



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Becano                     |                                                                                  |
|----------------------------|----------------------------------------------------------------------------------|
| Product Status             | Active                                                                           |
| Core Processor             | R8C                                                                              |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 20MHz                                                                            |
| Connectivity               | I <sup>2</sup> C, LINbus, SIO, SSU, UART/USART                                   |
| Peripherals                | LED, POR, Voltage Detect, WDT                                                    |
| Number of I/O              | 25                                                                               |
| Program Memory Size        | 24KB (24K x 8)                                                                   |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 1.5K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.2V ~ 5.5V                                                                      |
| Data Converters            | A/D 12x10b                                                                       |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 32-LQFP                                                                          |
| Supplier Device Package    | 32-LQFP (7x7)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21265sdfp-x6 |
|                            |                                                                                  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# RENESAS

R8C/26 Group, R8C/27 Group SINGLE-CHIP 16-BIT CMOS MCU

# 1. Overview

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C CPU core, and are packaged in a 32-pin molded-plastic LQFP. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. Furthermore, the R8C/27 Group has on-chip data flash (1 KB  $\times$  2 blocks).

The difference between the R8C/26 Group and R8C/27 Group is only the presence or absence of data flash. Their peripheral functions are the same.

# 1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer products, automotive, etc.



#### **1.2 Performance Overview**

Table 1.1 outlines the Functions and Specifications for R8C/26 Group and Table 1.2 outlines the Functions and Specifications for R8C/27 Group.

|                 | ltem                                | Specification                                                                                             |
|-----------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------|
| CPU             | Number of                           | 89 instructions                                                                                           |
|                 | fundamental                         |                                                                                                           |
|                 | instructions<br>Minimum instruction | 50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) (other than K version)                                        |
|                 | Minimum instruction                 |                                                                                                           |
|                 | execution time                      | 62.5 ns (f(XIN) = 16 MHz, VCC = 3.0 to 5.5 V) (K version)<br>100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V) |
|                 |                                     |                                                                                                           |
|                 |                                     | 200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V) (N, D version)                                                |
|                 | Operating mode                      | Single-chip                                                                                               |
|                 | Address space                       | 1 Mbyte                                                                                                   |
|                 | Memory capacity                     | Refer to Table 1.3 Product Information for R8C/26 Group                                                   |
| Peripheral      | Ports                               | I/O ports: 25 pins, Input port: 3 pins                                                                    |
| Functions       | LED drive ports                     | I/O ports: 8 pins (N, D version)                                                                          |
|                 | Timers                              | Timer RA: 8 bits × 1 channel                                                                              |
|                 |                                     | Timer RB: 8 bits × 1 channel                                                                              |
|                 |                                     | (Each timer equipped with 8-bit prescaler)                                                                |
|                 |                                     | Timer RC: 16 bits × 1 channel                                                                             |
|                 |                                     | (Input capture and output compare circuits)                                                               |
|                 |                                     | Timer RE: With real-time clock and compare match function                                                 |
|                 |                                     | (For J, K version, compare match function only.)                                                          |
|                 | Serial interfaces                   | 2 channels (UART0, UART1)                                                                                 |
|                 |                                     | Clock synchronous serial I/O, UART                                                                        |
|                 | Clock synchronous                   | 1 channel                                                                                                 |
|                 | serial interface                    | I <sup>2</sup> C bus Interface <sup>(1)</sup>                                                             |
|                 |                                     | Clock synchronous serial I/O with chip select                                                             |
|                 | LIN module                          | Hardware LIN: 1 channel (timer RA, UART0)                                                                 |
|                 | A/D converter                       |                                                                                                           |
|                 |                                     | 10-bit A/D converter: 1 circuit, 12 channels                                                              |
|                 | Watchdog timer                      | 15 bits × 1 channel (with prescaler)                                                                      |
|                 |                                     | Start-on-reset selectable                                                                                 |
|                 | Interrupts                          | Internal: 15 sources, External: 4 sources,                                                                |
|                 |                                     | Software: 4 sources, Priority levels: 7 levels                                                            |
|                 | Clock generation                    | 3 circuits                                                                                                |
|                 | circuits                            | <ul> <li>XIN clock generation circuit (with on-chip feedback resistor)</li> </ul>                         |
|                 |                                     | On-chip oscillator (high speed, low speed)                                                                |
|                 |                                     | High-speed on-chip oscillator has a frequency adjustment function                                         |
|                 |                                     | <ul> <li>XCIN clock generation circuit (32 kHz) (N, D version)</li> </ul>                                 |
|                 |                                     | <ul> <li>Real-time clock (timer RE) (N, D version)</li> </ul>                                             |
|                 | Oscillation-stopped                 | XIN clock oscillation stop detection function                                                             |
|                 | detector                            |                                                                                                           |
|                 | Voltage detection                   | On-chip                                                                                                   |
|                 | circuit                             |                                                                                                           |
|                 | Power-on reset circuit              | On-chip                                                                                                   |
| Electrical      | Supply voltage                      | VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz) (other than K version)                                               |
| Characteristics |                                     | VCC = 3.0  to  5.5  V (f(XIN) = 16  MHz) (K  version)                                                     |
| 2               |                                     | VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)                                                                      |
|                 |                                     | VCC = 2.2 to 5.5 V (f(XIN) = 5 MHz) (N, D version)                                                        |
|                 | Current consumption                 | Typ. 10 mA (VCC = $5.0 \text{ V}$ , f(XIN) = $20 \text{ MHz}$ )                                           |
|                 | (N, D version)                      | Typ. 6 mA (VCC = $3.0 \text{ V}$ , f(XIN) = $10 \text{ MHz}$ )                                            |
|                 |                                     | Typ. 2.0 $\mu$ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz)                                               |
|                 |                                     | Typ. 0.7 $\mu$ A (VCC = 3.0 V, stop mode)                                                                 |
|                 | Programming and                     | VCC = 2.7  to  5.5  V                                                                                     |
|                 | erasure voltage                     |                                                                                                           |
| Flash Memory    |                                     |                                                                                                           |
| Flash Memory    |                                     | 100 time an                                                                                               |
| Flash Memory    | Programming and                     | 100 times                                                                                                 |
| ·               | Programming and erasure endurance   |                                                                                                           |
| ·               | Programming and erasure endurance   | -20 to 85°C (N version)                                                                                   |
| Operating Ambie | Programming and erasure endurance   |                                                                                                           |

