

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuns	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21264sdfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

R8C/26 Group, R8C/27 Group SINGLE-CHIP 16-BIT CMOS MCU

1. Overview

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C CPU core, and are packaged in a 32-pin molded-plastic LQFP. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. Furthermore, the R8C/27 Group has on-chip data flash (1 KB \times 2 blocks).

The difference between the R8C/26 Group and R8C/27 Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1 Applications

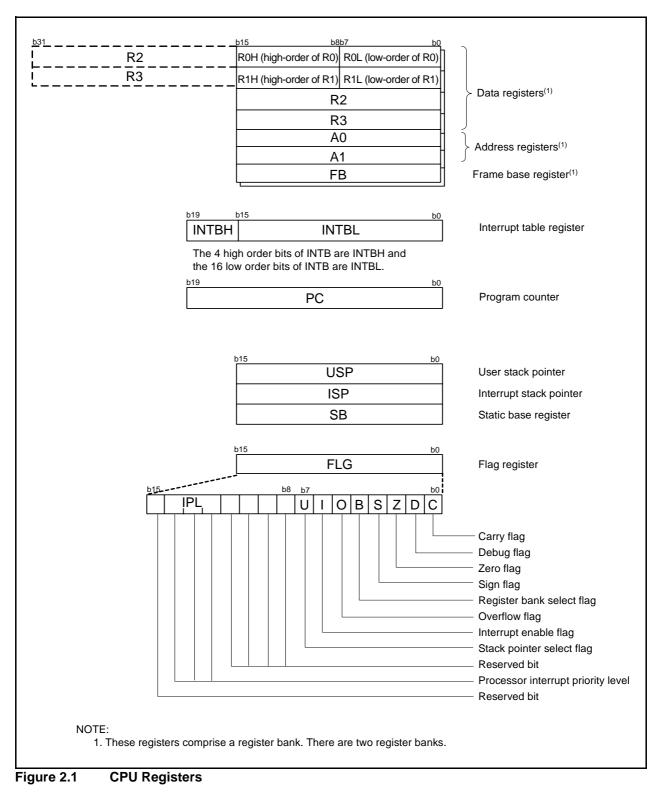
Electronic household appliances, office equipment, audio equipment, consumer products, automotive, etc.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/26 Group and Table 1.2 outlines the Functions and Specifications for R8C/27 Group.

	ltem	Specification
CPU	Number of	89 instructions
	fundamental	
	instructions Minimum instruction	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) (other than K version)
	Minimum instruction	
	execution time	62.5 ns (f(XIN) = 16 MHz, VCC = 3.0 to 5.5 V) (K version) 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V) (N, D version)
	Operating mode	Single-chip
	Address space	1 Mbyte
	Memory capacity	Refer to Table 1.3 Product Information for R8C/26 Group
Peripheral	Ports	I/O ports: 25 pins, Input port: 3 pins
Functions	LED drive ports	I/O ports: 8 pins (N, D version)
	Timers	Timer RA: 8 bits × 1 channel
		Timer RB: 8 bits × 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer RC: 16 bits × 1 channel
		(Input capture and output compare circuits)
		Timer RE: With real-time clock and compare match function
		(For J, K version, compare match function only.)
	Serial interfaces	2 channels (UART0, UART1)
		Clock synchronous serial I/O, UART
	Clock synchronous	1 channel
	serial interface	I ² C bus Interface ⁽¹⁾
		Clock synchronous serial I/O with chip select
	LIN module	Hardware LIN: 1 channel (timer RA, UART0)
	A/D converter	
		10-bit A/D converter: 1 circuit, 12 channels
	Watchdog timer	15 bits × 1 channel (with prescaler)
		Start-on-reset selectable
	Interrupts	Internal: 15 sources, External: 4 sources,
		Software: 4 sources, Priority levels: 7 levels
	Clock generation	3 circuits
	circuits	 XIN clock generation circuit (with on-chip feedback resistor)
		On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has a frequency adjustment function
		 XCIN clock generation circuit (32 kHz) (N, D version)
		 Real-time clock (timer RE) (N, D version)
	Oscillation-stopped	XIN clock oscillation stop detection function
	detector	
	Voltage detection	On-chip
	circuit	
	Power-on reset circuit	On-chip
Electrical	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz) (other than K version)
Characteristics		VCC = 3.0 to 5.5 V (f(XIN) = 16 MHz) (K version)
2		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)
		VCC = 2.2 to 5.5 V (f(XIN) = 5 MHz) (N, D version)
	Current consumption	Typ. 10 mA (VCC = 5.0 V , f(XIN) = 20 MHz)
	(N, D version)	Typ. 6 mA (VCC = 3.0 V , f(XIN) = 10 MHz)
		Typ. 2.0 μ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz)
		Typ. 0.7 μ A (VCC = 3.0 V, stop mode)
	Programming and	VCC = 2.7 to 5.5 V
	erasure voltage	
Flash Memory		
Flash Memory		100 time an
Flash Memory	Programming and	100 times
	Programming and erasure endurance	
	Programming and erasure endurance	-20 to 85°C (N version)
Operating Ambie	Programming and erasure endurance	

