent dynamic current data in Table 34 and Table 35, respectively, to calculate this portion of the total dynamic power dissipation component.

$$\begin{split} &I_{DD_INT_CCLK_SHARC1_DYN} = \text{Table } 34 \times ASF_{SHARC1} \\ &I_{DD_INT_CCLK_SHARC2_DYN} = \text{Table } 34 \times ASF_{SHARC2} \\ &I_{DD_INT_CCLK_A5_DYN} = \text{Table } 35 \times ASF_{A5} \end{split}$$

Table 32. Activity Scaling Factors for the SHARC+ Core1 and Core2 (ASF_{SHARC1} and ASF_{SHARC2})

I _{DD_INT} Power Vector	ASF	
I _{DD-IDLE}	0.31	
I _{DD-NOP}	0.53	
I _{DD-TYP_3070}	0.74	
I _{DD-TYP_5050}	0.87	
IDD-TYP_7030	1.00	
IDD-PEAK_100	1.14	

Table 33. Activity Scaling Factors for the ARM Cortex-A5 Core (ASF $_{A5}$)

I _{DD_INT} Power Vector	ASF
I _{DD-IDLE}	0.29
I _{DD-DHRYSTONE}	0.73
I _{DD-TYP_2575}	0.57
I _{DD-TYP_5050}	0.80
I _{DD-TYP_7525}	1.00
IDD-PEAK_100	1.21

Table 34. Dynamic Current for Each SHARC+ Core(mA, with ASF = 1.00)

	Voltage (V _{DD_INT})		
f _{CCLK} (MHz)	1.05	1.10	1.15
450	321.3	336.6	351.9
400	285.6	299.2	312.8
350	249.9	261.8	273.7
300	214.2	224.4	234.6
250	178.5	187.0	195.5
200	142.8	149.6	156.4
150	107.1	112.2	117.3
100	71.4	74.8	78.2

Table 35. Dynamic Current for the ARM Cortex-A5 Core (mA, with ASF = 1.00)

	Voltage (V _{DD_INT})		
f _{CCLK} (MHz)	1.05	1.10	1.15
450	70.88	74.25	77.63
400	63.00	66.00	69.00
350	55.13	57.75	60.38
300	47.25	49.50	51.75
250	39.38	41.25	43.13
200	31.50	33.00	34.50
150	23.63	24.75	25.88
100	15.75	16.50	17.25

The following equation is used to compute the power dissipation when the FFT accelerator is used:

 $I_{DD_INT_ACCL_DYN}$ (mA) = $ASF_{ACCL} \times f_{SYSCLK}$ (MHz) × $V_{DD\ INT}$ (V)

Table 36. Activity Scaling Factors for the FFT Accelerator $(\mathrm{ASF}_\mathrm{ACCL})$

I _{DD_INT} Power Vector	ASF _{ACCL}
Unused	0.0
I _{DD-TYP}	0.32

Clock Current

The dynamic clock currents provide the total power dissipated by all transistors switching in the clock paths. The power dissipated by each clock domain is dependent on voltage ($V_{DD_{_INT}}$), operating frequency, and a unique scaling factor.

$$\begin{split} I_{DD_INT_SYSCLK_DYN}\,(\text{mA}) = 0.78 \times f_{SYSCLK}\,(\text{MHz}) \times \\ V_{DD_INT}\,(\text{V}) \end{split}$$

$$\begin{split} I_{DD_INT_SCLK0_DYN} \,(\text{mA}) &= 0.44 \times f_{SCLK0} \,(\text{MHz}) \times V_{DD_INT} \,(\text{V}) \\ I_{DD_INT_SCLK1_DYN} \,(\text{mA}) &= 0.06 \times f_{SCLK1} \,(\text{MHz}) \times V_{DD_INT} \,(\text{V}) \\ I_{DD_INT_DCLK_DYN} \,(\text{mA}) &= 0.14 \times f_{DCLK} \,(\text{MHz}) \times V_{DD_INT} \,(\text{V}) \\ I_{DD_INT_OCLK_DYN} \,(\text{mA}) &= 0.02 \times f_{OCLK} \,(\text{MHz}) \times V_{DD_INT} \,(\text{V}) \end{split}$$

Current from High-Speed Peripheral Operation

The following modules contribute significantly to power dissipation, and a single term is added when they are used.