 Table 1.1
 Functions and Specifications for R8C/26 Group

NOTES:

1. I<sup>2</sup>C bus is a trademark of Koninklijke Philips Electronics N. V.

2. Specify the D, K version if D, K version functions are to be used.

| CPU             | Item<br>Number of fundamental | Specification 89 instructions                                                                                                                 |
|-----------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| CPU             |                               |                                                                                                                                               |
|                 | instructions                  |                                                                                                                                               |
|                 | Minimum instruction           | 50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) (other than K version)<br>(25  so (f(XIN)) = 40  MHz + 100  so = 2.0  to  5.5  V) (f(x)  sortion) |
|                 | execution time                | 62.5 ns (f(XIN) = 16 MHz, VCC = 3.0 to 5.5 V) (K version)                                                                                     |
|                 |                               | 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)<br>200 ns (f(XIN) = 5 MHz, VCC = 2.3 to 5.5 V) (NL D version)                                    |
|                 | Operating mode                | 200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V) (N, D version)                                                                                    |
|                 | Operating mode                | Single-chip                                                                                                                                   |
|                 | Address space                 | 1 Mbyte                                                                                                                                       |
| Daniah anal     | Memory capacity               | Refer to Table 1.4 Product Information of R8C/27 Group                                                                                        |
| Peripheral      | Ports                         | I/O ports: 25 pins, Input port: 3 pins                                                                                                        |
| Functions       | LED drive ports               | I/O ports: 8 pins (N, D version)                                                                                                              |
|                 | Timers                        | Timer RA: 8 bits × 1 channel                                                                                                                  |
|                 |                               | Timer RB: 8 bits × 1 channel                                                                                                                  |
|                 |                               | (Each timer equipped with 8-bit prescaler)                                                                                                    |
|                 |                               | Timer RC: 16 bits × 1 channel                                                                                                                 |
|                 |                               | (Input capture and output compare circuits)                                                                                                   |
|                 |                               | Timer RE: With real-time clock and compare match function                                                                                     |
|                 | O a ni a l in ta nf           | (For J, K version, compare match function only.)                                                                                              |
|                 | Serial interfaces             | 2 channels (UART0, UART1)                                                                                                                     |
|                 |                               | Clock synchronous serial I/O, UART                                                                                                            |
|                 | Clock synchronous             | 1 channel                                                                                                                                     |
|                 | serial interface              | I <sup>2</sup> C bus Interface <sup>(1)</sup>                                                                                                 |
|                 |                               | Clock synchronous serial I/O with chip select                                                                                                 |
|                 | LIN module                    | Hardware LIN: 1 channel (timer RA, UART0)                                                                                                     |
|                 | A/D converter                 | 10-bit A/D converter: 1 circuit, 12 channels                                                                                                  |
|                 | Watchdog timer                | 15 bits x 1 channel (with prescaler)                                                                                                          |
|                 |                               | Start-on-reset selectable                                                                                                                     |
|                 | Interrupts                    | Internal: 15 sources, External: 4 sources,                                                                                                    |
|                 |                               | Software: 4 sources, Priority levels: 7 levels                                                                                                |
|                 | Clock generation              | 3 circuits                                                                                                                                    |
|                 | circuits                      | <ul> <li>XIN clock generation circuit (with on-chip feedback resistor)</li> </ul>                                                             |
|                 |                               | <ul> <li>On-chip oscillator (high speed, low speed)</li> </ul>                                                                                |
|                 |                               | High-speed on-chip oscillator has a frequency adjustment function                                                                             |
|                 |                               | <ul> <li>XCIN clock generation circuit (32 kHz) (N, D version)</li> </ul>                                                                     |
|                 |                               | Real-time clock (timer RE) (N, D version)                                                                                                     |
|                 | Oscillation-stopped           | XIN clock oscillation stop detection function                                                                                                 |
|                 | detector                      | 2                                                                                                                                             |
|                 | Voltage detection circuit     | On-chip                                                                                                                                       |
|                 | Power-on reset circuit        | On-chip                                                                                                                                       |
| Electrical      | Supply voltage                | VCC = $3.0$ to $5.5$ V (f(XIN) = $20$ MHz) (other than K version)                                                                             |
| Characteristics |                               | VCC = $3.0 \text{ to } 5.5 \text{ V} (f(XIN) = 16 \text{ MHz}) (K \text{ version})$                                                           |
|                 |                               | VCC = 2.7 to 5.5 V ( $f(XIN) = 10 \text{ MHz}$ )                                                                                              |
|                 | -                             | VCC = 2.2 to 5.5 V (f(XIN) = 5 MHz) (N, D version)                                                                                            |
|                 | Current consumption           | Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz)                                                                                                     |
|                 | (N, D version)                | Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz)                                                                                                      |
|                 |                               | Typ. 2.0 $\mu$ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz)                                                                                   |
|                 |                               | Typ. 0.7 μA (VCC = 3.0 V, stop mode)                                                                                                          |
| Flash Memory    | Programming and               | VCC = 2.7 to 5.5 V                                                                                                                            |
|                 | erasure voltage               |                                                                                                                                               |
|                 | Programming and               | 10,000 times (data flash)                                                                                                                     |
|                 | erasure endurance             | 1,000 times (program ROM)                                                                                                                     |
| Operating Ambie | ent Temperature               | -20 to 85°C (N version)                                                                                                                       |
|                 |                               | -40 to 85°C (D, J version) <sup>(2)</sup> , -40 to 125°C (K version) <sup>(2)</sup>                                                           |
| Package         |                               | 32-pin molded-plastic LQFP                                                                                                                    |

NOTES:

1. I<sup>2</sup>C bus is a trademark of Koninklijke Philips Electronics N. V.

2. Specify the D, K version if D, K version functions are to be used.

## 1.5 Pin Assignments

Figure 1.4 shows Pin Assignments (Top View).