 Table 1.1
 Functions and Specifications for R8C/26 Group


NOTES:

1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

2. Specify the D, K version if D, K version functions are to be used.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3.2 R8C/27 Group

Figure 3.2 is a Memory Map of R8C/27 Group. The R8C/27 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

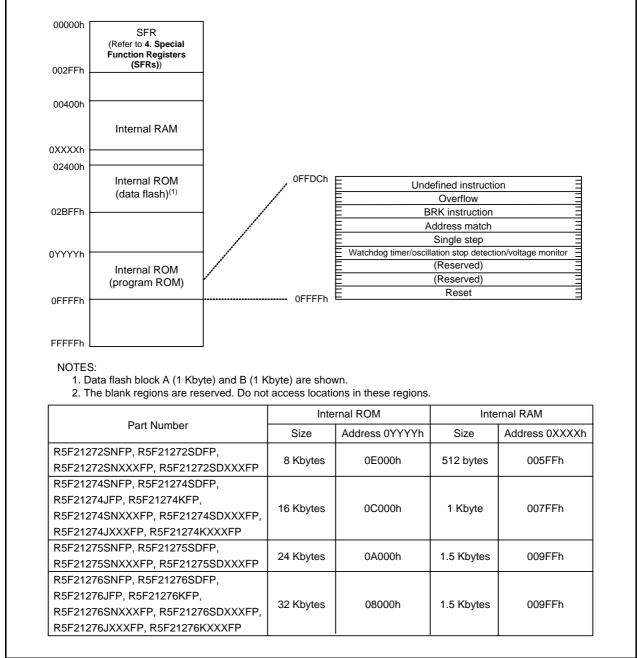


Figure 3.2 Memory Map of R8C/27 Group

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers.

Address	Register	Symbol	After reset		
0000h					
0001h					
0002h					
0003h					
0004h	Processor Mode Register 0	PM0	00h		
0005h	Processor Mode Register 1	PM1	00h		
0006h	System Clock Control Register 0	CM0	01101000b		
0007h	System Clock Control Register 1	CM1	0010000b		
0008h					
0009h					
000Ah	Protect Register	PRCR	00h		
000Bh					
000Ch	Oscillation Stop Detection Register	OCD	00000100b		
000Dh	Watchdog Timer Reset Register	WDTR	XXh		
000Eh	Watchdog Timer Start Register	WDTS	XXh		
000Eh	Watchdog Timer Control Register	WDC	00X1111b		
0010h	Address Match Interrupt Register 0	RMADO	00h		
0011h			00h		
0012h	-		00h		
0012h	Address Match Interrupt Enable Register	AIER	00h		
0014h	Address Match Interrupt Register 1	RMAD1	00h		
0014h	Address Match Interrupt Register 1	KINADI	00h		
0016h	_		00h		
0010h			0011		
0017h					
0018h					
0019h					
001An					
001Bh	Count Source Directorian Mode Register	CSPR	00h		
00101	Count Source Protection Mode Register	COFR			
			1000000b ⁽²⁾		
001Dh					
001Eh					
001Fh					
0020h					
0021h					
0022h					
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h		
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping		
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h		
0026h					
0027h					
0028h	Clock Prescaler Reset Flag	CPSRF	00h		
0029h	High-Speed On-Chip Oscillator Control Register 4 ⁽³⁾	FRA4	When shipping		
002Ah					
002Bh	High-Speed On-Chip Oscillator Control Register 6 ⁽³⁾	FRA6	When shipping		
002Ch	High-Speed On-Chip Oscillator Control Register 7 ⁽³⁾	FRA7	When shipping		
002Dh					
002Dh 002Eh					

Table 4.1 SFR Information (1)⁽¹⁾

X: Undefined NOTES:

