

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21265sdfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/26 Group and Table 1.2 outlines the Functions and Specifications for R8C/27 Group.

	Item	Specification
CPU	Number of	89 instructions
	fundamental	
	instructions	
	Minimum instruction	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) (other than K version)
	execution time	62.5 ns (f(XIN) = 16 MHz, VCC = 3.0 to 5.5 V) (K version)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V) (N, D version)
	Operating mode	Single-chip
	Address space	1 Mbyte
	Memory capacity	Refer to Table 1.3 Product Information for R8C/26 Group
Peripheral	Ports	I/O ports: 25 pins, Input port: 3 pins
Functions	LED drive ports	I/O ports: 8 pins (N. D version)
	Timers	Timer RA: 8 bits x 1 channel
		Timer RB: 8 bits x 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer RC: 16 bits × 1 channel
		(Input capture and output compare circuits)
		Timer RE: With real-time clock and compare match function
		(For J, K version, compare match function only.)
	Serial interfaces	2 channels (UART0, UART1)
		Clock synchronous serial I/O, UART
	Clock synchronous	1 channel
	serial interface	I ² C bus Interface ⁽¹⁾
		Clock synchronous serial I/O with chip select
	LIN module	Hardware LIN: 1 channel (timer RA_LIARTO)
		10-bit A/D converter: 1 circuit 12 channels
	Watchdog timor	15 bits x 1 channel (with proceeder)
	watchuog timer	Start-on-reset selectable
	Interrupte	Internal: 15 apurada External: 4 apurada
	Interrupts	Software: 4 sources, Priority levels: 7 levels
	Clock generation	3 circuits
	circuits	 XIN clock generation circuit (with on-chip feedback resistor)
		 On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has a frequency adjustment function
		 XCIN clock generation circuit (32 kHz) (N, D version)
		 Real-time clock (timer RE) (N, D version)
	Oscillation-stopped	XIN clock oscillation stop detection function
	detector	
	Voltage detection	On-chip
	Power-on reset circuit	On-chin
Electrical	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz) (other than K version)
Characteristics	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 16 MHz) (K version)
Onaraciensilos		$V_{CC} = 2.7 \text{ to } 5.5 \text{ V} (f(XIN) = 10 \text{ MHz})$
		VCC = 2.2 to 5.5 V (f(XIN) = 5 MHz) (N D version)
	Current consumption	Typ 10 mA (VCC $-$ 5 0 V/ f(XIN) $-$ 20 MHz)
	(N D version)	Typ. 6 mA (VCC = 3.0 V , (XIN) = 20 MHz)
		Typ. 2.0 μ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz)
		Typ. 0.7 μ A (VCC = 3.0 V stop mode)
Flash Memory	Programming and	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$
1 laon womony	erasure voltage	VOO - 2.1 10 0.0 V
	Programming and	100 times
	erasure endurance	
Operating Ambio	nt Temperature	-20 to 85°C (Niversion)
Operating Amble		-20 to 00 O (N VEISION) 40 to $95^{\circ}0$ (D Lyprojan)(2) 40 to $405^{\circ}0$ (Kyprojan)(2)
Deslars		-40 to 65°C (D, J Version)(4), -40 to 125°C (K Version)(4)
Раскаде		32-pin molded-plastic LQFP

 Table 1.1
 Functions and Specifications for R8C/26 Group

NOTES:

1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

2. Specify the D, K version if D, K version functions are to be used.

1.3 **Block Diagram**

Figure 1.1 shows a Block Diagram.

Figure 1.1 **Block Diagram**

1		Overview
---	--	----------

ROM Capacity		DAM				
Part No.	Program ROM	Data flash	Capacity	Package Type	Re	marks
R5F21272SNFP	8 Kbytes	1 Kbyte x 2	512 bytes	PLQP0032GB-A	N version	
R5F21274SNFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A		
R5F21275SNFP	24 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21276SNFP	32 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21272SDFP	8 Kbytes	1 Kbyte x 2	512 bytes	PLQP0032GB-A	D version	
R5F21274SDFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A		
R5F21275SDFP	24 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21276SDFP	32 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21274JFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	J version	
R5F21276JFP	32 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21274KFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	K version	
R5F21276KFP	32 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21272SNXXXFP	8 Kbytes	1 Kbyte x 2	512 bytes	PLQP0032GB-A	N version	Factory
R5F21274SNXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A		programming
R5F21275SNXXXFP	24 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		product ⁽¹⁾
R5F21276SNXXXFP	32 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21272SDXXXFP	8 Kbytes	1 Kbyte x 2	512 bytes	PLQP0032GB-A	D version	
R5F21274SDXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A		
R5F21275SDXXXFP	24 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21276SDXXXFP	32 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21274JXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	J version	
R5F21276JXXXFP	32 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A		
R5F21274KXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	K version	
R5F21276KXXXFP	32 Kbytes	1 Kbyte × 2	1.5 Kbytes	PLQP0032GB-A	<u> </u>	