 $I_{DD_INT_USB_DYN}$ = 20 mA (if both USBs are enabled in HS mode)

*I*_{DD_INT_MLB_DYN} = 10 mA (if MLB 6-pin interface is enabled)

*I*_{DD_INT_GIGE_DYN} = 10 mA (if gigabit EMAC is enabled)

 $I_{DD_INT_PCIE_DYN} = 240 \text{ mA}$ (if PCIe is enabled in 5 Gbps mode)

Data Transmission Current

The data transmission current represents the power dissipated when moving data throughout the system via direct memory access (DMA). This current is proportional to the data rate. Refer to the power calculator available with "Estimating Power for ADSP-SC58x/2158x SHARC+ Processors" (EE-392) to estimate I_{DD_INT_DMA_DR_DYN} based on the bandwidth of the data transfer.

DDR2 SDRAM Read Cycle Timing

Table 52 and Figure 18 show DDR2 SDRAM read cycle timing, related to the DMC.

Table 52. DDR2 SDRAM Read Cycle Timing, V_{DD_DMCx} Nominal 1.8 V¹

		400) MHz ²	
Parameter		Min	Max	Unit
Timing Requirements				
t _{DQSQ}	DMCx_DQS to DMCx_DQ Skew for DMCx_DQS and Associated DMCx_DQxx Signals		0.2	ns
t _{QH}	DMCx_DQxx, DMCx_DQS Output Hold Time From DMCx_DQS	0.9		ns
t _{RPRE}	Read Preamble	0.9		t _{CK}
t _{RPST}	Read Postamble	0.4		t _{CK}

¹Specifications apply to both DMC0 and DMC1.

²In order to ensure proper operation of the DDR2, all the DDR2 guidelines must be strictly followed. See "Interfacing DDR3/DDR2/LPDDR Memory to ADSP-SC5xx/215xx Processors" (EE-387).

NOTE: CONTROL = DMCx_CS0, DMCx_CKE, DMCx_RAS, DMCx_CAS, AND DMCx_WE. ADDRESS = DMCx_A00-13 AND DMCx_BA0-1.

Figure 18. DDR2 SDRAM Controller Input AC Timing

DDR3 SDRAM Clock and Control Cycle Timing

Table 57 and Figure 23 show mobile DDR3 SDRAM clock and control cycle timing, related to the DMC.

Table 57. DDR3 SDRAM Clock and Control Cycle Timing VDD_DMCx Nominal 1.5 V^1

			450 MHz ²	
Parameter		Min	Max	Unit
Timing Requi	rements			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	2.22		ns
t _{CH(abs)} ³	Minimum Clock Pulse Width	0.43	0.57	t _{CK}
t _{CL(abs)} ³	Maximum Clock Pulse Width	0.43	0.57	t _{CK}
t _{IS}	Control/Address Setup Relative to DMCx_CK Rise	0.2		ns
t _{IH}	Control/Address Hold Relative to DMCx_CK Rise	0.275		ns

¹Specifications apply to both DMC0 and DMC1.

²To ensure proper operation of the DDR3, all the DDR3 guidelines must be strictly followed. See "Interfacing DDR3/DDR2/LPDDR Memory to ADSP-SC5xx/215xx Processors" (EE-387).

³As per JESD79-3F definition.

NOTE: CONTROL = DMCx_CS0, DMCx_CKE, DMCx_RAS, DMCx_CAS, AND DMCx_WE. ADDRESS = DMCx_A0-A15 AND DMCx_BA0-BA2.