1. The blank regions are reserved. Do not access locations in these regions.

2. The CSPROINI bit in the OFS register is set to 0.

3. In J, K version these regions are reserved. Do not access locations in these regions.

Address Symbol After reset 0140h	0140h 0141h 0142h 0143h 0144h 0145h 0146h	Register	Symbol	After reset
0141h	0141h 0142h 0143h 0144h 0145h 0146h			
0142h	0142h 0143h 0144h 0145h 0146h			
0143h 0144h 0145h 0147h 0148h 0148h 0148h 0148h 0148h 0148h 0142h 015h	0143h 0144h 0145h 0146h			
0144h 0145h 0144h 0147h 0148h 0148h 0148h 0148h 0148h 0148h 0142h 0147h 0147h 0147h 0158h 0158h 0158h 0158h 0158h 0158h 0158h 0158h 0168h 0168h	0144h 0145h 0146h			
0148h 0148h 0148h 0148h 0148h 0148h 0148h 0148h 0148h 0142h 0144h 015h 015sh 015sh 015bh 015bh 015bh 015bh 015bh 015bh 015bh 0162h	0145h 0146h			1
0148h 0148h 0148h 0148h 0148h 0148h 0148h 0148h 0148h 0142h 0144h 015h 015sh 015sh 015bh 015bh 015bh 015bh 015bh 015bh 015bh 0162h	0145h 0146h			
0148h 0148h 0148h 0148h 0148h 0148h 0142h 0142h 0142h 0142h 0142h 014Fh 015h	0146h			
0147n 0148h 0148h 0148h 0148h 0148h 0148h 0142h 0142h 0142h 0148h 0148h 0148h 0148h 0148h 0148h 0148h 0148h 0148h 0158h 0158h 0158h 0158h 0158h 0158h 0152h 0152h 0152h 0152h 0152h 0152h 0152h 0152h 0152h				
0148h 0144h 0144h 0144h 0142h 0142h 0142h 0142h 0142h 0142h 0144h 0145h 015h 015h<	0147h			
0143h 0153h 0153h 0153h 0153h 0153h 0153h 0153h 0153h 0153h 0158h 0168h 0168h				
014Ah 014Ah 014Ah 014Ah 014Ah 014Ah 014Ah 014Ah 015Ah	0149h			
0142h 0142h 0142h 0142h 0142h 0142h 0153h 0158h	014Ah			4
014Ch 014Ah 014Ah 014Ah 015h 016h 016h 016h 016h 016h 016h 016h 016h 016h	014Rh			
014bh	014Dh			
014Fh 015h 016h	01401			
014Ph	014Dh			
0150h	014Eh			
0151h				
0152h				
0153h 0155h 0155h 0156h 0157h 0158h 0167h 0168h 0170h				
0154h 0155h 0157h 0157h 0158h 0169h 0161h 0162h 0168h				
0155h 0155h 0157h 0158h 0158h 0158h 0158h 0158h 0158h 0158h 0158h 0158h 0159h 0159h 0158h 0158h 0158h 0160h 0161h 0162h 0163h 0164h <td< th=""><th></th><th></th><th></th><th></th></td<>				
0155h 0155h 0157h 0158h 0158h 0158h 0158h 0158h 0158h 0158h 0158h 0158h 0159h 0159h 0158h 0158h 0158h 0160h 0161h 0162h 0163h 0164h <td< th=""><th>0154h</th><th></th><th></th><th></th></td<>	0154h			
0157h	0155h			
0157h 0158h 0159h 015Ah 015Bh 015Ch 015Dh 015Eh 015Fh 015Fh 0160h 0161h 0162h 0163h 0163h 0168h 0168h <td< th=""><th>0156h</th><th></th><th></th><th></th></td<>	0156h			
0158h	0157h		1	
0159h			1	
015Ah 015Bh 015Dh 015Dh 015Dh 015Fh 016Ch 016Ch 016Th 016Bh 016Bh 016Bh 016Dh 016Dh 016Dh 016Dh 016Dh 016Dh 016Dh 017Dh 017Th <td< th=""><th></th><th></th><th></th><th></th></td<>				
015Ch				
015Ch 015Dh 015Fh 0160h 0161h 0162h 0163h 0163h 0163h 0163h 0163h 0166h 0166h 0168h 0168h 0168h 0168h 0168h 0168h 0168h 016Bh 016Bh 016Bh 016Bh 016Bh 016Bh 016Bh 016Bh 016Bh 016Ch 016Ch 0170h 0170h 0177h	015Rh			
015Dh 015Fh 0160h 0161h 0162h 0163h 0163h 0163h 0163h 0163h 0163h 0166h 0166h 0167h 0168h 0168h 0168h 0168h 016Bh 016Bh 016Bh 016Bh 016Bh 016Bh 016Bh 016Ch 016Ch 0170h 0177h 0177h 0177h 0177h 0177h 0177h 0178h 0178h <th></th> <th></th> <th></th> <th></th>				
015Eh	01501			
015Fh 0160h 0161h 0162h 0163h 0163h 0163h 0165h 0166h 0166h 0166h 0168h 0168h 0168h 0168h 0168h 0168h 016Bh 016Bh 016Bh 016Bh 016Bh 016Bh 016Bh 0170h 0170h 0170h 0177h 0177h 0177h 0177h 0178h 0178h 0178h <th></th> <th></th> <th></th> <th></th>				
0160h 0161h 0162h 0163h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 0168h 0168h 0168h 0168h 016Bh 016Bh 016Ch 016Dh 016Eh 016Fh 016Fh 0170h 0172h 0172h 0173h 0175h 0177h 0178h 0178h 0178h				
0161h 0162h 0163h 0164h 0165h 0166h 0166h 0167h 0168h 016Ch 016Ch 016Eh 016Eh 0170h 0170h 0172h 0173h 0173h 0177h 0177h 0177h 0178h 0179h				
0162h				
0163h				
0164h				
0165h				
0166h				
0167h 0168h 0169h 016Ah 016Ah 016Bh 016Ch 016Ch 016Ch 016Ch 016Fh 016Fh 0170h 0177h 0172h 0173h 0175h 0177h 0178h 0179h 0179h				
0168h 0169h 016Ah 016Bh 016Bh 016Ch 016Dh 016Eh 016Fh 016Fh 016Fh 0170h 0177h 0173h 0173h 0175h 0176h 0177h 0178h 0179h 0179h				
0169h	0167h			
0169h	0168h			
016Ah	0169h			
016Bh 016Ch 016Dh 016Eh 016Fh 0170h 0171h 0172h 0173h 0175h 0175h 0177h 0178h 0178h 0178h 0179h 0179h				
016Ch	016Bh			
016Dh 016Eh 016Fh 0170h 0170h 0171h 0172h 0173h 0174h 0175h 0175h 0175h 0175h 0176h 0177h 0178h 0179h 0179h				
016Eh	016Dh			
016Fh				
0170h	016Eh			
0171h				
0172h				<u>├</u> ────
0173h				ļ
0174h				
0175h				
0176h				
0177h				
0177h				
0179h 017Ah 017Ah	0177h			
0179h 017Ah 017Ah	0178h			
017Ah			İ	
			1	t
				1
017Ch				ł
017Dh				l
017Eh				ļ
	017Fh			