 Table 1.4
 Product Information for R8C/27 Group

Current of Sep. 2008

NOTE:

1. The user ROM is programmed before shipment.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3.2 R8C/27 Group

Figure 3.2 is a Memory Map of R8C/27 Group. The R8C/27 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Figure 3.2 Memory Map of R8C/27 Group

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
			1000000b ⁽²⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4 ⁽³⁾	FRA4	When shipping
002Ah	-		
002Bh	High-Speed On-Chip Oscillator Control Register 6 ⁽³⁾	FRA6	When shipping
002Ch	High-Speed On-Chip Oscillator Control Register 7 ⁽³⁾	FRA7	When shipping
002Dh	J		
002Eh			
002Eh			

Table 4.1 SFR Information (1)⁽¹⁾

X: Undefined NOTES:

1. The blank regions are reserved. Do not access locations in these regions.

2. The CSPROINI bit in the OFS register is set to 0.

3. In J, K version these regions are reserved. Do not access locations in these regions.

Table 4.2SFR Information (2)⁽¹⁾

Address	Register	Symbol	After reset
0030h			
0031h	Voltage Detection Register 1 (2)	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	 N, D version 00h⁽³⁾
			0010000b ⁽⁴⁾
			 J, K version 00h⁽⁷⁾
			0100000b ⁽⁸⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register (5)	VW1C	 N, D version 00001000b
			 J, K version 0000X000b⁽⁷⁾
			0100X001b ⁽⁸⁾
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h	Voltage Monitor 0 Circuit Control Register ⁽⁶⁾	VW0C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0039h			
		•	
003Fh			
0040h			
0041h			
0042h			
0043h			
0044h			
0045h			
0046h	Timer PC Interrupt Control Register	TROIC	XXXXX000b
004711		TROIC	^^^^0000
0048h			
0045h	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	SSU/IIC bus Interrupt Control Register ⁽⁹⁾	SSUIC/IICIC	XXXXX000b
0050h			
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h			
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h		TODIO	
0058h	Inner KB Interrupt Control Register		
0059h			
005Rh			000000
00501			
0050h	INTO Interrupt Control Register		XX00X000b
005Fh			
005Eh			

006Fh 0070h

0060h

007Fh

X: Undefined

NOTES:

1. The blank regions are reserved. Do not access locations in these regions.

2. (N, D version) Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect this register.

(J, K version) Software reset, watchdog timer reset, or voltage monitor 2 reset do not affect this register.

3. The LVD0ON bit in the OFS register is set to 1 and hardware reset.

4. Power-on reset, voltage monitor 0 reset or the LVD0ON bit in the OFS register is set to 0, and hardware reset.

5. (N, D version) Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect b2 and b3.

(J, K version) Software reset, watchdog timer reset, or voltage monitor 2 reset do not affect b2 and b3.

6. (N, D version) Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect this register.

(J, K version) These regions are reserved. Do not access locations in these regions.

7. The LVD1ON bit in the OFS register is set to 1 and hardware reset.

8. Power-on reset, voltage monitor 1 reset, or the LVD1ON bit in the OFS register is set to 0 and hardware reset.

9. Selected by the IICSEL bit in the PMR register.

Table 4.5	SFR	Information	(5)(1)
		mormation	(3), /

Address	Register	Symbol	After reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h			
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h			
0118h	Timer RE Second Data Register / Counter Data Register	TRESEC	00h
0119h	Timer RE Minute Data Register / Compare Data Register	TREMIN	00h
011Ah	Timer RE Hour Data Register ⁽²⁾	TREHR	00h
011Bh	Timer RE Day of Week Data Register ⁽²⁾	TREWK	00h
011Ch	Timer RE Control Register 1	TRFCR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Count Source Select Register	TRECSR	00001000b
011Fh			
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0127h		-	00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h	5		FFh
012Ah	Timer RC General Register B	TRCGRB	FFh
012Bh	•		FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh	-		FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh			FFh
0130h	Timer RC Control Register 2	TRCCR2	00011111b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0133h			
0134h			
0135h			
0136h			
0137h			
0138h			
0139h			
013Ah			
013Bh			
013Ch			
013Dh			
013Eh			
013Fh			

NOTES:

The blank regions are reserved. Do not access locations in these regions.
 In J, K version these regions are reserved. Do not access locations in these regions.