Figure 23. DDR3 SDRAM Clock and Control Cycle Timing

DDR3 SDRAM Read Cycle Timing

Table 58 and Figure 24 show mobile DDR3 SDRAM read cycle timing, related to the DMC.

Table 58. DDR3 SDRAM Read Cycle Timing VDD_DMCx Nominal 1.5 V¹

		450	MHz ²	
Parameter		Min	Max	Unit
Timing Require	ments			
t _{DQSQ}	DMCx_DQS to DMCx_DQ Skew for DMCx_DQS and Associated DMCx_DQ Signals		0.2	ns
t _{QH}	DMCx_DQ, DMCx_DQS Output Hold Time From DMCx_DQS	0.38		t _{CK}
t _{RPRE}	Read Preamble	0.9		t _{CK}
t _{RPST}	Read Postamble	0.3		t _{CK}

¹Specifications apply to both DMC0 and DMC1.

²To ensure proper operation of the DDR3, all the DDR3 guidelines must be strictly followed. See "Interfacing DDR3/DDR2/LPDDR Memory to ADSP-SC5xx/215xx Processors" (EE-387).

NOTE: CONTROL = DMCx_CS0, DMCx_CKE, DMCx_RAS, DMCx_CAS, AND DMCx_WE. ADDRESS = DMCx_A00-13 AND DMCx_BA0-1.

Figure 24. DDR3 SDRAM Controller Input AC Timing

Figure 49. SPIx_CLK Switching Diagram After SPIx_RDY Assertion

ADC Controller Module (ACM) Timing

Table 86 and Figure 58 describe ACM operations.

When internally generated, the programmed ACM clock ($f_{ACLKPROG}$) frequency in MHz is set by the following equation where CKDIV is a field in the ACM_TC0 register and ranges from 1 to 255:

$$f_{ACLKPROG} = \frac{f_{SCLK1}}{CKDIV + 1}$$

 $t_{ACLKPROG} = \frac{1}{f_{ACLKPROG}}$

Setup cycles (SC) in Table 86 is also a field in the ACM0_TC0 register and ranges from 0 to 4095. Hold cycles (HC) is a field in the ACM0_TC1 register that ranges from 0 to 15.

Table 86. ACM Timing

Paramete	er	Min	Max	Unit
Timing Requirements				
t _{SDR}	SPORT DRxPRI/DRxSEC Setup Before ACMx_CLK	3.5		ns
t _{HDR}	SPORT DRxPRI/DRxSEC Hold After ACMx_CLK	1.5		ns
Switching	Characteristics			
t _{SCTLCS}	ACM Controls (ACMx_A[4:0]) Setup Before Assertion of $\overline{\text{CS}}$	$(SC + 1) \times t_{SCLK1} - 3$		ns
t _{HCTLCS}	ACM Control (ACMx_A[4:0]) Hold After Deassertion of $\overline{\text{CS}}$	$HC \times t_{ACLKPROG} - 1$		ns
t _{ACLKW}	ACM Clock Pulse Width ¹	$(0.5 \times t_{ACLKPROG}) - 1.5$		ns
t _{ACLK}	ACM Clock Period ¹	t _{ACLKPROG} – 1.5		ns
t _{HCSACLK}	CS Hold to ACMx_CLK Edge	-2.5		ns
t _{SCSACLK}	CS Setup to ACMx_CLK Edge	t _{ACLKPROG} – 3.5		ns

 $^1 See \ Table \ 29$ for details on the minimum period that can be programmed for $t_{ACLKPROG}.$

