

Welcome to E-XFL.COM

#### Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

#### Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

#### Details

E·XFI

| Product Status          | Active                                                                                      |
|-------------------------|---------------------------------------------------------------------------------------------|
| Туре                    | Floating Point                                                                              |
| Interface               | CAN, EBI/EMI, Ethernet, DAI, I <sup>2</sup> C, MMC/SD/SDIO, SPI, SPORT, UART/USART, USB OTG |
| Clock Rate              | 500MHz                                                                                      |
| Non-Volatile Memory     | ROM (512kB)                                                                                 |
| On-Chip RAM             | 640kB                                                                                       |
| Voltage - I/O           | 3.30V                                                                                       |
| Voltage - Core          | 1.10V                                                                                       |
| Operating Temperature   | 0°C ~ 70°C (TA)                                                                             |
| Mounting Type           | Surface Mount                                                                               |
| Package / Case          | 529-LFBGA, CSPBGA                                                                           |
| Supplier Device Package | 529-CSPBGA (19x19)                                                                          |
| Purchase URL            | https://www.e-xfl.com/product-detail/analog-devices/adsp-sc589kbcz-5b                       |
|                         |                                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CRC checksums can be calculated or compared automatically during memory transfers, or one or multiple memory regions can be continuously scrubbed by a single DMA work unit as per DMA descriptor chain instructions. The CRC engine also protects data loaded during the boot process.

### Signal Watchdogs

The eight general-purpose timers feature modes to monitor offchip signals. The watchdog period mode monitors whether external signals toggle with a period within an expected range. The watchdog width mode monitors whether the pulse widths of external signals are within an expected range. Both modes help to detect undesired toggling or lack of toggling of system level signals.

### System Event Controller (SEC)

Besides system events, the system event controller (SEC) further supports fault management including fault action configuration as timeout, internal indication by system interrupt, or external indication through the SYS\_FAULT pin and system reset.

### **PROCESSOR PERIPHERALS**

The following sections describe the peripherals of the ADSP-SC58x/ADSP-2158x processors.

### Dynamic Memory Controller (DMC)

The 16-bit dynamic memory controller (DMC) interfaces to:

- LPDDR1 (JESD209A) maximum frequency 200 MHz, DDRCLK (64 Mb to 2 Gb)
- DDR2 (JESD79-2E) maximum frequency 400 MHz, DDRCLK (256 Mb to 4 Gb)
- DDR3 (JESD79-3E) maximum frequency 450 MHz, DDRCLK (512 Mb to 8 Gb)
- DDR3L (1.5 V compatible only) maximum frequency 450 MHz, DDRCLK (512 Mb to 8 Gb)

See Table 8 for the DMC memory map.

### Digital Audio Interface (DAI)

The processors support two mirrored digital audio interface (DAI) units. Each DAI can connect various peripherals to any of the DAI pins (DAI\_PIN20-DAI\_PIN01).

The application code makes these connections using the signal routing unit (SRU), shown in Figure 1.

The SRU is a matrix routing unit (or group of multiplexers) that enables the peripherals provided by the DAI to interconnect under software control. This functionality allows easy use of the DAI associated peripherals for a wider variety of applications by using a larger set of algorithms than is possible with nonconfigurable signal paths.

The DAI includes the peripherals described in the following sections (SPORTs, ASRC, S/PDIF, and PCG). DAI pin buffers 20 and 19 can change the polarity of the input signals. Most signals of the peripherals belonging to different DAIs cannot be interconnected, with few exceptions. The DAI\_PINx pin buffers may also be used as GPIO pins. DAI input signals allow the triggering of interrupts on the rising edge, the falling edge, or both edges.

See the Digital Audio Interface (DAI) chapter of the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference for complete information on the use of the DAIs and SRUs.

### Serial Ports (SPORTs)

The processors feature eight synchronous full serial ports. These ports provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices. These devices include Analog Devices AD19xx/ADAU19xx family of audio codecs, analog-to-digital converters (ADCs) and digital-to-analog converters (DACs). Two data lines, a clock, and frame sync make up the serial ports. The data lines can be programmed to either transmit or receive data and each data line has a dedicated DMA channel.

An individual full SPORT module consists of two independently configurable SPORT halves with identical functionality. Two bidirectional data lines—primary (0) and secondary (1)—are available per SPORT half and are configurable as either transmitters or receivers. Therefore, each SPORT half permits two unidirectional streams into or out of the same SPORT. This bidirectional functionality provides greater flexibility for serial communications. For full-duplex configuration, one half SPORT provides two transmit signals, while the other half SPORT provides the two receive signals. The frame sync and clock are shared.

Serial ports operate in the following six modes:

- Standard DSP serial mode
- Multichannel time division multiplexing (TDM) mode
- I<sup>2</sup>S mode
- Packed I<sup>2</sup>S mode
- Left justified mode
- Right justified mode

### Asynchronous Sample Rate Converter (ASRC)

The asynchronous sample rate converter (ASRC) contains eight ASRC blocks. It is the same core in the AD1896 192 kHz stereo asynchronous sample rate converter. The ASRC provides up to 140 dB signal-to-noise ratio (SNR). The ASRC block performs synchronous or asynchronous sample rate conversion across independent stereo channels, without using internal processor resources. The ASRC blocks can also be configured to operate together to convert multichannel audio data without phase mismatches. Finally, the ASRC can clean up audio data from jittery clock sources such as the S/PDIF receiver.

### S/PDIF-Compatible Digital Audio Receiver/Transmitter

The Sony/Philips Digital Interface Format (S/PDIF) is a standard audio data transfer format that allows the transfer of digital audio signals from one device to another without converting them to an analog signal. There are two S/PDIF transmit/receive

### SYSTEM ACCELERATION

The following sections describe the system acceleration blocks of the ADSP-SC58x/ADSP-2158x processors.

### FFT/IFFT Accelerator

A high performance FFT/IFFT accelerator is available to improve the overall floating-point computation power of the ADSP-SC58x/ADSP-2158x processors.

The following features are available to improve the overall performance of the FFT/IFFT accelerator:

- Support for the IEEE-754/854 single-precision floatingpoint data format.
- Automatic twiddle factor generation to reduce system bandwidth.
- Support for a vector complex multiply for windowing and frequency domain filtering.
- Ability to pipeline the data flow. This allows the accelerator to bring in a new data set while the current data set is processed and the previous data set is sent out to memory. This can provide a significant system level performance improvement.
- Ability to output the result as the magnitude squared of the complex samples.
- Dedicated, high speed DMA controller with 64-bit buses that can read and write data from any memory space.

The FFT/IFFT accelerator can run concurrently with the other accelerators on the processor.

### Finite Impulse Response (FIR) Accelerator

The finite impulse response (FIR) accelerator consists of a 1024 word coefficient memory, a 1024 word deep delay line for the data, and four MAC units. A controller manages the accelerator. The FIR accelerator runs at the peripheral clock frequency. The FIR accelerator can access all memory spaces and can run concurrently with the other accelerators on the processor.

### Infinite Impulse Response (IIR) Accelerator

The infinite impulse response (IIR) accelerator consists of a 1440 word coefficient memory for storage of biquad coefficients, a data memory for storing the intermediate data, and one MAC unit. A controller manages the accelerator. The IIR accelerator runs at the peripheral clock frequency. The IIR accelerator can access all memory spaces and run concurrently with the other accelerators on the processor.

### Harmonic Analysis Engine (HAE)

The harmonic analysis engine (HAE) block receives 8 kHz input samples from two source signals whose frequencies are between 45 Hz and 65 Hz. The HAE processes the input samples and produces output results. The output results consist of power quality measurements of the fundamental and up to 12 additional harmonics.