Table 4.6SFR Information (6)⁽¹⁾

NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

5. Electrical Characteristics

5.1 N, D Version

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	Topr = 25°C	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 Recommended Operating Conditions

Symbol		Parameter	Conditions		Standard		Unit
Symbol		arameter	Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage			2.2	-	5.5	V
Vss/AVss	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8 Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	_	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		-	-	-80	mA
IOH(peak)	Peak output "H"	Except P1_0 to P1_7		-	-	-10	mA
	current	P1_0 to P1_7		-	-	-40	mA
IOH(avg)	Average output	Except P1_0 to P1_7		-	-	-5	mA
	"H" current	P1_0 to P1_7		-	-	-20	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "L" currents	Sum of all pins IOL(avg)		-	-	80	mA
IOL(peak)	Peak output "L"	Except P1_0 to P1_7		-	-	10	mA
	currents	P1_0 to P1_7		-	-	40	mA
IOL(avg)	Average output	Except P1_0 to P1_7		-	_	5	mA
	"L" current	P1_0 to P1_7		-	-	20	mA
f(XIN)	XIN clock input osc	illation frequency	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
			$2.7 \text{ V} \leq \text{Vcc} < 3.0 \text{ V}$	0	-	10	MHz
			$2.2~V \leq Vcc < 2.7~V$	0	-	5	MHz
f(XCIN)	XCIN clock input or	scillation frequency	$2.2 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	70	kHz
-	System clock	OCD2 = 0	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
		XIN clock selected	$2.7 \text{ V} \leq \text{Vcc} < 3.0 \text{ V}$	0	-	10	MHz
			$2.2 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	-	5	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	-	kHz
			$\begin{array}{l} \mbox{FRA01 = 1} \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{3.0 V} \le Vcc \le 5.5 \ V \end{array}$	-	-	20	MHz
			$\begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{2.7 V} \le Vcc \le 5.5 \ V \end{array}$	-	-	10	MHz
			$\begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{2.2 V} \leq Vcc \leq 5.5 V \end{array}$	-	_	5	MHz