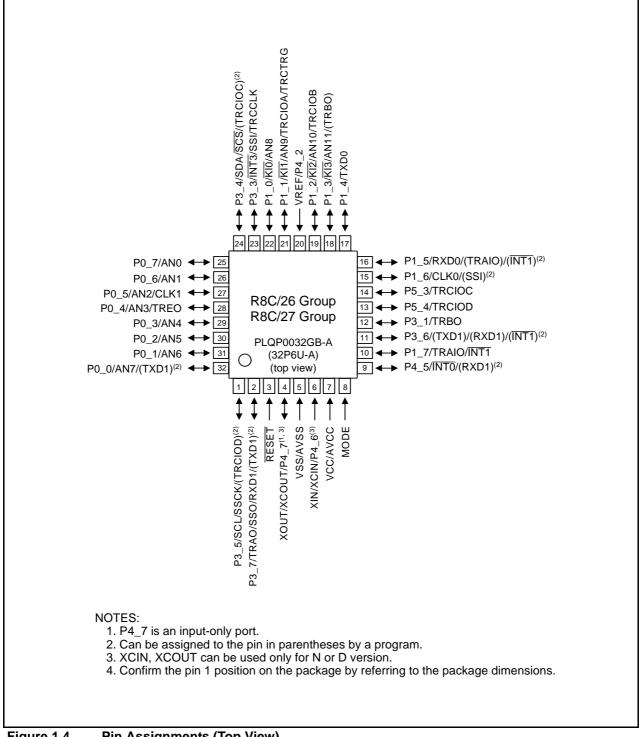
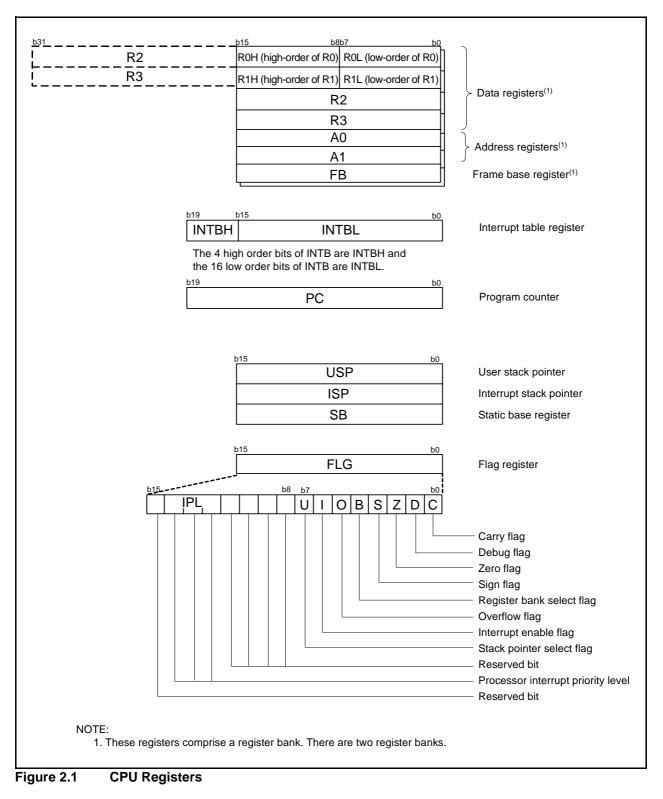




Figure 1.4 Pin Assignments (Top View)

# 2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.



## 2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

## 2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 to be used as a 32-bit address register (A1A0).

### 2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

#### 2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

### 2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

# 2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

#### 2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

#### 2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

# 2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

#### 2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

# 2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

# 2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

#### 2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

#### 2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.



# 3. Memory

# 3.1 R8C/26 Group

Figure 3.1 is a Memory Map of R8C/26 Group. The R8C/26 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