### Sinus Cardinalis (SINC) Filter

The sinus cardinalis (SINC) filter module processes four bit streams using a pair of configurable SINC filters for each bit stream. The purpose of the primary SINC filter of each pair is to produce the filtered and decimated output for the pair. The output can decimate any integer rate between 8 and 256 times lower than the input rate. Greater decimation allows greater removal of noise, and, therefore, greater effective number of bits (ENOB).

Optional additional filtering outside the SINC module can further increase ENOB. The primary SINC filter output is accessible through transfer to processor memory, or to another peripheral, via DMA.

Each of the four channels is also provided with a low latency secondary filter with programmable positive and negative overrange detection comparators. These limit detection events can interrupt the core, generate a trigger, or signal a system fault.

### Digital Transmission Content Protection (DTCP)

Contact Analog Devices for more information on DTCP.

### SYSTEM DESIGN

The following sections provide an introduction to system design features and power supply issues.

### **Clock Management**

The processors provide three operating modes, each with a different performance and power profile. Control of clocking to each of the processor peripherals reduces power consumption. The processors do not support any low power operation modes. Control of clocking to each of the processor peripherals can reduce the power consumption.

### Reset Control Unit (RCU)

Reset is the initial state of the whole processor, or the core, and is the result of a hardware or software triggered event. In this state, all control registers are set to default values and functional units are idle. Exiting a full system reset starts with the core ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in functional requirements and clocking constraints define how reset signals are generated. Programs must guarantee that none of the reset functions put the system into an undefined state or causes resources to stall. This is particularly important when the core resets (programs must ensure that there is no pending system activity involving the core when it is reset).

From a system perspective, reset is defined by both the reset target and the reset source.

- DMC (VDD\_DMC)
- PCIe (VDD\_PCIE, VDD\_PCIE\_TX and VDD\_PCIE\_RX)

All power supplies must meet the specifications provided in the Operating Conditions section. All external supply pins must be connected to the same power supply.

### **Power Management**

As shown in Table 10, the processors support four different power domains, which maximizes flexibility while maintaining compliance with industry standards and conventions. There are no sequencing requirements for the various power domains, but all domains must be powered according to the appropriate specifications (see the Specifications section for processor operating conditions). If the feature or the peripheral is not used, refer to Table 27.)

#### Table 10. Power Domains

| Power Domain                                      | V <sub>DD</sub> Range   |
|---------------------------------------------------|-------------------------|
| All internal logic                                | V <sub>DD_INT</sub>     |
| DDR3/DDR2/LPDDR                                   | V <sub>DD_DMC</sub>     |
| USB                                               | V <sub>DD_USB</sub>     |
| HADC                                              | V <sub>DD_HADC</sub>    |
| RTC                                               | V <sub>DD_RTC</sub>     |
| PCle_TX                                           | V <sub>DD_PCIE_TX</sub> |
| PCIe_RX                                           | V <sub>DD_PCIE_RX</sub> |
| PCle                                              | V <sub>DD_PCIE</sub>    |
| All other I/O (includes SYS, JTAG, and port pins) | V <sub>DD_EXT</sub>     |

The power dissipated by the processors is largely a function of the clock frequency and the square of the operating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic power dissipation.

### Target Board JTAG Emulator Connector

The Analog Devices DSP tools product line of JTAG emulators uses the IEEE 1149.1 JTAG test access port of the processors to monitor and control the target board processor during emulation. The Analog Devices DSP tools product line of JTAG emulators provides emulation at full processor speed, allowing inspection and modification of memory, registers, and processor stacks. The processor JTAG interface ensures the emulator does not affect target system loading or timing.

For information on JTAG emulator operation, see the appropriate emulator hardware user's guide at SHARC Processors Software and Tools.

## SYSTEM DEBUG

The processors include various features that allow easy system debug. These are described in the following sections.

### System Watchpoint Unit (SWU)

The system watchpoint unit (SWU) is a single module that connects to a single system bus and provides transaction monitoring. One SWU is attached to the bus going to each system slave. The SWU provides ports for all system bus address channel signals. Each SWU contains four match groups of registers with associated hardware. These four SWU match groups operate independently but share common event (for example, interrupt and trigger) outputs.

### Debug Access Port (DAP)

Debug access port (DAP) provides IEEE 1149.1 JTAG interface support through the JTAG debug. The DAP provides an optional instrumentation trace for both the core and system. It provides a trace stream that conforms to *MIPI System Trace Protocol version 2 (STPv2)*.

### **DEVELOPMENT TOOLS**

Analog Devices supports its processors with a complete line of software and hardware development tools, including an integrated development environment (CrossCore<sup>®</sup> Embedded Studio), evaluation products, emulators, and a variety of software add-ins.

### Integrated Development Environments (IDEs)

For C/C++ software writing and editing, code generation, and debug support, Analog Devices offers the CrossCore Embedded Studio integrated development environment (IDE).

CrossCore Embedded Studio is based on the Eclipse framework. Supporting most Analog Devices processor families, it is the IDE of choice for processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information, visit www.analog.com/cces.

### EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides a wide range of EZ-KIT Lite<sup>®</sup> evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Various EZ-Extenders<sup>®</sup> are also available, which are daughter cards that deliver additional specialized functionality, including audio and video processing. For more information visit www.analog.com.

### **EZ-KIT Lite Evaluation Kits**

For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE(s), a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit.