NOTES:

1. Vcc = 2.2 to 5.5 V at Topr = -20 to 85° C (N version) / -40 to 85° C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

Cumbal	Parameter	Conditions		Unit		
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾	R8C/26 Group	100 ⁽³⁾	-	-	times
		R8C/27 Group	1,000 ⁽³⁾	-	-	times
-	Byte program time		-	50	400	μs
-	Block erase time		-	0.4	9	S
td(SR-SUS)	Time delay from suspend request until		-	-	97 + CPU clock	μs
	suspend				× 6 cycles	
-	Interval from erase start/restart until		650	-	-	μs
	following suspend request					
-	Interval from program start/restart until following suspend request		0	-	-	ns
-	Time from suspend until program/erase restart		_	-	3 + CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	_	5.5	V
-	Read voltage		2.2	-	5.5	V
_	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	_	year

Table 5.4	Flash Memory (Program ROM) Electrical Characteristics
-----------	---

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60° C, unless otherwise specified.

2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

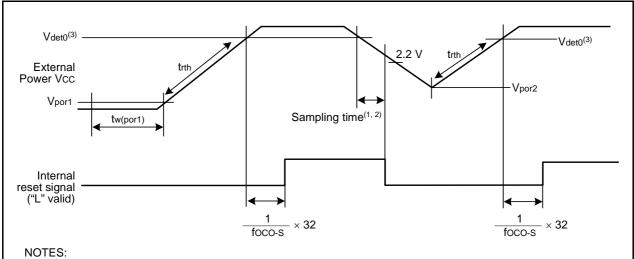
3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Condition		Standard		Unit
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec


Table 5.9	Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteris	stics ⁽³⁾

NOTES:

1. The measurement condition is T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

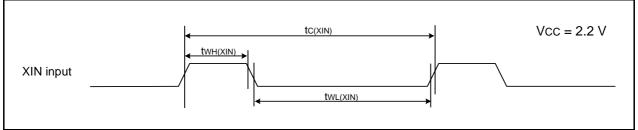
2. This condition (external power Vcc rise gradient) does not apply if Vcc \ge 1.0 V.

- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. $t_{w(por1)}$ indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain $t_{w(por1)}$ for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain $t_{w(por1)}$ for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.

- 2. The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
- 3. Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.3 Reset Circuit Electrical Characteristics


Table 5.16Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Paramotor		Condition		Standar	ł	Unit
Symbol	Parameter			Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	10	17	mA
	other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	9	15	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	10	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
		XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5.5	10	mA	
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	130	300	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	_	130	300	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	_	30	-	μA

Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) [Vcc = 2.2 V]

Table 5.30 XIN Input, XCIN Input

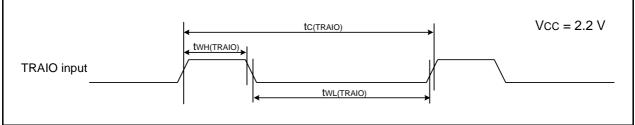

Symbol	Parameter		Standard		
Symbol	XIN input cycle time XIN input "H" width XIN input "L" width	Min.	Max.	Unit	
tc(XIN)	XIN input cycle time	200	-	ns	
twh(xin)	XIN input "H" width	90	-	ns	
twl(XIN)	XIN input "L" width	90	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μs	
tWH(XCIN)	XCIN input "H" width	7	-	μs	
tWL(XCIN)	XCIN input "L" width	7	-	μs	

Figure 5.16 XIN Input and XCIN Input Timing Diagram when Vcc = 2.2 V

Table 5.31 TRAIO Input

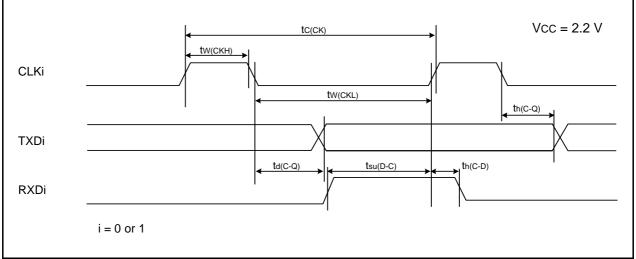

Symbol	Parameter		Standard		
	Falameter	Min.	Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	500	-	ns	
twh(traio)	TRAIO input "H" width	200	-	ns	
twl(traio)	TRAIO input "L" width	200	-	ns	

Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

Symbol	Parameter		Standard		
			Max.	Unit	
tc(CK)	CLKi input cycle time	800	-	ns	
tw(CKH)	CLKi input "H" width	400	-	ns	
tW(CKL)	CLKi input "L" width	400	-	ns	
td(C-Q)	TXDi output delay time	-	200	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	150	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Table 5.33 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter		Standard		
	Falameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width	1000(1)	-	ns	
tw(INL)	INTi input "L" width	1000 ⁽²⁾	-	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

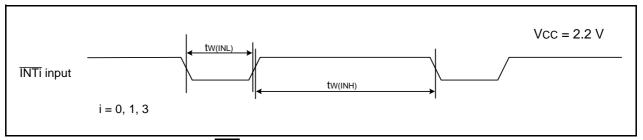


Figure 5.19 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

Symbol	Parameter	Conditions	Standard			Unit	
Symbol		arameter	Conditions	Min.	Тур.	Max.	Unit
_	Resolution		Vref = AVCC	-	-	10	Bits
-	Absolute	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±3	LSB
	accuracy	8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±2	LSB
		10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±5	LSB
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±2	LSB
Rladder	Resistor ladder	•	Vref = AVCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	3.3	-	-	μS
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	2.8	-	-	μS
Vref	Reference voltag	e		2.7	-	AVcc	V
Via	Analog input voltage ⁽²⁾			0	-	AVcc	V
	A/D operating	Without sample and hold		0.25	-	10	MHz
	clock frequency	With sample and hold		1	_	10	MHz

Table 5.36 A/D Converter Characteristics

NOTES:

1. AVcc = 2.7 to 5.5 V at T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

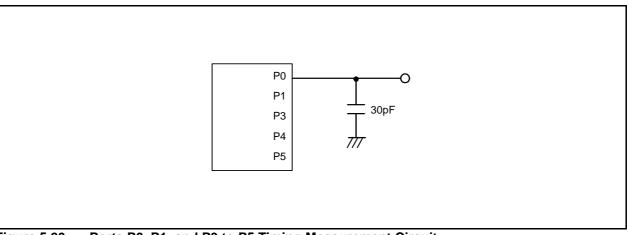
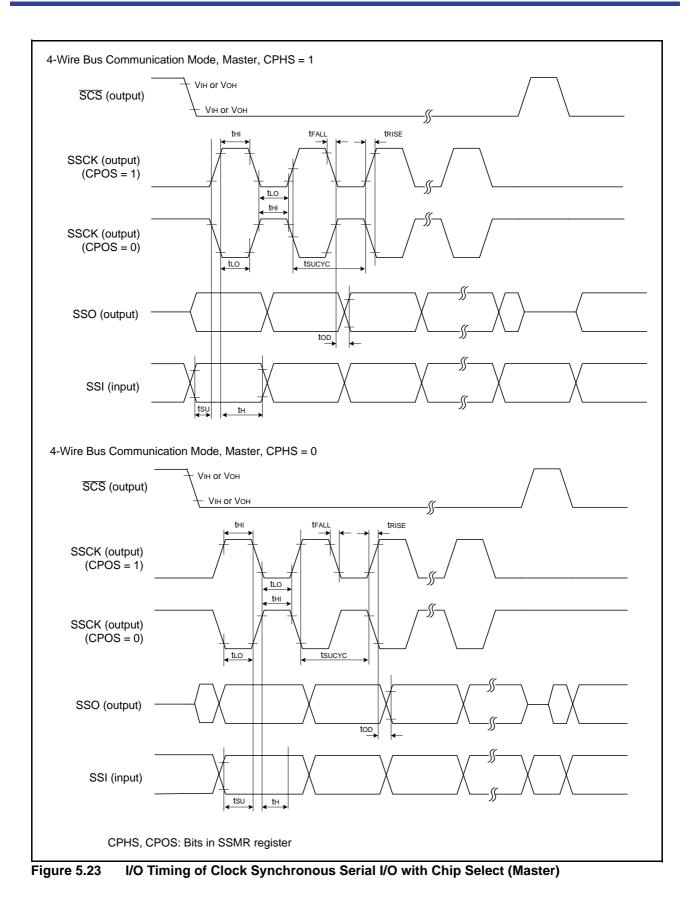