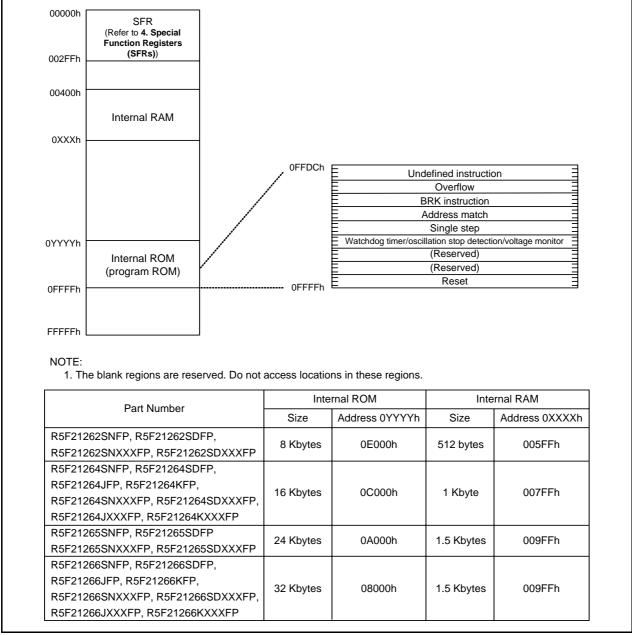



Figure 3.1 Memory Map of R8C/26 Group



#### **Special Function Registers (SFRs)** 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers.

| Address        | Register                                                        | Symbol | After reset             |
|----------------|-----------------------------------------------------------------|--------|-------------------------|
| 0000h          |                                                                 |        |                         |
| 0001h          |                                                                 |        |                         |
| 0002h          |                                                                 |        |                         |
| 0003h          |                                                                 |        |                         |
| 0004h          | Processor Mode Register 0                                       | PM0    | 00h                     |
| 0005h          | Processor Mode Register 1                                       | PM1    | 00h                     |
| 0006h          | System Clock Control Register 0                                 | CM0    | 01101000b               |
| 0007h          | System Clock Control Register 1                                 | CM1    | 0010000b                |
| 0008h          |                                                                 |        |                         |
| 0009h          |                                                                 |        |                         |
| 000Ah          | Protect Register                                                | PRCR   | 00h                     |
| 000Bh          |                                                                 |        |                         |
| 000Ch          | Oscillation Stop Detection Register                             | OCD    | 00000100b               |
| 000Dh          | Watchdog Timer Reset Register                                   | WDTR   | XXh                     |
| 000Eh          | Watchdog Timer Start Register                                   | WDTS   | XXh                     |
| 000Eh          | Watchdog Timer Control Register                                 | WDC    | 00X1111b                |
| 0010h          | Address Match Interrupt Register 0                              | RMADO  | 00h                     |
| 0011h          |                                                                 |        | 00h                     |
| 0012h          | -                                                               |        | 00h                     |
| 0012h          | Address Match Interrupt Enable Register                         | AIER   | 00h                     |
| 0014h          | Address Match Interrupt Register 1                              | RMAD1  | 00h                     |
| 0014h          | Address Match Interrupt Register 1                              | KINADI | 00h                     |
| 0016h          | _                                                               |        | 00h                     |
| 0010h          |                                                                 |        | 0011                    |
| 0017h          |                                                                 |        |                         |
| 0018h          |                                                                 |        |                         |
| 0019h          |                                                                 |        |                         |
| 001An          |                                                                 |        |                         |
| 001Bh          | Count Source Directorian Mode Register                          | CSPR   | 00h                     |
| 00101          | Count Source Protection Mode Register                           | COFR   |                         |
|                |                                                                 |        | 1000000b <sup>(2)</sup> |
| 001Dh          |                                                                 |        |                         |
| 001Eh          |                                                                 |        |                         |
| 001Fh          |                                                                 |        |                         |
| 0020h          |                                                                 |        |                         |
| 0021h          |                                                                 |        |                         |
| 0022h          |                                                                 |        |                         |
| 0023h          | High-Speed On-Chip Oscillator Control Register 0                | FRA0   | 00h                     |
| 0024h          | High-Speed On-Chip Oscillator Control Register 1                | FRA1   | When shipping           |
| 0025h          | High-Speed On-Chip Oscillator Control Register 2                | FRA2   | 00h                     |
| 0026h          |                                                                 |        |                         |
| 0027h          |                                                                 |        |                         |
| 0028h          | Clock Prescaler Reset Flag                                      | CPSRF  | 00h                     |
| 0029h          | High-Speed On-Chip Oscillator Control Register 4 <sup>(3)</sup> | FRA4   | When shipping           |
| 002Ah          |                                                                 |        |                         |
| 002Bh          | High-Speed On-Chip Oscillator Control Register 6 <sup>(3)</sup> | FRA6   | When shipping           |
| 002Ch          | High-Speed On-Chip Oscillator Control Register 7 <sup>(3)</sup> | FRA7   | When shipping           |
|                |                                                                 |        |                         |
| 002Dh          |                                                                 |        |                         |
| 002Dh<br>002Eh |                                                                 |        |                         |

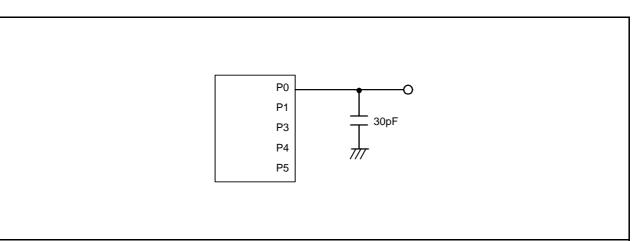
#### Table 4.1 SFR Information (1)<sup>(1)</sup>

X: Undefined NOTES:

1. The blank regions are reserved. Do not access locations in these regions.

2. The CSPROINI bit in the OFS register is set to 0.

3. In J, K version these regions are reserved. Do not access locations in these regions.


| Cumphiel | Deremeter          |                         | Conditions                              | Standard |      |      | 1.1  |
|----------|--------------------|-------------------------|-----------------------------------------|----------|------|------|------|
| Symbol   |                    | Parameter               | Conditions                              | Min.     | Тур. | Max. | Unit |
| -        | Resolution         |                         | Vref = AVCC                             | -        | -    | 10   | Bits |
| -        | Absolute           | 10-bit mode             | $\phi$ AD = 10 MHz, Vref = AVCC = 5.0 V | -        | -    | ±3   | LSB  |
|          | accuracy           | 8-bit mode              | $\phi$ AD = 10 MHz, Vref = AVCC = 5.0 V | -        | -    | ±2   | LSB  |
|          |                    | 10-bit mode             | $\phi$ AD = 10 MHz, Vref = AVCC = 3.3 V | -        | -    | ±5   | LSB  |
|          |                    | 8-bit mode              | $\phi$ AD = 10 MHz, Vref = AVCC = 3.3 V | -        | -    | ±2   | LSB  |
|          |                    | 10-bit mode             | $\phi$ AD = 5 MHz, Vref = AVCC = 2.2 V  | -        | -    | ±5   | LSB  |
|          |                    | 8-bit mode              | $\phi$ AD = 5 MHz, Vref = AVCC = 2.2 V  | -        | -    | ±2   | LSB  |
| Rladder  | Resistor ladder    |                         | Vref = AVCC                             | 10       | -    | 40   | kΩ   |
| tconv    | Conversion time    | 10-bit mode             | $\phi$ AD = 10 MHz, Vref = AVCC = 5.0 V | 3.3      | -    | -    | μs   |
|          |                    | 8-bit mode              | $\phi$ AD = 10 MHz, Vref = AVCC = 5.0 V | 2.8      | -    | -    | μs   |
| Vref     | Reference voltag   | e                       |                                         | 2.2      | -    | AVcc | V    |
| VIA      | Analog input volta | age <sup>(2)</sup>      |                                         | 0        | -    | AVcc | V    |
| -        | A/D operating      | Without sample and hold | Vref = AVcc = 2.7 to 5.5 V              | 0.25     | -    | 10   | MHz  |
|          | clock frequency    | With sample and hold    | Vref = AVcc = 2.7 to 5.5 V              | 1        | -    | 10   | MHz  |
|          |                    | Without sample and hold | Vref = AVcc = 2.2 to 5.5 V              | 0.25     | -    | 5    | MHz  |
|          |                    | With sample and hold    | Vref = AVcc = 2.2 to 5.5 V              | 1        | -    | 5    | MHz  |

#### Table 5.3 A/D Converter Characteristics

NOTES:

1. AVcc = 2.2 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.



#### Figure 5.1 Ports P0, P1, and P3 to P5 Timing Measurement Circuit

| Cumbal     | Parameter                                                           | Conditions                 |                      | Unit |                             |       |
|------------|---------------------------------------------------------------------|----------------------------|----------------------|------|-----------------------------|-------|
| Symbol     | Faranieter                                                          | Conditions                 | Min.                 | Тур. | Max.                        | Unit  |
| -          | Program/erase endurance <sup>(2)</sup>                              | R8C/26 Group               | 100 <sup>(3)</sup>   | -    | -                           | times |
|            |                                                                     | R8C/27 Group               | 1,000 <sup>(3)</sup> | -    | -                           | times |
| -          | Byte program time                                                   |                            | -                    | 50   | 400                         | μs    |
| -          | Block erase time                                                    |                            | -                    | 0.4  | 9                           | S     |
| td(SR-SUS) | Time delay from suspend request until                               |                            | -                    | -    | 97 + CPU clock              | μs    |
|            | suspend                                                             |                            |                      |      | × 6 cycles                  |       |
| -          | Interval from erase start/restart until                             |                            | 650                  | -    | -                           | μs    |
|            | following suspend request                                           |                            |                      |      |                             |       |
| -          | Interval from program start/restart until following suspend request |                            | 0                    | -    | -                           | ns    |
|            |                                                                     |                            |                      |      |                             |       |
| -          | Time from suspend until program/erase restart                       |                            | _                    | -    | 3 + CPU clock<br>× 4 cycles | μS    |
| -          | Program, erase voltage                                              |                            | 2.7                  | _    | 5.5                         | V     |
| -          | Read voltage                                                        |                            | 2.2                  | -    | 5.5                         | V     |
| _          | Program, erase temperature                                          |                            | 0                    | -    | 60                          | °C    |
| -          | Data hold time <sup>(7)</sup>                                       | Ambient temperature = 55°C | 20                   | -    | _                           | year  |

| Table 5.4 | Flash Memory (Program ROM) Electrical Characteristics |
|-----------|-------------------------------------------------------|
|-----------|-------------------------------------------------------|

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = 0 to  $60^{\circ}$ C, unless otherwise specified.

2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

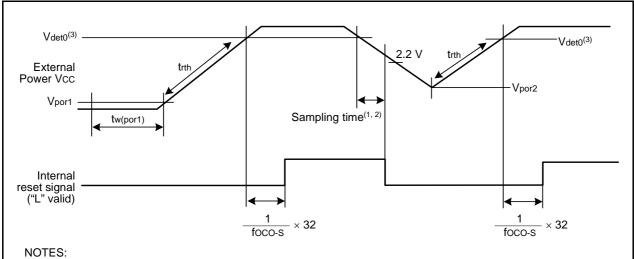
3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

| Symbol | Parameter                                               | Condition | Standard |      |       | Unit    |
|--------|---------------------------------------------------------|-----------|----------|------|-------|---------|
| Symbol | Farameter                                               |           | Min.     | Тур. | Max.  | Unit    |
| Vpor1  | Power-on reset valid voltage <sup>(4)</sup>             |           | -        | -    | 0.1   | V       |
| Vpor2  | Power-on reset or voltage monitor 0 reset valid voltage |           | 0        | -    | Vdet0 | V       |
| trth   | External power Vcc rise gradient <sup>(2)</sup>         |           | 20       | -    | -     | mV/msec |


| Table 5.9 | Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteris | stics <sup>(3)</sup> |
|-----------|------------------------------------------------------------------------|----------------------|
|           |                                                                        |                      |

NOTES:

1. The measurement condition is  $T_{opr}$  = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. This condition (external power Vcc rise gradient) does not apply if Vcc  $\ge$  1.0 V.

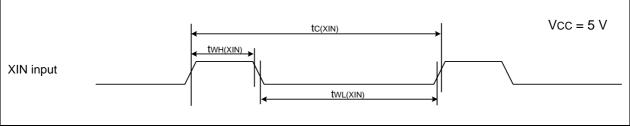
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4.  $t_{w(por1)}$  indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain  $t_{w(por1)}$  for 30 s or more if  $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$ , maintain  $t_{w(por1)}$  for 3,000 s or more if  $-40^{\circ}C \le T_{opr} < -20^{\circ}C$ .



1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.