| Signal Name  | Direction | Description                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMC_ABE[n]   | Output    | <b>Byte Enable n.</b> Indicates whether the lower or upper byte of a memory is being accessed. When an asynchronous write is made to the upper byte of a 16-bit memory, $\overline{SMC}_{ABE1} = 0$ and $\overline{SMC}_{ABE0} = 1$ . When an asynchronous write is made to the lower byte of a 16-bit memory, $\overline{SMC}_{ABE1} = 1$ and $\overline{SMC}_{ABE0} = 0$ . |
| SMC_AMS[n]   | Output    | Memory Select n. Typically connects to the chip select of a memory device.                                                                                                                                                                                                                                                                                                   |
| SMC_AOE      | Output    | <b>Output Enable.</b> Asserts at the beginning of the setup period of a read access.                                                                                                                                                                                                                                                                                         |
| SMC_ARDY     | Input     | <b>Asynchronous Ready.</b> Flow control signal used by memory devices to indicate to the SMC when further transactions may proceed.                                                                                                                                                                                                                                          |
| SMC_ARE      | Output    | Read Enable. Asserts at the beginning of a read access.                                                                                                                                                                                                                                                                                                                      |
| SMC_AWE      | Output    | Write Enable. Asserts for the duration of a write access period.                                                                                                                                                                                                                                                                                                             |
| SMC_A[nn]    | Output    | Address n. Address bus.                                                                                                                                                                                                                                                                                                                                                      |
| SMC_D[nn]    | InOut     | Data n. Bidirectional data bus.                                                                                                                                                                                                                                                                                                                                              |
| SPI_CLK      | InOut     | Clock. Input in slave mode, output in master mode.                                                                                                                                                                                                                                                                                                                           |
| SPI_D2       | InOut     | Data 2. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.                                                                                                                                                                                                                                                                                             |
| SPI_D3       | InOut     | Data 3. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.                                                                                                                                                                                                                                                                                             |
| SPI_MISO     | InOut     | <b>Master In, Slave Out.</b> Transfers serial data. Operates in the same direction as SPI_MOSI in dual and quad modes. Open-drain when ODM mode is enabled.                                                                                                                                                                                                                  |
| SPI_MOSI     | InOut     | <b>Master Out, Slave In.</b> Transfers serial data. Operates in the same direction as SPI_MISO in dual and quad modes. Open-drain when ODM mode is enabled.                                                                                                                                                                                                                  |
| SPI_RDY      | InOut     | <b>Ready.</b> Optional flow signal. Output in slave mode, input in master mode.                                                                                                                                                                                                                                                                                              |
| SPI_SEL[n]   | Output    | Slave Select Output n. Used in master mode to enable the desired slave.                                                                                                                                                                                                                                                                                                      |
| SPI_SS       | Input     | Slave Select Input.<br>Slave mode—acts as the slave select input.<br>Master mode—optionally serves as an error detection input for the SPI when there are multiple<br>masters.                                                                                                                                                                                               |
| SPT_ACLK     | InOut     | <b>Channel A Clock.</b> Data and frame sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.                                                                                                                                                                                                                     |
| SPT_AD0      | InOut     | <b>Channel A Data 0.</b> Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.                                                                                                                                                                                                           |
| SPT_AD1      | InOut     | <b>Channel A Data 1.</b> Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.                                                                                                                                                                                                         |
| SPT_AFS      | InOut     | <b>Channel A Frame Sync.</b> The frame sync pulse initiates shifting of the serial data. This signal is either generated internally or externally.                                                                                                                                                                                                                           |
| SPT_ATDV     | Output    | <b>Channel A Transmit Data Valid.</b> This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.                                                                                                                                                                                                   |
| SPT_BCLK     | InOut     | <b>Channel B Clock.</b> Data and frame sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.                                                                                                                                                                                                                     |
| SPT_BD0      | InOut     | <b>Channel B Data 0.</b> Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.                                                                                                                                                                                                           |
| SPT_BD1      | InOut     | <b>Channel B Data 1.</b> Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.                                                                                                                                                                                                         |
| SPT_BFS      | InOut     | <b>Channel B Frame Sync.</b> The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.                                                                                                                                                                                                                               |
| SPT_BTDV     | Output    | <b>Channel B Transmit Data Valid.</b> This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.                                                                                                                                                                                                   |
| SYS_BMODE[n] | Input     | Boot Mode Control n. Selects the boot mode of the processor.                                                                                                                                                                                                                                                                                                                 |
| SYS_CLKIN0   | Input     | Clock/Crystal Input.                                                                                                                                                                                                                                                                                                                                                         |
| SYS_CLKIN1   | Input     | Clock/Crystal Input.                                                                                                                                                                                                                                                                                                                                                         |
| SYS_CLKOUT   | Output    | <b>Processor Clock Output.</b> Outputs internal clocks. Clocks may be divided down. See the CGU chapter of the ADSP-SC58x/ADSP-2158x SHARC+ Processor Hardware Reference for more details.                                                                                                                                                                                   |

### Table 11. ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions (Continued)

| Signal Name | Description                | Port | Pin Name |
|-------------|----------------------------|------|----------|
| PPI0_D02    | EPPIO Data 2               | E    | PE_10    |
| PPI0_D03    | EPPIO Data 3               | E    | PE_09    |
| PPI0_D04    | EPPIO Data 4               | E    | PE_08    |
| PPI0_D05    | EPPI0 Data 5               | E    | PE_07    |
| PPI0_D06    | EPPIO Data 6               | E    | PE_06    |
| PPI0_D07    | EPPIO Data 7               | E    | PE_05    |
| PPI0_D08    | EPPIO Data 8               | E    | PE_04    |
| PPI0_D09    | EPPI0 Data 9               | E    | PE_00    |
| PPI0_D10    | EPPI0 Data 10              | D    | PD_15    |
| PPI0_D11    | EPPI0 Data 11              | D    | PD_14    |
| PPI0_D12    | EPPI0 Data 12              | В    | PB_04    |
| PPI0_D13    | EPPI0 Data 13              | В    | PB_05    |
| PPI0_D14    | EPPI0 Data 14              | В    | PB_00    |
| PPI0_D15    | EPPI0 Data 15              | В    | PB_01    |
| PPI0_D16    | EPPI0 Data 16              | В    | PB_02    |
| PPI0_D17    | EPPI0 Data 17              | В    | PB_03    |
| PPI0_D18    | EPPI0 Data 18              | D    | PD_13    |
| PPI0_D19    | EPPI0 Data 19              | D    | PD_12    |
| PPI0_D20    | EPPI0 Data 20              | E    | PE_13    |
| PPI0_D21    | EPPI0 Data 21              | E    | PE_14    |
| PPI0_D22    | EPPI0 Data 22              | E    | PE_15    |
| PPI0_D23    | EPPI0 Data 23              | D    | PD_00    |
| PPI0_FS1    | EPPI0 Frame Sync 1 (HSYNC) | E    | PE_02    |
| PPI0_FS2    | EPPI0 Frame Sync 2 (VSYNC) | E    | PE_01    |
| PPI0_FS3    | EPPI0 Frame Sync 3 (FIELD) | с    | PC_15    |
| PWM0_AH     | PWM0 Channel A High Side   | В    | PB_07    |
| PWM0_AL     | PWM0 Channel A Low Side    | В    | PB_08    |
| PWM0_BH     | PWM0 Channel B High Side   | В    | PB_06    |
| PWM0_BL     | PWM0 Channel B Low Side    | с    | PC_00    |
| PWM0_CH     | PWM0 Channel C High Side   | В    | PB_13    |
| PWM0_CL     | PWM0 Channel C Low Side    | В    | PB_14    |
| PWM0_DH     | PWM0 Channel D High Side   | В    | PB_11    |
| PWM0_DL     | PWM0 Channel D Low Side    | В    | PB_12    |
| PWM0_SYNC   | PWM0 PWMTMR Grouped        | E    | PE_09    |
| PWM0_TRIP0  | PWM0 Shutdown Input 0      | В    | PB_15    |
| PWM1_AH     | PWM1 Channel A High Side   | D    | PD_03    |
| PWM1_AL     | PWM1 Channel A Low Side    | D    | PD_04    |
| PWM1_BH     | PWM1 Channel B High Side   | D    | PD_05    |
| PWM1_BL     | PWM1 Channel B Low Side    | D    | PD_06    |
| PWM1_CH     | PWM1 Channel C High Side   | D    | PD_07    |
| PWM1_CL     | PWM1 Channel C Low Side    | D    | PD_08    |
| PWM1_DH     | PWM1 Channel D High Side   | D    | PD_09    |
| PWM1_DL     | PWM1 Channel D Low Side    | D    | PD_10    |
| PWM1_SYNC   | PWM1 PWMTMR Grouped        | D    | PD_11    |
| PWM1_TRIP0  | PWM1 Shutdown Input 0      | D    | PD_02    |
| PWM2_CH     | PWM2 Channel C High Side   | D    | PD_15    |
| PWM2_CL     | PWM2 Channel C Low Side    | E    | PE_00    |
| PWM2_DH     | PWM2 Channel D High Side   | E    | PE_04    |

### Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP\_BGA Signal Descriptions (Continued)

| Signal Name | Description                      | Port      | Pin Name   |
|-------------|----------------------------------|-----------|------------|
| SYS_BMODE0  | Boot Mode Control n              | Not Muxed | SYS_BMODE0 |
| SYS_BMODE1  | Boot Mode Control n              | Not Muxed | SYS_BMODE1 |
| SYS_BMODE2  | Boot Mode Control n              | Not Muxed | SYS_BMODE2 |
| SYS_CLKIN0  | Clock/Crystal Input              | Not Muxed | SYS_CLKIN0 |
| SYS_CLKIN1  | Clock/Crystal Input              | Not Muxed | SYS_CLKIN1 |
| SYS_CLKOUT  | Processor Clock Output           | Not Muxed | SYS_CLKOUT |
| SYS_FAULT   | Active High Fault Output         | Not Muxed | SYS_FAULT  |
| SYS_FAULT   | Active Low Fault Output          | Not Muxed | SYS_FAULT  |
| SYS_HWRST   | Processor Hardware Reset Control | Not Muxed | SYS_HWRST  |
| SYS_RESOUT  | Reset Output                     | Not Muxed | SYS_RESOUT |
| SYS_XTAL0   | Crystal Output                   | Not Muxed | SYS_XTAL0  |
| SYS_XTAL1   | Crystal Output                   | Not Muxed | SYS_XTAL1  |
| TM0_ACI0    | TIMER0 Alternate Capture Input 0 | с         | PC_14      |
| TM0_ACI1    | TIMER0 Alternate Capture Input 1 | В         | PB_03      |
| TM0_ACI2    | TIMER0 Alternate Capture Input 2 | D         | PD_13      |
| TM0_ACI3    | TIMER0 Alternate Capture Input 3 | с         | PC_07      |
| TM0_ACI4    | TIMER0 Alternate Capture Input 4 | В         | PB_10      |
| TM0_ACLK1   | TIMER0 Alternate Clock 1         | D         | PD_08      |
| TM0_ACLK2   | TIMER0 Alternate Clock 2         | D         | PD_09      |
| TM0_ACLK3   | TIMER0 Alternate Clock 3         | В         | PB_00      |
| TM0_ACLK4   | TIMER0 Alternate Clock 4         | В         | PB_01      |
| TM0_CLK     | TIMER0 Clock                     | с         | PC_11      |
| TM0_TMR0    | TIMER0 Timer 0                   | E         | PE_09      |
| TM0_TMR1    | TIMER0 Timer 1                   | В         | PB_15      |
| TM0_TMR2    | TIMER0 Timer 2                   | В         | PB_10      |
| TM0_TMR3    | TIMER0 Timer 3                   | В         | PB_07      |
| TM0_TMR4    | TIMER0 Timer 4                   | В         | PB_08      |
| TM0_TMR5    | TIMER0 Timer 5                   | В         | PB_14      |
| TRACE0_CLK  | TRACE0 Trace Clock               | D         | PD_10      |
| TRACE0_D00  | TRACE0 Trace Data 0              | D         | PD_02      |
| TRACE0_D01  | TRACE0 Trace Data 1              | D         | PD_03      |
| TRACE0_D02  | TRACE0 Trace Data 2              | D         | PD_04      |
| TRACE0_D03  | TRACE0 Trace Data 3              | D         | PD_05      |
| TRACE0_D04  | TRACE0 Trace Data 4              | D         | PD_06      |
| TRACE0_D05  | TRACE0 Trace Data 5              | D         | PD_07      |
| TRACE0_D06  | TRACE0 Trace Data 6              | D         | PD_08      |
| TRACE0_D07  | TRACE0 Trace Data 7              | D         | PD_09      |
| TWI0_SCL    | TWI0 Serial Clock                | Not Muxed | TWI0_SCL   |
| TWI0_SDA    | TWI0 Serial Data                 | Not Muxed | TWI0_SDA   |
| TWI1_SCL    | TWI1 Serial Clock                | Not Muxed | TWI1_SCL   |
| TWI1_SDA    | TWI1 Serial Data                 | Not Muxed | TWI1_SDA   |
| TWI2_SCL    | TWI2 Serial Clock                | Not Muxed | TWI2_SCL   |
| TWI2_SDA    | TWI2 Serial Data                 | Not Muxed | TWI2_SDA   |
| UARTO_CTS   | UART0 Clear to Send              | D         | PD_00      |
| UARTO_RTS   | UART0 Request to Send            | С         | PC_15      |
| UARTO_RX    | UARTO Receive                    | С         | PC_14      |
| UARTO_TX    | UARTO Transmit                   | С         | PC_13      |
| UART1_CTS   | UART1 Clear to Send              | E         | PE_01      |

## Table 12. ADSP-SC58x/ADSP-2158x 349-Ball CSP\_BGA Signal Descriptions (Continued)

|             | Multiplexed | Multiplexed | Multiplexed | Multiplexed | Multiplexed        |
|-------------|-------------|-------------|-------------|-------------|--------------------|
| Signal Name | Function 0  | Function 1  | Function 2  | Function 3  | Function Input Tap |
| PE_00       | PPI0_D09    | PWM2_CL     |             | SMC0_D04    |                    |
| PE_01       | PPI0_FS2    | SPI0_SEL5   | UART1_CTS   | C1_FLG0     |                    |
| PE_02       | PPI0_FS1    | SPI0_SEL6   | UART1_RTS   | C2_FLG0     |                    |
| PE_03       | PPI0_CLK    | SPI0_SEL7   | SPI2_SEL2   | C1_FLG1     |                    |
| PE_04       | PPI0_D08    | PWM2_DH     | SPI2_SEL3   | C2_FLG1     |                    |
| PE_05       | PPI0_D07    | PWM2_SYNC   | SPI2_SEL4   | C1_FLG2     |                    |
| PE_06       | PPI0_D06    |             | SPI2_SEL5   | C2_FLG2     |                    |
| PE_07       | PPI0_D05    |             | SPI1_SEL2   | C1_FLG3     |                    |
| PE_08       | PPI0_D04    | SPI1_SEL5   | SPI1_RDY    | C2_FLG3     |                    |
| PE_09       | PPI0_D03    | PWM0_SYNC   | TM0_TMR0    | SMC0_D03    |                    |
| PE_10       | PPI0_D02    | PWM2_DL     | UART2_RTS   | SMC0_D02    |                    |
| PE_11       | PPI0_D01    | SPI1_SEL3   | UART2_CTS   | SMC0_D01    | SPI1_SS            |
| PE_12       | PPI0_D00    | SPI1_SEL4   | SPI2_RDY    | SMC0_D00    |                    |
| PE_13       | SPI1_CLK    |             | PPI0_D20    | SMC0_AMS1   |                    |
| PE_14       | SPI1_MISO   |             | PPI0_D21    | SMC0_ABE0   |                    |
| PE_15       | SPI1_MOSI   |             | PPI0_D22    | SMC0_ABE1   |                    |

Table 17. Signal Multiplexing for Port E

Table 18 shows the internal timer signal routing. This table applies to both the 349-ball and 529-ball CSP\_BGA packages.

#### Table 18. Internal Timer Signal Routing

| Timer Input Signal | Internal Source |
|--------------------|-----------------|
| TM0_ACLK0          | SYS_CLKIN1      |
| TM0_ACI5           | DAI0_CRS_PB04_O |
| TM0_ACLK5          | DAI0_CRS_PB03_O |
| TM0_ACI6           | DAI1_CRS_PB04_O |
| TM0_ACLK6          | DAI1_CRS_PB03_O |
| TM0_ACI7           | CNT0_TO         |
| TM0_ACLK7          | SYS_CLKIN0      |