Figure 5.20 Ports P0, P1, and P3 to P5 Timing Measurement Circuit

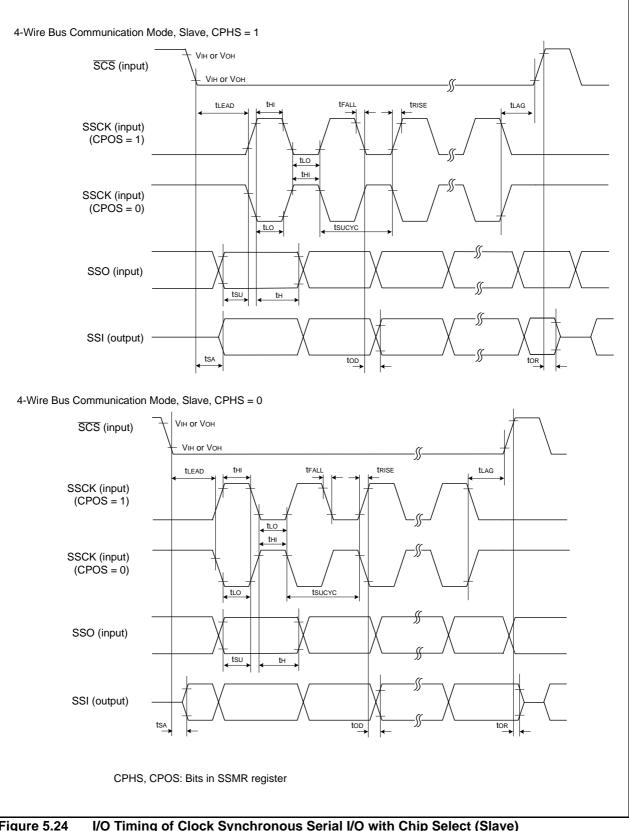


Figure 5.24 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Slave)

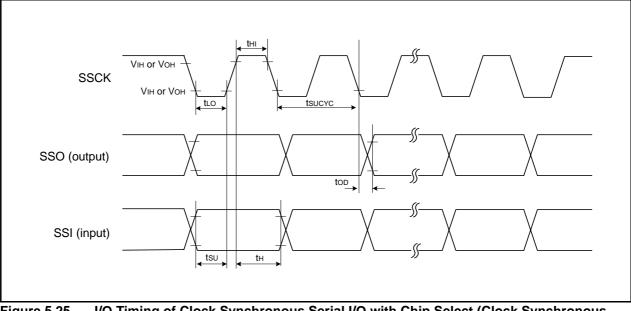


Figure 5.25 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Clock Synchronous Communication Mode)

Table 5.48Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.)

	1			01		
Parameter		Condition	Min.		Max.	Unit
Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	10	17	mA
output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	—	9	15	mA
	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6	l	mA	
		XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	5	-	mA
		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	1	mA
	High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz (J version) Low-speed on-chip oscillator on = 125 kHz No division	-	10	15	mA
	mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz (J version) Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
		XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5.5	10	mA
		XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	-	mA
	Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	130	300	μΑ
	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	75	μA
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	60	μA
	Stop mode	XIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.8	3.0	μA
		XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.2	_	μA
		XIN clock off, Top = 125°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	_	4.0	-	μΑ
	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open, other pins are VssHigh-speed clock modeHigh-speed on-chip oscillator modeHigh-speed on-chip oscillator modeLow-speed on-chip oscillator modeWait mode	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open, other pins are Vss High-speed clock mode XIN = 20 MHz (square wave) High-speed on-chip scillator off Low-speed on-chip scillator on 10CO = 20 MHz (J version) Low-speed on-chip scillator on 10CO = 20 MHz (J version) Low-speed on-chip scillator on 10CO = 20 MHz (J version) Low-speed on-chip scillator on 10CO = 20 MHz (J version) Low-speed on-chip scillator on 10CO = 20 MHz (J version) Low-speed on-chip scillator on 10CO = 20 MHz (J version) Low-speed on-chip scillator on 10CO = 10 MHz Low-speed on-chip scillator on 125 kHz Ni clock off High-speed on-chip scillator on = 125 kHz Ni clock off High-speed on-chip scillator off Low-speed on-chip scillator on = 125 kHz Ni clock off High-speed on-chip scillator on = 125 kHz Ni clock off High-speed on-chip scillator on = 125 kHz Ni clock off High-speed on-chip scillator on = 125 kH	Parameter Condition Min. Power supply current (VCc = 3.3 to 5.5 V) Single-chip mode, output pins are vss High-speed lock mode XIN = 20 MHz (square wave) High-speed on-chip oscillator of Low-speed on-chip oscillator of Lock Hz Dide-by-8	Parameter Condition Min. Typ. Power supply current (VCc a 3, 316 5 V) Single-chip mode, output pins are vss KIN = 20 MHz (square wave) High-speed on-chip ocalilator on 125 kHz No division - 9 Output pins are vss Figh-speed on-chip ocalilator on 125 kHz No division - 9 XIN = 20 MHz (square wave) High-speed on-chip ocalilator on 125 kHz No division - 6 XIN = 20 MHz (square wave) High-speed on-chip ocalilator on 125 kHz No division - 6 XIN = 20 MHz (square wave) High-speed on-chip ocalilator on 125 kHz Divide-by-8 - 4 XIN = 20 MHz (square wave) High-speed on-chip ocalilator on 125 kHz Divide-by-8 - 2.5 XIN = 20 MHz (square wave) High-speed on-chip ocalilator on 125 kHz Divide-by-8 - 2.5 XIN = 20 MHz (square wave) High-speed on-chip ocalilator on 125 kHz Divide-by-8 - 4 XIN = 20 MHz (square wave) High-speed on-chip ocalilator on 126 kHz Divide-by-8 - 2.5 XIN = 20 MHz (square wave) High-speed on-chip ocalilator on 126 kHz Divide-by-8 - 4 XIN = 10 MHz (square wave) High-speed on-chip ocalilator on 126 kHz Divide-by-8 - 4 XIN = 10 MHz (square wave) High-speed on-chip ocalilator on 126 kHz Divide-by-8 - <td>Power supply current (Vcc = 3.3 to 5.5 V) Single-chip model output pins are open, other pins are Vss XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator off Low (J version) Low-speed on-chip oscillator off Low (J version) Low-speed on-chip oscillator off Low-speed on-chip oscillator mode Image Low Low-speed on-chip oscillator off Low Low-speed on-chip oscillator off Low (J version) Low-speed on-chip oscillator off Low Low-speed on-chip oscillator off Low L</td>	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip model output pins are open, other pins are Vss XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator off Low (J version) Low-speed on-chip oscillator off Low (J version) Low-speed on-chip oscillator off Low-speed on-chip oscillator mode Image Low Low-speed on-chip oscillator off Low Low-speed on-chip oscillator off Low (J version) Low-speed on-chip oscillator off Low Low-speed on-chip oscillator off Low L