- 2. The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
- 3. Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.3 Reset Circuit Electrical Characteristics


# Table 5.17Electrical Characteristics (3) [Vcc = 5 V]<br/>(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

| Symbol | Parameter                                                                                                        |           | Condition                                                                                                                                                                                                                  |      | Standard | d    | Unit |
|--------|------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|------|
| Symbol | Falameter                                                                                                        | Condition | Min.                                                                                                                                                                                                                       | Тур. | Max.     | Onit |      |
| Icc    | Power supply current<br>(Vcc = 3.3 to 5.5 V)<br>Single-chip mode,<br>output pins are open,<br>other pins are Vss | Wait mode | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1            | _    | 25       | 75   | μA   |
|        |                                                                                                                  |           | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                  | _    | 23       | 60   | μΑ   |
|        |                                                                                                                  |           | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (high drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1 | -    | 4.0      | _    | μA   |
|        |                                                                                                                  |           | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1  | -    | 2.2      | -    | μA   |
|        |                                                                                                                  | Stop mode | XIN clock off, $T_{opr} = 25^{\circ}C$<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                           | _    | 0.8      | 3.0  | μΑ   |
|        |                                                                                                                  |           | XIN clock off, $T_{opr} = 85^{\circ}C$<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                           | _    | 1.2      | _    | μΑ   |

#### Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

#### Table 5.18 XIN Input, XCIN Input

| Symbol    | Parameter             |    | Standard |      |  |
|-----------|-----------------------|----|----------|------|--|
| Symbol    |                       |    | Max.     | Unit |  |
| tc(XIN)   | XIN input cycle time  | 50 | -        | ns   |  |
| twh(xin)  | XIN input "H" width   | 25 | -        | ns   |  |
| twl(XIN)  | XIN input "L" width   | 25 | -        | ns   |  |
| tc(XCIN)  | XCIN input cycle time | 14 | -        | μS   |  |
| twH(XCIN) | XCIN input "H" width  | 7  | -        | μS   |  |
| twl(xcin) | XCIN input "L" width  | 7  | _        | μS   |  |



#### Figure 5.8 XIN Input and XCIN Input Timing Diagram when Vcc = 5 V

#### Table 5.19 TRAIO Input

| Symbol     | Parameter              | Standard |      | Unit |
|------------|------------------------|----------|------|------|
|            |                        | Min.     | Max. | Unit |
| tc(TRAIO)  | TRAIO input cycle time | 100      | -    | ns   |
| twh(traio) | TRAIO input "H" width  | 40       | -    | ns   |
| twl(traio) | TRAIO input "L" width  | 40       | -    | ns   |

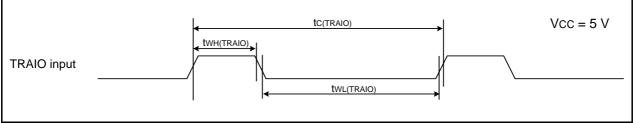
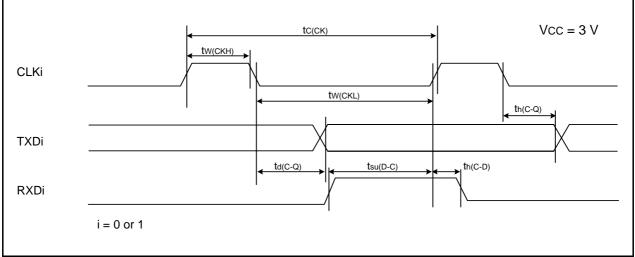




Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

| Symbol   | Parameter              |     | Standard |      |  |
|----------|------------------------|-----|----------|------|--|
|          |                        |     | Max.     | Unit |  |
| tc(CK)   | CLKi input cycle time  | 300 | -        | ns   |  |
| tw(CKH)  | CLKi input "H" width   | 150 | -        | ns   |  |
| tw(CKL)  | CLKi Input "L" width   | 150 | -        | ns   |  |
| td(C-Q)  | TXDi output delay time | -   | 80       | ns   |  |
| th(C-Q)  | TXDi hold time         | 0   | -        | ns   |  |
| tsu(D-C) | RXDi input setup time  | 70  | -        | ns   |  |
| th(C-D)  | RXDi input hold time   | 90  | -        | ns   |  |

i = 0 or 1





#### Table 5.27 External Interrupt INTi (i = 0, 1, 3) Input

| Symbol  | Parameter            | Stan   | Unit |      |
|---------|----------------------|--------|------|------|
|         |                      | Min.   | Max. | Unit |
| tw(INH) | INTi input "H" width | 380(1) | -    | ns   |
| tw(INL) | INTi input "L" width | 380(2) | 1    | ns   |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

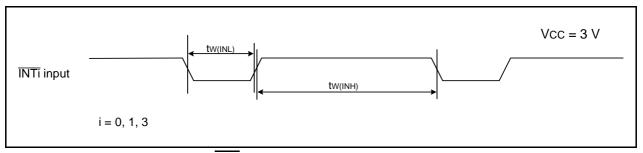
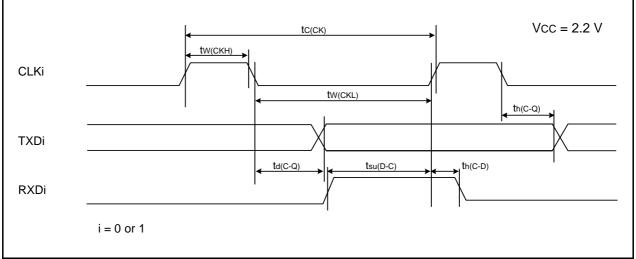



Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

| Symbol  | Parameter           |                                                                                                     | Condition              |               | Standard  |      |      | Unit |
|---------|---------------------|-----------------------------------------------------------------------------------------------------|------------------------|---------------|-----------|------|------|------|
| Symbol  |                     |                                                                                                     |                        |               | Min.      | Тур. | Max. | Unit |
| Vон     | Output "H" voltage  | Except P1_0 to P1_7,<br>XOUT                                                                        | Iон = -1 mA            |               | Vcc - 0.5 | -    | Vcc  | V    |
|         |                     | P1_0 to P1_7                                                                                        | Drive capacity<br>HIGH | Іон = -2 mA   | Vcc - 0.5 | _    | Vcc  | V    |
|         |                     |                                                                                                     | Drive capacity<br>LOW  | Іон = -1 mA   | Vcc - 0.5 | _    | Vcc  | V    |
|         |                     | XOUT                                                                                                | Drive capacity<br>HIGH | Іон = -0.1 mA | Vcc - 0.5 | -    | Vcc  | V    |
|         |                     |                                                                                                     | Drive capacity<br>LOW  | Іон = -50 μА  | Vcc - 0.5 | -    | Vcc  | V    |
| Vol (   | Output "L" voltage  | Except P1_0 to P1_7,<br>XOUT                                                                        | Iol = 1 mA             |               | -         | -    | 0.5  | V    |
|         |                     | P1_0 to P1_7                                                                                        | Drive capacity<br>HIGH | IOL = 2 mA    | -         | _    | 0.5  | V    |
|         |                     |                                                                                                     | Drive capacity<br>LOW  | IOL = 1 mA    | -         | -    | 0.5  | V    |
|         |                     | XOUT                                                                                                | Drive capacity<br>HIGH | IOL = 0.1 mA  | -         | -    | 0.5  | V    |
|         |                     |                                                                                                     | Drive capacity<br>LOW  | IoL = 50 μA   | -         | _    | 0.5  | V    |
| VT+-VT- | Hysteresis          | INT0, INT1, INT3,<br>KI0, KI1, KI2, KI3,<br>TRAIO, RXD0, RXD1,<br>CLK0, CLK1,<br>SSI, SCL, SDA, SSO |                        |               | 0.05      | 0.3  | _    | V    |
|         |                     | RESET                                                                                               |                        |               | 0.05      | 0.15 | -    | V    |
| Ін      | Input "H" current   | 1                                                                                                   | VI = 2.2 V             |               | _         | _    | 4.0  | μA   |
| lı∟     | Input "L" current   |                                                                                                     | VI = 0 V               |               | -         | _    | -4.0 | μA   |
| Rpullup | -                   |                                                                                                     | VI = 0 V               |               | 100       | 200  | 600  | kΩ   |
| Rfxin   | Feedback resistance | XIN                                                                                                 |                        |               | -         | 5    | _    | MΩ   |
| Rfxcin  | Feedback resistance | XCIN                                                                                                |                        |               | -         | 35   | -    | MΩ   |
| Vram    | RAM hold voltage    |                                                                                                     | During stop mod        | e             | 1.8       | -    | -    | V    |


| Table 5.28 | Electrical Characteristics (5) [Vcc = 2.2 V] |
|------------|----------------------------------------------|
|            |                                              |

NOTE:

1. Vcc = 2.2 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

| Symbol   | Parameter              |     | Standard |      |
|----------|------------------------|-----|----------|------|
|          |                        |     | Max.     | Unit |
| tc(CK)   | CLKi input cycle time  | 800 | _        | ns   |
| tw(CKH)  | CLKi input "H" width   | 400 | _        | ns   |
| tW(CKL)  | CLKi input "L" width   | 400 | -        | ns   |
| td(C-Q)  | TXDi output delay time | -   | 200      | ns   |
| th(C-Q)  | TXDi hold time         | 0   | _        | ns   |
| tsu(D-C) | RXDi input setup time  | 150 | -        | ns   |
| th(C-D)  | RXDi input hold time   | 90  | -        | ns   |

i = 0 or 1





#### Table 5.33 External Interrupt INTi (i = 0, 1, 3) Input

| Symbol  | Parameter            |                     | Standard |      |  |
|---------|----------------------|---------------------|----------|------|--|
|         | Falameter            | Min.                | Max.     | Unit |  |
| tw(INH) | INTi input "H" width | 1000(1)             | -        | ns   |  |
| tw(INL) | INTi input "L" width | 1000 <sup>(2)</sup> | -        | ns   |  |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

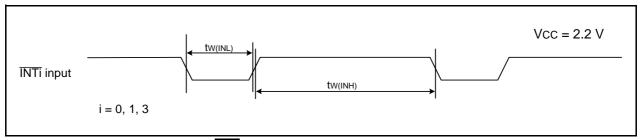



Figure 5.19 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

| Symbol     | Parameter                                                              | Conditions                 |                       | Unit |                              |       |
|------------|------------------------------------------------------------------------|----------------------------|-----------------------|------|------------------------------|-------|
| Symbol     | Farameter                                                              | Conditions                 | Min.                  | Тур. | Max.                         | Unit  |
| -          | Program/erase endurance <sup>(2)</sup>                                 |                            | 10,000 <sup>(3)</sup> | -    | -                            | times |
| -          | Byte program time<br>(program/erase endurance ≤ 1,000 times)           |                            | -                     | 50   | 400                          | μS    |
| -          | Byte program time<br>(program/erase endurance > 1,000 times)           |                            | -                     | 65   | _                            | μS    |
| -          | Block erase time<br>(program/erase endurance ≤ 1,000 times)            |                            | -                     | 0.2  | 9                            | S     |
| -          | Block erase time<br>(program/erase endurance > 1,000 times)            |                            | -                     | 0.3  | _                            | S     |
| td(SR-SUS) | Time delay from suspend request until suspend                          |                            | -                     | -    | 97 + CPU clock<br>× 6 cycles | μS    |
| -          | Interval from erase start/restart until<br>following suspend request   |                            | 650                   | -    | _                            | μS    |
| -          | Interval from program start/restart until<br>following suspend request |                            | 0                     | -    | _                            | ns    |
| -          | Time from suspend until program/erase restart                          |                            | -                     | -    | 3 + CPU clock<br>× 4 cycles  | μS    |
| -          | Program, erase voltage                                                 |                            | 2.7                   | -    | 5.5                          | V     |
| -          | Read voltage                                                           |                            | 2.7                   | -    | 5.5                          | V     |
| -          | Program, erase temperature                                             |                            | -40                   | -    | 85 <sup>(8)</sup>            | °C    |
| -          | Data hold time <sup>(9)</sup>                                          | Ambient temperature = 55°C | 20                    | -    | -                            | year  |

| Table 5.38 | Flash Memory (Data flash Block A, Block B) Electrical Characteristics <sup>(4)</sup> |
|------------|--------------------------------------------------------------------------------------|
|------------|--------------------------------------------------------------------------------------|