| Signal Name       | Description                                   | Port      | Pin Name   |
|-------------------|-----------------------------------------------|-----------|------------|
| DMC1_BA2          | DMC1 Bank Address 2                           | Not Muxed | DMC1_BA2   |
| DMC1_CAS          | DMC1 Column Address Strobe                    | Not Muxed | DMC1_CAS   |
| DMC1_CK           | DMC1 Clock                                    | Not Muxed | DMC1_CK    |
| DMC1_CKE          | DMC1 Clock enable                             | Not Muxed | DMC1_CKE   |
| DMC1_CK           | DMC1 Clock (complement)                       | Not Muxed | DMC1_CK    |
| DMC1_CS0          | DMC1 Chip Select 0                            | Not Muxed | DMC1_CS0   |
| DMC1_DQ00         | DMC1 Data 0                                   | Not Muxed | DMC1_DQ00  |
| DMC1_DQ01         | DMC1 Data 1                                   | Not Muxed | DMC1_DQ01  |
| DMC1_DQ02         | DMC1 Data 2                                   | Not Muxed | DMC1_DQ02  |
| DMC1_DQ03         | DMC1 Data 3                                   | Not Muxed | DMC1_DQ03  |
| DMC1_DQ04         | DMC1 Data 4                                   | Not Muxed | DMC1_DQ04  |
| DMC1_DQ05         | DMC1 Data 5                                   | Not Muxed | DMC1_DQ05  |
| DMC1_DQ06         | DMC1 Data 6                                   | Not Muxed | DMC1_DQ06  |
| DMC1_DQ07         | DMC1 Data 7                                   | Not Muxed | DMC1_DQ07  |
| DMC1_DQ08         | DMC1 Data 8                                   | Not Muxed | DMC1_DQ08  |
| DMC1_DQ09         | DMC1 Data 9                                   | Not Muxed | DMC1_DQ09  |
| DMC1_DQ10         | DMC1 Data 10                                  | Not Muxed | DMC1_DQ10  |
| DMC1_DQ11         | DMC1 Data 11                                  | Not Muxed | DMC1_DQ11  |
| DMC1_DQ12         | DMC1 Data 12                                  | Not Muxed | DMC1_DQ12  |
| DMC1_DQ13         | DMC1 Data 13                                  | Not Muxed | DMC1_DQ13  |
| DMC1_DQ14         | DMC1 Data 14                                  | Not Muxed | DMC1_DQ14  |
| DMC1_DQ15         | DMC1 Data 15                                  | Not Muxed | DMC1_DQ15  |
| DMC1_LDM          | DMC1 Data Mask for Lower Byte                 | Not Muxed | DMC1_LDM   |
| DMC1_LDQS         | DMC1 Data Strobe for Lower Byte               | Not Muxed | DMC1_LDQS  |
| DMC1_LDQS         | DMC1 Data Strobe for Lower Byte (complement)  | Not Muxed | DMC1_LDQS  |
| DMC1_ODT          | DMC1 On-die termination                       | Not Muxed | DMC1_ODT   |
| DMC1_RAS          | DMC1 Row Address Strobe                       | Not Muxed | DMC1_RAS   |
| DMC1_RESET        | DMC1 Reset (DDR3 only)                        | Not Muxed | DMC1_RESET |
| DMC1_RZQ          | DMC1 External calibration resistor connection | Not Muxed | DMC1_RZQ   |
| DMC1_UDM          | DMC1 Data Mask for Upper Byte                 | Not Muxed | DMC1_UDM   |
| DMC1_UDQS         | DMC1 Data Strobe for Upper Byte               | Not Muxed | DMC1_UDQS  |
| DMC1_UDQS         | DMC1 Data Strobe for Upper Byte (complement)  | Not Muxed | DMC1_UDQS  |
| DMC1_VREF         | DMC1 Voltage Reference                        | Not Muxed | DMC1_VREF  |
| DMC1_WE           | DMC1 Write Enable                             | Not Muxed | DMC1_WE    |
| ETH0_CRS          | ETH0 Carrier Sense/RMII Receive Data Valid    | A         | PA_07      |
| ETH0_MDC          | ETH0 Management Channel Clock                 | A         | PA_02      |
| ETH0_MDIO         | ETH0 Management Channel Serial Data           | A         | PA_03      |
| ETH0_PTPAUXIN0    | ETH0 PTP Auxiliary Trigger Input 0            | В         | PB_03      |
| ETH0_PTPAUXIN1    | ETH0 PTP Auxiliary Trigger Input 1            | В         | PB_04      |
| ETH0_PTPAUXIN2    | ETH0 PTP Auxiliary Trigger Input 2            | В         | PB_05      |
| ETH0_PTPAUXIN3    | ETH0 PTP Auxiliary Trigger Input 3            | В         | PB_06      |
| ETH0_PTPCLKIN0    | ETH0 PTP Clock Input 0                        | В         | PB_02      |
| ETH0_PTPPPS0      | ETH0 PTP Pulse-Per-Second Output 0            | В         | PB_01      |
| ETH0_PTPPPS1      | ETH0 PTP Pulse-Per-Second Output 1            | В         | PB_00      |
| ETH0_PTPPPS2      | ETH0 PTP Pulse-Per-Second Output 2            | А         | PA_15      |
| ETH0_PTPPPS3      | ETH0 PTP Pulse-Per-Second Output 3            | A         | PA_14      |
| ETH0_RXCLK_REFCLK | ETH0 RXCLK (GigE) or REFCLK (10/100)          | А         | PA_06      |
| ETH0_RXCTL_CRS    | ETH0 RXCTL (GigE) or CRS (10/100)             | A         | PA_07      |

Table 19. ADSP-SC58x/ADSP-2158x 529-Ball CSP\_BGA Signal Descriptions (Continued)

|             |       | Driver | Int      | Reset | Reset |              | Description                                                                                                                                                                     |
|-------------|-------|--------|----------|-------|-------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal Name | Туре  | Туре   | Term     | Term  | Drive | Power Domain | and Notes                                                                                                                                                                       |
| PA_15       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTA Position 15   EMAC0<br>PTP Pulse-Per-Second Output 2  <br>SINC0 Data 1   SMC0 Address 9<br>Notes: No notes                                                          |
| PB_00       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTB Position 0   EMAC0<br>PTP Pulse-Per-Second Output 1  <br>EPPI0 Data 14   SINC0 Data 2  <br>SMC0 Address 8   TIMER0<br>Alternate Clock 3                             |
| PB_01       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTB Position 1   EMAC0<br>PTP Pulse-Per-Second Output 0  <br>EPPI0 Data 15   SINC0 Clock 0  <br>SMC0 Address 7   TIMER0<br>Alternate Clock 4                            |
| PB_02       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTB Position 2   EMACO<br>PTP Clock Input 0   EPPI0 Data 16<br>  SMC0 Address 4   UART1<br>Transmit<br>Notes: No notes                                                  |
| PB_03       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTB Position 3   EMAC0<br>PTP Auxiliary Trigger Input 0  <br>EPPI0 Data 17   SMC0 Address 3  <br>UART1 Receive   TIMER0<br>Alternate Capture Input 1<br>Notes: No notes |
| PB_04       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTB Position 4   EPPI0<br>Data 12   MLB0 Single-Ended<br>Clock   SINC0 Data 3   SMC0<br>Asynchronous Ready   EMAC0<br>PTP Auxiliary Trigger Input 1<br>Notes: No notes  |
| PB_05       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTB Position 5   EPPI0<br>Data 13   MLB0 Single-Ended<br>Signal   SMC0 Address 1   EMAC0<br>PTP Auxiliary Trigger Input 2<br>Notes: No notes                            |
| PB_06       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTB Position 6   MLB0<br>Single-Ended Data   PWM0<br>Channel B High Side   SMC0<br>Address 2   EMAC0 PTP Auxiliary<br>Trigger Input 3<br>Notes: No notes                |
| PB_07       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTB Position 7   LP1 Data<br>0   PWM0 Channel A High Side  <br>SMC0 Data 15   TIMER0 Timer 3<br>Notes: No notes                                                         |
| PB_08       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTB Position 8 LP1 Data<br>1   PWM0 Channel A Low Side  <br>SMC0 Data 14   TIMER0 Timer 4<br>Notes: No notes                                                            |

Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

|             |       | Driver | Int      | Reset | Reset |              | Description                                                                                                                               |
|-------------|-------|--------|----------|-------|-------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Signal Name | Туре  | Туре   | Term     | Term  | Drive | Power Domain | and Notes                                                                                                                                 |
| PC_00       | InOut | Н      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 0   LP1<br>Clock   PWM0 Channel B Low<br>Side   SMC0 Read Enable   SPI0<br>Slave Select Output 4<br>Notes: No notes  |
| PC_01       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 1   SPI2<br>Clock<br>Notes: No notes                                                                                 |
| PC_02       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 2   SPI2<br>Master In, Slave Out<br>Notes: No notes                                                                  |
| PC_03       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 3   SPI2<br>Master Out, Slave In<br>Notes: No notes                                                                  |
| PC_04       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 4   SPI2<br>Data 2<br>Notes: No notes                                                                                |
| PC_05       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 5   SPI2<br>Data 3                                                                                                   |
| PC_06       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 6   SPI2<br>Slave Select Output 1   SPI2 Slave<br>Select Input                                                       |
| PC_07       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 7   CAN0<br>Receive   SMC0 Memory Select 2<br>  SPI0 Slave Select Output 1  <br>TIMER0 Alternate Capture Input<br>3  |
| PC_08       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Notes: No notes<br>Desc: PORTC Position 8   CAN0<br>Transmit   SMC0 Memory Select<br>3                                                    |
| PC_09       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Notes: No notes<br>Desc: PORTC Position 9   SPI0<br>Clock                                                                                 |
| PC_10       | InOut | н      | PullDown | none  | none  | VDD_EXT      | Notes: No notes<br>Desc: PORTC Position 10   SPI0<br>Master In, Slave Out                                                                 |
| PC_11       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 11   SPI0<br>Master Out, Slave In   TIMER0<br>Clock                                                                  |
| PC_12       | InOut | A      | PullDown | none  | none  | VDD_EXT      | Desc: PORTC Position 12   ACM0<br>External Trigger n   SMC0<br>Address 25   SPI0 Ready   SPI0<br>Slave Select Output 3<br>Notes: No notes |

### Table 27. ADSP-SC58x/ADSP-2158x Designer Quick Reference (Continued)

#### **Total Internal Power Dissipation**

Total power dissipation has two components:

- 1. Static, including leakage current
- 2. Dynamic, due to transistor switching characteristics for each clock domain

Many operating conditions can also affect power dissipation, including temperature, voltage, operating frequency, and processor activity. The following equation describes the internal current consumption.

| $I_{DD\_INT\_TOT} =$ | $I_{DD\_INT\_STATIC} + I_{DD\_INT\_CCLK\_SHARC1\_DYN} +$                |
|----------------------|-------------------------------------------------------------------------|
|                      | I <sub>DD_INT_CCLK_SHARC2_DYN</sub> + I <sub>DD_INT_CCLK_A5_DYN</sub> + |
|                      | $I_{DD\_INT\_DCLK\_DYN} + I_{DD\_INT\_SYSCLK\_DYN} +$                   |
|                      | $I_{DD\_INT\_SCLK0\_DYN} + I_{DD\_INT\_SCLK1\_DYN} +$                   |
|                      | $I_{DD\_INT\_OCLK\_DYN} + I_{DD\_INT\_ACCL\_DYN} +$                     |
|                      | $I_{DD\_INT\_USB\_DYN} + I_{DD\_INT\_MLB\_DYN} +$                       |
|                      | $I_{DD\_INT\_GIGE\_DYN} + I_{DD\_INT\_DMA\_DR\_DYN} +$                  |
|                      | I <sub>DD_INT_PCIE_DYN</sub>                                            |

 $I_{DD\_INT\_STATIC}$  is the sole contributor to the static power dissipation component and is specified as a function of voltage  $(V_{DD} \ _{INT})$  and junction temperature  $(T_I)$  in Table 31.

#### Table 31. Static Current—I<sub>DD\_INT\_STATIC</sub> (mA)

|         | Voltage (V <sub>DD_INT</sub> ) |      |      |  |  |  |
|---------|--------------------------------|------|------|--|--|--|
| (°C) رT | 1.05                           | 1.10 | 1.15 |  |  |  |
| -40     | 7                              | 8    | 10   |  |  |  |
| -20     | 12                             | 14   | 17   |  |  |  |
| -10     | 16                             | 19   | 23   |  |  |  |
| 0       | 21                             | 25   | 30   |  |  |  |
| 10      | 28                             | 33   | 39   |  |  |  |
| 25      | 42                             | 49   | 58   |  |  |  |
| 40      | 63                             | 73   | 84   |  |  |  |
| 55      | 92                             | 106  | 122  |  |  |  |
| 70      | 133                            | 152  | 175  |  |  |  |
| 85      | 190                            | 216  | 247  |  |  |  |
| 100     | 269                            | 305  | 346  |  |  |  |
| 105     | 302                            | 342  | 387  |  |  |  |
| 115     | 376                            | 425  | 480  |  |  |  |
| 125     | 466                            | 525  | 592  |  |  |  |
| 133     | 552                            | 621  | 700  |  |  |  |

The other 14 addends in the  $I_{DD\_INT\_TOT}$  equation comprise the dynamic power dissipation component and fall into four broad categories: application-dependent currents, clock currents, currents from high-speed peripheral operation, and data transmission currents.

#### **Application Dependent Current**

The application dependent currents include the dynamic current in the core clock domain of the two SHARC+ cores and the ARM Cortex-A5 core, as well as the dynamic current in the accelerator block.

Dynamic current consumed by the core is subject to an activity scaling factor (ASF) that represents application code running on the processor cores (see Table 32 and Table 33). The ASF is combined with the CCLK frequency and  $V_{DD\_INT}$  dependent dynamic current data in Table 34 and Table 35, respectively, to calculate this portion of the total dynamic power dissipation component.

$$\begin{split} &I_{DD\_INT\_CCLK\_SHARC1\_DYN} = \text{Table } 34 \times ASF_{SHARC1} \\ &I_{DD\_INT\_CCLK\_SHARC2\_DYN} = \text{Table } 34 \times ASF_{SHARC2} \\ &I_{DD\_INT\_CCLK\_A5\_DYN} = \text{Table } 35 \times ASF_{A5} \end{split}$$

## Table 32. Activity Scaling Factors for the SHARC+ Core1 and Core2 (ASF<sub>SHARC1</sub> and ASF<sub>SHARC2</sub>)

| I <sub>DD_INT</sub> Power Vector | ASF  |  |
|----------------------------------|------|--|
| I <sub>DD-IDLE</sub>             | 0.31 |  |
| I <sub>DD-NOP</sub>              | 0.53 |  |
| I <sub>DD-TYP_3070</sub>         | 0.74 |  |
| I <sub>DD-TYP_5050</sub>         | 0.87 |  |
| IDD-TYP_7030                     | 1.00 |  |
| IDD-PEAK_100                     | 1.14 |  |

Table 33. Activity Scaling Factors for the ARM Cortex-A5 Core (ASF $_{A5}$ )

| I <sub>DD_INT</sub> Power Vector | ASF  |
|----------------------------------|------|
| I <sub>DD-IDLE</sub>             | 0.29 |
| I <sub>DD-DHRYSTONE</sub>        | 0.73 |
| I <sub>DD-TYP_2575</sub>         | 0.57 |
| I <sub>DD-TYP_5050</sub>         | 0.80 |
| I <sub>DD-TYP_7525</sub>         | 1.00 |
| IDD-PEAK_100                     | 1.21 |

#### DDR3 SDRAM Write Cycle Timing

Table 59 and Figure 25 show mobile DDR3 SDRAM output ac timing, related to the DMC.