Figure 58. ACM Timing

Sinus Cardinalis (SINC) Filter Timing

The programmed SINC filter clock ($f_{SINCLKPROG}$) frequency in MHz is set by the following equation where MDIV is a field in the CLK control register that can be set from 4 to 63:

$$f_{SINCLKPROG} = \frac{f_{SCLK}}{MDIV}$$

$$t_{SINCLKPROG} = \frac{1}{f_{SINCLKPROG}}$$

Table 92. SINC Timing

Parameter		Min	Max	Unit
Timing Requir	ements			
t _{SSINC}	SINC0_Dx Setup Before SINC0_CLKx Rise	13.5		ns
t _{HSINC}	SINC0_Dx Hold After SINC0_CLKx Rise	0		ns
Switching Cha	aracteristics			
t _{SINCLK}	SINC0_CLKx Period ¹	t _{SINCLKPROG} – 2.	5	ns
t _{SINCLKW}	SINC0_CLKx Width ¹	$0.5 \times t_{SINCLKPRC}$	_{OG} – 2.5	ns

 $^1 \text{See Table 29}$ for details on the minimum period that may be programmed for $t_{\text{SINCLKPROG}}$

Figure 63. SINC Timing

Figure 65 and Table 94 show the default I^2S justified mode. The frame sync is low for the left channel and high for the right channel. Data is valid on the rising edge of serial clock. The MSB is left justified to the frame sync transition but with a delay.

Table 94. S/PDIF Transmitter I²S Mode

Parameter		Nominal	Unit
Timing Requirement			
t _{I2SD}	Frame Sync to MSB Delay in I ² S Mode	1	SCLK

Figure 65. I²S Justified Mode

Figure 66 and Table 95 show the left justified mode. The frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of serial clock. The MSB is left justified to the frame sync transition with no delay.

Table 95. S/PDIF Transmitter Left Justified Mode

Parameter		Nominal	Unit
Timing Requirement			
t _{LJD}	Frame Sync to MSB Delay in Left Justified Mode	0	SCLK

Figure 66. Left Justified Mode

Figure 96. Driver Type B and Driver Type C Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance (V_{DD_DMC} = 1.8 V) for DDR2

ENVIRONMENTAL CONDITIONS

To determine the junction temperature on the application PCB, use the following equation:

$$T_J = T_{CASE} + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C). T_{CASE} = case temperature (°C) measured at top center of package.

 Ψ_{IT} = from Table 104 and Table 105.

 P_D = power dissipation (see the Total Internal Power Dissipation section for the method to calculate P_D).

Values of θ_{JA} are provided for package comparison and PCB design considerations. θ_{JA} can be used for a first order approximation of T_J by the following equation:

$$T_J = T_A + (\theta_{JA} \times P_D)$$

where T_A = ambient temperature (°C).

Values of θ_{JC} are provided for package comparison and PCB design considerations when an external heat sink is required.

In Table 104 and Table 105, airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6. The junction to case measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 6-layer PCB with 101.6 mm \times 152.4 mm dimensions.

Table 104. Thermal Characteristics for 349 CSP_BGA

Parameter	Conditions	Тур	Unit
θ _{JA}	0 linear m/s air flow	13.3	°C/W
θ_{JA}	1 linear m/s air flow	12.1	°C/W
θ_{JA}	2 linear m/s air flow	11.6	°C/W
θ」		3.65	°C/W
Ψ _{JT}	0 linear m/s air flow	0.08	°C/W
Ψ _{JT}	1 linear m/s air flow	0.12	°C/W
Ψ _{JT}	2 linear m/s air flow	0.14	°C/W

Table 105.	Thermal	Characteristics	for 529	CSP_BGA
------------	---------	-----------------	---------	---------

Parameter	Conditions	Тур	Unit
θ_{JA}	0 linear m/s air flow	13.4	°C/W
θ_{JA}	1 linear m/s air flow	12.1	°C/W
θJA	2 linear m/s air flow	11.6	°C/W
θ _{JC}		3.63	°C/W
Ψ_{JT}	0 linear m/s air flow	0.08	°C/W
Ψ_{JT}	1 linear m/s air flow	0.11	°C/W
Ψ _{JT}	2 linear m/s air flow	0.13	°C/W