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A and B can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. 125°C for K version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

#### Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

#### Table 5.55 XIN Input

| Symbol   | Parameter            |      | Standard |      |
|----------|----------------------|------|----------|------|
|          | Falameter            | Min. | Max.     | Unit |
| tc(XIN)  | XIN input cycle time | 100  | -        | ns   |
| twh(xin) | XIN input "H" width  | 40   | -        | ns   |
| twl(XIN) | XIN input "L" width  | 40   | -        | ns   |

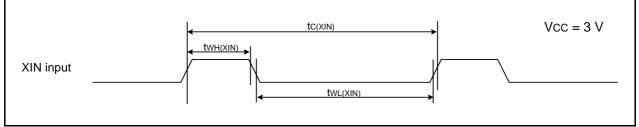



Figure 5.31 XIN Input Timing Diagram when Vcc = 3 V

#### Table 5.56 TRAIO Input

| Symbol     | Parameter              | Standard |      | Unit |
|------------|------------------------|----------|------|------|
|            |                        | Min.     | Max. | Unit |
| tc(TRAIO)  | TRAIO input cycle time | 300      | -    | ns   |
| twh(traio) | TRAIO input "H" width  | 120      | -    | ns   |
| twl(traio) | TRAIO input "L" width  | 120      | -    | ns   |

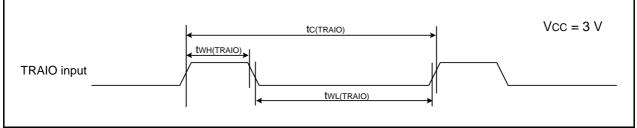
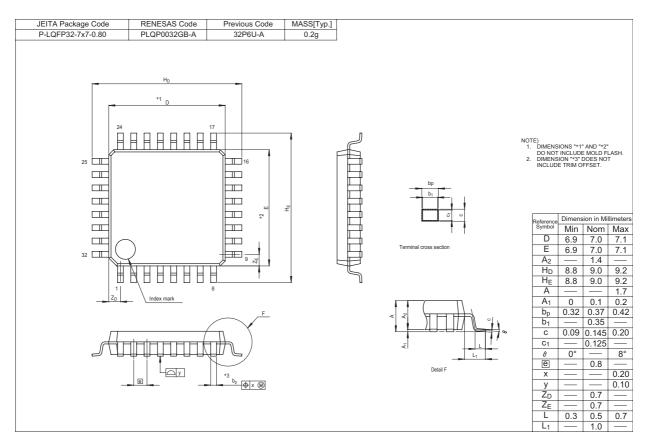




Figure 5.32 TRAIO Input Timing Diagram when Vcc = 3 V

# **Package Dimensions**

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.



# **REVISION HISTORY**

# R8C/26 Group, R8C/27 Group Datasheet

| Rev.  | Date         | Description |                                                                                    |  |
|-------|--------------|-------------|------------------------------------------------------------------------------------|--|
|       |              | Page        | Summary                                                                            |  |
| 1.30  | May 25, 2007 | 16          | Figure 3.2 part number revised                                                     |  |
|       |              | 30          | Table 5.10 revised                                                                 |  |
|       |              | 53          | Table 5.39 NOTE4 added                                                             |  |
|       |              | 55          | Table 5.42 revised                                                                 |  |
| 1.40a | Jun 14, 2007 | 5, 7        | Table 1.3 and Table 1.4 revised                                                    |  |
| 2.00  | Mar 01, 2008 | 1, 49       | 1.1, 5.2 "J and K versions are" deleted                                            |  |
|       |              | 5, 7        | Table 1.3, Table 1.4 revised                                                       |  |
|       |              | 11          | Table 1.6 NOTE3 added                                                              |  |
|       |              | 15, 16      | Figure 3.1, Figure 3.2; "Expanded area" deleted                                    |  |
|       |              | 17          | Table 4.1 "002Ch" added                                                            |  |
|       |              | 18          | Table 4.2 "0036h"; J, K version "0100X000b" → "0100X001b"                          |  |
|       |              | 24, 49      | Table 5.2, Table 5.35; NOTE2 revised                                               |  |
|       |              | 30          | Table 5.10 revised, NOTE4 added                                                    |  |
| 2.10  | Sep 26, 2008 | _           | "RENESAS TECHNICAL UP DATE" reflected: TN-16C-A172A/E                              |  |
|       |              | 26, 51      | Table 5.4, Table 5.37 NOTE2, NOTE4 revised                                         |  |
|       |              | 27, 52      | Table 5.5, Table 5.38 NOTE2, NOTE5 revised                                         |  |
|       |              | 53          | Table 5.39 Parameter: Voltage monitor 1 reset generation time added<br>NOTE5 added |  |
|       |              |             | Table 5.40 revised                                                                 |  |
|       |              | 54          | Table 5.41 revised<br>Figure 5.22 revised                                          |  |
|       |              |             |                                                                                    |  |

All trademarks and registered trademarks are the property of their respective owners.