### Table 59. DDR3 SDRAM Write Cycle Timing VDD\_DMCx Nominal 1.5 V<sup>1</sup>

|                   |                                                                             |       | 450 MHz <sup>2</sup> |                 |
|-------------------|-----------------------------------------------------------------------------|-------|----------------------|-----------------|
| Parameter         |                                                                             | Min   | Max                  | Unit            |
| Switching Chara   | cteristics                                                                  |       |                      |                 |
| t <sub>DQSS</sub> | DMCx_DQS Latching Rising Transitions to Associated Clock Edges <sup>3</sup> | -0.25 | 0.25                 | t <sub>CK</sub> |
| t <sub>DS</sub>   | Last Data Valid to DMCx_DQS Delay (Slew > 1 V/ns)                           | 0.125 |                      | ns              |
| t <sub>DH</sub>   | DMCx_DQS to First Data Invalid Delay (Slew > 1 V/ns)                        | 0.150 |                      | ns              |
| t <sub>DSS</sub>  | DMCx_DQS Falling Edge to Clock Setup Time                                   | 0.2   |                      | t <sub>CK</sub> |
| t <sub>DSH</sub>  | DMCx_DQS Falling Edge Hold Time From DMCx_CK                                | 0.2   |                      | t <sub>CK</sub> |
| t <sub>DQSH</sub> | DMCx_DQS Input High Pulse Width                                             | 0.45  | 0.55                 | t <sub>CK</sub> |
| t <sub>DQSL</sub> | DMCx_DQS Input Low Pulse Width                                              | 0.45  | 0.55                 | t <sub>CK</sub> |
| t <sub>WPRE</sub> | Write Preamble                                                              | 0.9   |                      | t <sub>CK</sub> |
| t <sub>WPST</sub> | Write Postamble                                                             | 0.3   |                      | t <sub>CK</sub> |
| t <sub>IPW</sub>  | Address and Control Output Pulse Width                                      | 0.840 |                      | ns              |
| t <sub>DIPW</sub> | DMCx_DQ and DMCx_DM Output Pulse Width                                      | 0.550 |                      | ns              |

<sup>1</sup>Specifications apply to both DMC0 and DMC1.

<sup>2</sup>To ensure proper ation of the DDR3, all the DDR3 guidelines must be strictly followed. See "Interfacing DDR3/DDR2/LPDDR Memory to ADSP-SC5xx/215xx Processors" (EE-387).

 $^{3}$ Write command to first DMCx\_DQS delay = WL × t<sub>CK</sub> + t<sub>DQSS</sub>.



NOTE: CONTROL = DMCx\_CS0, DMCx\_CKE, DMCx\_RAS, DMCx\_CAS, AND DMCx\_WE. ADDRESS = DMCx\_A00-13, AND DMCx\_BA0-1.

Figure 25. DDR3 SDRAM Controller Output AC Timing

The SPTx\_TDV output signal becomes active in SPORT multichannel mode. During transmit slots (enabled with active channel selection registers) the SPTx\_TDV is asserted for communication with external devices.

#### Table 67. Serial Ports—TDV (Transmit Data Valid)<sup>1</sup>

| Parameter           |                                                                         | Min  | Мах | Unit |
|---------------------|-------------------------------------------------------------------------|------|-----|------|
| Switching Ch        | paracteristics                                                          |      |     |      |
| t <sub>DRDVEN</sub> | Data Valid Enable Delay from Drive Edge of External Clock <sup>2</sup>  | 2    |     | ns   |
| t <sub>DFDVEN</sub> | Data Valid Disable Delay from Drive Edge of External Clock <sup>2</sup> |      | 14  | ns   |
| t <sub>DRDVIN</sub> | Data Valid Enable Delay from Drive Edge of Internal Clock <sup>2</sup>  | -2.5 |     | ns   |
| t <sub>DFDVIN</sub> | Data Valid Disable Delay from Drive Edge of Internal Clock <sup>2</sup> |      | 3.5 | ns   |

<sup>1</sup>Specifications apply to all eight SPORTs.

<sup>2</sup>Referenced to drive edge.



Figure 39. Serial Ports—Transmit Data Valid Internal and External Clock

### SPI Port—Master Timing

Table 71 and Figure 43 describe SPI port master operations.

When internally generated, the programmed SPI clock ( $f_{SPICLKPROG}$ ) frequency in MHz is set by the following equation where BAUD is a field in the SPIx\_CLK register that can be set from 0 to 65535:

$$f_{SPICLKPROG} = \frac{f_{SCLK1}}{(BAUD + 1)}$$

$$t_{SPICLKPROG} = \frac{1}{f_{SPICLKPROG}}$$

Note that

- In dual-mode data transmit, the SPIx\_MISO signal is also an output.
- In quad-mode data transmit, the SPIx\_MISO, SPIx\_D2, and SPIx\_D3 signals are also outputs.
- In dual-mode data receive, the SPIx\_MOSI signal is also an input.
- In quad-mode data receive, the SPIx\_MOSI, SPIx\_D2, and SPIx\_D3 signals are also inputs.
- Quad-mode is supported by SPI2 only.
- CPHA is a configuration bit in the SPI\_CTL register.

#### Table 71. SPI Port—Master Timing<sup>1</sup>

| Parameter            |                                                               | Min                             | Мах | Unit |
|----------------------|---------------------------------------------------------------|---------------------------------|-----|------|
| Timing Require       | ments                                                         |                                 |     |      |
| t <sub>sspidm</sub>  | Data Input Valid to SPIx_CLK Edge (Data Input Setup)          | 3.2                             |     | ns   |
| t <sub>HSPIDM</sub>  | SPIx_CLK Sampling Edge to Data Input Invalid                  | 1.2                             |     | ns   |
| Switching Chai       | racteristics                                                  |                                 |     |      |
| t <sub>SDSCIM</sub>  | $\overline{SPIx\_SEL}$ Low to First SPI_CLK Edge for CPHA = 1 | t <sub>SCLK1</sub> – 2          |     | ns   |
|                      | $\overline{SPIx}$ Low to First SPI_CLK Edge for CPHA = 0      | $1.5 \times t_{SCLK1} - 2$      |     | ns   |
| t <sub>SPICHM</sub>  | SPlx_CLK High Period <sup>2</sup>                             | $0.5 \times t_{SPICLKPROG} - 1$ |     | ns   |
| t <sub>SPICLM</sub>  | SPIx_CLK Low Period <sup>2</sup>                              | $0.5 \times t_{SPICLKPROG} - 1$ |     | ns   |
| t <sub>SPICLK</sub>  | SPIx_CLK Period <sup>2</sup>                                  | t <sub>SPICLKPROG</sub> – 1     |     | ns   |
| t <sub>HDSM</sub>    | Last SPIx_CLK Edge to SPIx_SEL High for CPHA = 1              | $1.5 \times t_{SCLK1} - 2$      |     | ns   |
|                      | Last SPIx_CLK Edge to SPIx_SEL High for CPHA = 0              | t <sub>SCLK1</sub> –2           |     | ns   |
| t <sub>SPITDM</sub>  | Sequential Transfer Delay <sup>3</sup>                        | t <sub>SCLK1</sub> – 1          |     | ns   |
| t <sub>DDSPIDM</sub> | SPIx_CLK Edge to Data Out Valid (Data Out Delay)              |                                 | 2.6 | ns   |
| t <sub>HDSPIDM</sub> | SPIx_CLK Edge to Data Out Invalid (Data Out Hold)             | -1.5                            |     | ns   |

<sup>1</sup>All specifications apply to all three SPIs.

<sup>2</sup>See Table 29 for details on the minimum period that can be programmed for t<sub>SPICLKPROG</sub>.

<sup>3</sup>Applies to sequential mode with STOP  $\geq 1$ .