Symbol	Parameter	Condition	Standard			Llnit
Symbol	i arameter	Condition	Min.	Тур.	Max.	Onit
fOCO40M	High-speed on-chip oscillator frequency	Vcc = 4.75 to 5.25 V	39.2	40	40.8	MHz
	temperature • supply voltage dependence	$0^{\circ}C \leq T_{opr} \leq 60^{\circ}C^{(2)}$				
		Vcc = 3.0 to 5.5 V	38.8	40	41.2	MHz
		$-20^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$				
		Vcc = 3.0 to 5.5 V	38.4	40	41.6	MHz
		$-40^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$				
		Vcc = 2.7 to 5.5 V	38	40	42	MHz
		$-20^{\circ}C \le T_{opr} \le 85^{\circ}C^{(2)}$				
		Vcc = 2.7 to 5.5 V	37.6	40	42.4	MHz
		$-40^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$				
		Vcc = 2.2 to 5.5 V	35.2	40	44.8	MHz
		$-20^{\circ}C \le T_{opr} \le 85^{\circ}C^{(3)}$				
		Vcc = 2.2 to 5.5 V	34	40	46	MHz
		$-40^{\circ}C \le T_{opr} \le 85^{\circ}C^{(3)}$				
		$Vcc = 5.0 V \pm 10\%$	38.8	40	40.8	MHz
		$-20^{\circ}C \le T_{opr} \le 85^{\circ}C^{(2)}$				
		Vcc = 5.0 V ± 10%	38.4	40	40.8	MHz
		$-40^{\circ}C \le T_{opr} \le 85^{\circ}C^{(2)}$				
	High-speed on-chip oscillator frequency when	VCC = 5.0 V, Topr = $25^{\circ}C$	-	36.864	-	MHz
	correction value in FRA7 register is written to	Vcc = 3.0 to 5.5 V	-3%	-	3%	%
	FRA1 register ⁽⁴⁾	$-20^{\circ}C \le T_{opr} \le 85^{\circ}C$				
-	Value in FRA1 register after reset		08h ⁽³⁾	-	F7h ⁽³⁾	-
-	Oscillation frequency adjustment unit of high-	Adjust FRA1 register	-	+0.3	-	MHz
	speed on-chip oscillator	(value after reset) to -1				
-	Oscillation stability time		_	10	100	μS
_	Self power consumption at oscillation	VCC = 5.0 V, Topr = $25^{\circ}C$	-	400	-	μA

Table 5.10	High-speed On-Chip Oscillator Circuit Electrical Characteristics
------------	--

NOTES:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. These standard values show when the FRA1 register value after reset is assumed.

3. These standard values show when the corrected value of the FRA6 register is written to the FRA1 register.

4. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Baramotor	Condition		Llnit		
Symbol Parameter		Condition	Min.	Тур.	Max.	Onit
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
-	Oscillation stability time		-	10	100	μS
-	Self power consumption at oscillation	VCC = 5.0 V, Topr = 25°C	-	15	-	μA

NOTE:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 5.12 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Llpit
Symbol		Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during		1	-	2000	μS
	power-on ⁽²⁾					
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and T_{opr} = 25°C.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

Table 5.17Electrical Characteristics (3) [Vcc = 5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Paramotor	Condition	Standard			Unit	
Symbol	Falameter		Condition	Min.	Тур.	Max.	Onit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open, other pins are Vss	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	75	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	60	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	4.0	_	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	2.2	_	μA
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.8	3.0	μΑ
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.2	_	μA

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.24 XIN Input, XCIN Input

Symbol	Parameter		Standard		
			Max.	Offic	
tc(XIN)	XIN input cycle time	100	-	ns	
twh(xin)	XIN input "H" width	40	-	ns	
twl(XIN)	XIN input "L" width	40	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 5.12 XIN Input and XCIN Input Timing Diagram when Vcc = 3 V

Table 5.25 TRAIO Input

Symbol	Parameter		Standard		
Symbol	Falantelei	Min.	Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	300	-	ns	
twh(traio)	TRAIO input "H" width	120	-	ns	
twl(traio)	TRAIO input "L" width	120	-	ns	

Figure 5.13 TRAIO Input Timing Diagram when Vcc = 3 V

Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) [Vcc = 2.2 V]

Table 5.30 XIN Input, XCIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	200	-	ns	
twh(xin)	XIN input "H" width	90	-	ns	
twl(XIN)	XIN input "L" width	90	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twL(XCIN)	XCIN input "L" width	7	-	μS	

Figure 5.16 XIN Input and XCIN Input Timing Diagram when Vcc = 2.2 V

Table 5.31 TRAIO Input

Symbol	Parameter		Standard		
Symbol		Min.	Max.	Onit	
tc(TRAIO)	TRAIO input cycle time	500	-	ns	
twh(traio)	TRAIO input "H" width	200	-	ns	
twl(traio)	TRAIO input "L" width	200	-	ns	

Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

Table 5.32 Serial Interface

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(CK)	CLKi input cycle time	800	-	ns	
tw(ckh)	CLKi input "H" width	400	-	ns	
tW(CKL)	CLKi input "L" width	400	-	ns	
td(C-Q)	TXDi output delay time	-	200	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	150	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Table 5.33 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Offic	
tw(INH)	INTi input "H" width	1000(1)	-	ns	
tw(INL)	INTi input "L" width	1000 ⁽²⁾	-	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.19 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

Symbol	Doromoto	Baramotor			Stand	ard	Unit
Symbol	Falamete	÷1	Conditions	Min.	Тур.	Max.	
tsucyc	SSCK clock cycle tim	е		4	-	-	tCYC ⁽²⁾
tHI	SSCK clock "H" width)		0.4	-	0.6	tsucyc
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising	Master		-	-	1	tCYC ⁽²⁾
	time	Slave		-	-	1	μS
tFALL	SSCK clock falling	Master		-	-	1	tCYC ⁽²⁾
	time	Slave		-	-	1	μS
ts∪	SSO, SSI data input	setup time		100	-	-	ns
tн	SSO, SSI data input I	nold time		1	-	-	tCYC ⁽²⁾
t LEAD	SCS setup time	Slave		1tcyc + 50	_	_	ns
tlag	SCS hold time	Slave		1tcyc + 50	-	_	ns
tod	SSO, SSI data output	t delay time		-	-	1	tCYC ⁽²⁾
tsa	SSI slave access time	e		-	-	1.5tcyc + 100	ns
tOR	SSI slave out open tir	ne		—	_	1.5tcyc + 100	ns

Table 5.45 Timing Requirements of Clock Synchronous Serial I/O with Chip Select⁽¹⁾

NOTES:

1. Vcc = 2.7 to 5.5 V, Vss = 0 V at T_{opr} = -40 to 85° C (J version) / -40 to 125° C (K version), unless otherwise specified. 2. 1tcvc = 1/f1(s)

Figure 5.24 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Slave)

Table 5.51 Serial Interface

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(CK)	CLKi input cycle time	200	-	ns	
tw(ckh)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	_	ns	

i = 0 or 1

Table 5.52 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter		Standard	
Symbol	Falanielei	Min.	Max.	Onit
tw(INH)	INTi input "H" width	250 ⁽¹⁾	-	ns
tw(INL)	INTi input "L" width	250 ⁽²⁾	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Table 5.54Electrical Characteristics (4) [Vcc = 3 V]
(Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard			Linit
				Min.	Тур.	Max.	Unit
	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open, other pins are Vss	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5	9	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μΑ
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	70	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	55	μA
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.7	3.0	μA
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.1	_	μĀ
			XIN clock off, $T_{opr} = 125^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	3.8	_	μΑ

REVISION HISTORY

R8C/26 Group, R8C/27 Group Datasheet

Boy	Date		Description			
Rev.		Page	Summary			
1.00	Nov 08, 2006	27	Table 5.9, Figure 5.3 revised and Table 5.10 deleted			
		28	Table 5.10, Table 5.11 revised			
		34	Table 5.15 revised			
		35	Table 5.16 revised			
		36	Table 5.17 revised			
		39	Table 5.22 revised			
		40	Table 5.23 revised			
		44	Table 5.29 revised			
		47	Package Dimensions; "Diagrams showing the latestwebsite." added			
1.10	Nov 29, 2006	All pages	"J, K version" added			
		1	1 "J and K versions are under developmentnotice." added 1.1 revised			
		2	Table 1.1 revised			
		3	Table 1.2 revised			
		4	Figure 1.1 NOTE3 added			
		5	Table 1.3, Figure 1.2 revised			
		6	Table 1.4, Figure 1.3 revised			
		7	Figure 1.4 NOTE3 added			
		8	Table 1.5 revised			
		9	Table 1.6 NOTE2 added			
		13	Figure 3.1 revised			
		14	Figure 3.2 revised			
		15	Table 4.1; "0000h to 003Fh" → "0000h to 002Fh" revised • NOTE3 added			
		16	 Table 4.2; "0040h to 007Fh" → "0030h to 007Fh" revised 0032h, 0036h: "After reset" is revised 0038h: NOTE revised NOTES 2, 5, 6 revised and NOTE 7, 8 added 			
		19	Table 4.5 NOTE2 added			
		28	Table 5.10 revised			
		48 to 66	5.2 J, K Version added			
1.20	Jan 17, 2007	18	Table 4.4 NOTE2 added			
1.30	May 25, 2007	2	Table 1.1 revised			
		3	Table 1.2 revised			
		5	Table 1.3 revised			
		6	Figure 1.2 revised			
		7	Table 1.4 revised			
		8	Figure 1.3 revised			
		9	Figure 1.4 NOTE4 added			
		15	Figure 3.1 part number revised			