Symbol	Parameter		Condition		Standard			Unit	
Symbol	Fdia	ameter	Condition		Min. Typ. Max		Max.		
Vон	Output "H" voltage	Except XOUT	Іон = -1 mA		Vcc - 0.5	-	Vcc	V	
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	-	Vcc	V	
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	_	Vcc	V	
VoL Output "L" voltage		Except XOUT	lo∟ = 1 mA	•	-	-	0.5	V	
		XOUT	Drive capacity HIGH	IoL = 0.1 mA	-	-	0.5	V	
			Drive capacity LOW	IoL = 50 μA	-	_	0.5	V	
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0,CLK1, SSI, SCL, SDA, SSO			0.1	0.3	_	V	
		RESET			0.1	0.4	-	V	
Ін	Input "H" current		VI = 3 V, Vcc = 3	V	_	-	4.0	μA	
lı∟	Input "L" current		VI = 0 V, Vcc = 3	V	_	-	-4.0	μA	
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3	V	66	160	500	kΩ	
Rfxin	Feedback resistance	XIN			-	3.0	-	MΩ	
VRAM	RAM hold voltage	•	During stop mode	9	2.0	-	-	V	

Table 5.53 Electrical Characteristics (3) [Vcc = 3 V]

NOTE:

1. Vcc = 2.7 to 3.3 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 10 MHz, unless otherwise specified.

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.55 XIN Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(XIN)	XIN input cycle time	100	-	ns	
twh(xin)	XIN input "H" width	40	-	ns	
twl(XIN)	XIN input "L" width	40	-	ns	

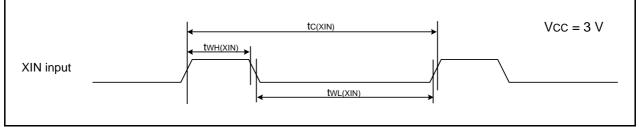


Figure 5.31 XIN Input Timing Diagram when Vcc = 3 V

Table 5.56 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	300	-	ns	
twh(traio)	TRAIO input "H" width	120	-	ns	
twl(traio)	TRAIO input "L" width	120	-	ns	

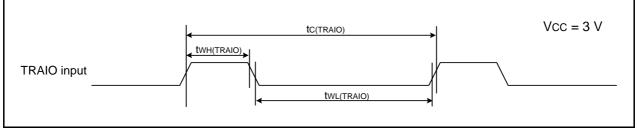


Figure 5.32 TRAIO Input Timing Diagram when Vcc = 3 V