Figure 43. SPI Port—Master Timing

#### Pulse Width Modulator (PWM) Timing

Table 83 and Figure 55 describe timing, related to the PWM.

### Table 83. PWM Timing<sup>1</sup>

| Paramete           | r                                                   | Min                        | Max                       | Unit |
|--------------------|-----------------------------------------------------|----------------------------|---------------------------|------|
| Timing Red         | quirement                                           |                            |                           |      |
| t <sub>ES</sub>    | External Sync Pulse Width                           | $2 \times t_{SCLK0}$       |                           | ns   |
| Switching          | Characteristics                                     |                            |                           |      |
| t <sub>DODIS</sub> | Output Inactive (off) After Trip Input <sup>2</sup> |                            | 15                        | ns   |
| t <sub>DOE</sub>   | Output Delay After External Sync <sup>2, 3</sup>    | $2 \times t_{SCLK0} + 5.5$ | $5 \times t_{SCLK0} + 14$ | ns   |

<sup>1</sup>All specifications apply to all three PWMs.

<sup>2</sup>PWM outputs are PWMx\_AH, PWMx\_AL, PWMx\_BH, PWMx\_BL, PWMx\_CH, and PWMx\_CL.

<sup>3</sup>When the external sync signal is synchronous to the peripheral clock, it takes fewer clock cycles for the output to appear compared to when the external sync signal is asynchronous to the peripheral clock.



Figure 55. PWM Timing

#### PWM — Heightened Precision (HP) Mode Timing

Table 84 and Table 85 and Figure 56 and Figure 57 describe heightened precision (HP) PWM operations.

### Table 84. PWM—HP Mode, Output Pulse

| Paramete           | r                                         | Min                                         | Мах                                         | Unit |
|--------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|------|
| Switching          | Characteristics                           |                                             |                                             |      |
| t <sub>HPWMW</sub> | HP PWM Output Pulse Width <sup>1, 2</sup> | $(N + m \times 0.25) \times t_{SCLK} - 0.5$ | $(N + m \times 0.25) \times t_{SCLK} + 0.5$ | ns   |

 $^{1}$ N is the DUTY bit field (coarse duty) from the duty register. m is the ENHDIV (Enhanced Precision Divider bits) value from the HP duty register.  $^{2}$ Applies to individual PWM channel with 50% duty cycle. Other PWM channels within the same unit are toggling at the same time. No other GPIO pins toggle.



Figure 56. PWM HP Mode Timing, Output Pulse

#### Table 85. PWM-HP Mode, Output Skew

| Parameter                                          | Min | Max | Unit |
|----------------------------------------------------|-----|-----|------|
| Switching Characteristics                          |     |     |      |
| t <sub>HPWMS</sub> HP PWM Output Skew <sup>1</sup> |     | 1.0 | ns   |

<sup>1</sup>Output edge difference between any two PWM channels (AH, AL, BH, BL, CH, CL, DH and DL) in the same PWM unit (a unit is PWMx where x = 0, 1, 2), with the same HP edge placement.



Figure 57. PWM HP Mode Timing, Output Skew

Figure 65 and Table 94 show the default  $I^2S$  justified mode. The frame sync is low for the left channel and high for the right channel. Data is valid on the rising edge of serial clock. The MSB is left justified to the frame sync transition but with a delay.

#### Table 94. S/PDIF Transmitter I<sup>2</sup>S Mode

| Parameter          |                                                  | Nominal | Unit |
|--------------------|--------------------------------------------------|---------|------|
| Timing Requirement |                                                  |         |      |
| t <sub>I2SD</sub>  | Frame Sync to MSB Delay in I <sup>2</sup> S Mode | 1       | SCLK |



Figure 65. I<sup>2</sup>S Justified Mode

Figure 66 and Table 95 show the left justified mode. The frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of serial clock. The MSB is left justified to the frame sync transition with no delay.

#### Table 95. S/PDIF Transmitter Left Justified Mode

| Parameter          |                                                | Nominal | Unit |
|--------------------|------------------------------------------------|---------|------|
| Timing Requirement |                                                |         |      |
| t <sub>LJD</sub>   | Frame Sync to MSB Delay in Left Justified Mode | 0       | SCLK |



Figure 66. Left Justified Mode



*Figure 69. MLB Timing (3-Pin Interface)* 

The ac timing specifications of the 6-pin MLB interface is detailed in Table 100. Refer to the *Media Local Bus Specification version 4.2* for more details.

| Table 100. | 6-Pin | MLB | Interface | Specifi | cations |
|------------|-------|-----|-----------|---------|---------|
|------------|-------|-----|-----------|---------|---------|

| Param                                                                           | eter                                                                                                | Conditions                                               | Min    | Тур | Max   | Unit |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------|-----|-------|------|
| t <sub>MT</sub>                                                                 | Differential Transition Time at the Input Pin (See Figure 70)                                       | 20% to 80% $V_{IN}$ +/ $V_{IN}$ -                        |        |     | 1     | ns   |
|                                                                                 |                                                                                                     | 80% to 20% $V_{\text{IN}}\text{+}/V_{\text{IN}}\text{-}$ |        |     |       |      |
| f <sub>MCKE</sub>                                                               | MLBCP/N External Clock Operating Frequency (See Figure 71) <sup>1</sup>                             | 2048 $	imes$ FS at 44.0 kHz                              | 90.112 |     |       | MHz  |
|                                                                                 |                                                                                                     | 2048 	imes FS at 50.0 kHz                                |        |     | 102.4 | MHz  |
| f <sub>MCKR</sub> Recovered Clock Operating Frequency (Internal, not Observable | 2048 	imes FS at 44.0 kHz                                                                           | 90.112                                                   |        |     | MHz   |      |
|                                                                                 | at Pins, Only for Timing References) (See Figure 71)                                                | 2048 	imes FS at 50.0 kHz                                |        |     | 102.4 | MHz  |
| t <sub>DELAY</sub>                                                              | Transmitter MLBSP/N (MLBDP/N) Output Valid From Transition of MLBCP/N (Low to High) (See Figure 72) | $f_{MCKR} = 2048 \times FS$                              | 0.6    |     | 5     | ns   |
| t <sub>PHZ</sub>                                                                | Disable Turnaround Time From Transition of MLBCP/N (Low to High)<br>(See Figure 73)                 | $f_{MCKR} = 2048 \times FS$                              | 0.6    |     | 7     | ns   |
| $t_{PLZ}$                                                                       | Enable Turnaround Time From Transition of MLBCP/N (Low to High)<br>(See Figure 73)                  | $f_{MCKR} = 2048 \times FS$                              | 0.6    |     | 11.2  | ns   |
| t <sub>SU</sub>                                                                 | MLBSP/N (MLBDP/N) Valid to Transition of MLBCP/N (Low to High)<br>(See Figure 72)                   | $f_{MCKR} = 2048 \times FS$                              | 1      |     |       | ns   |
| t <sub>HD</sub>                                                                 | MLBSP/N (MLBDP/N) Hold From Transition of MLBCP/N (Low to High) (See Figure 72) <sup>2</sup>        |                                                          | 0.6    |     |       | ns   |

<sup>1</sup> f<sub>MCKE</sub> (maximum) and f<sub>MCKR</sub> (maximum) include maximum cycle to cycle system jitter (t<sub>IITTER</sub>) of 600 ps for a bit error rate of 10E-9.

<sup>2</sup>Receivers must latch MLBSP/N (MLBDP/N) data within t<sub>HD</sub> (min) of the rising edge of MLBCP/N.

### **CONFIGURATION OF THE 349-BALL CSP\_BGA**

Figure 98 shows an overview of signal placement on the 349-ball CSP\_BGA.



BOTTOM VIEW

Figure 98. 349-Ball CSP\_BGA Configuration