

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21265snfp-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R8C/26 Group, R8C/27 Group SINGLE-CHIP 16-BIT CMOS MCU

REJ03B0168-0210 Rev.2.10 Sep 26, 2008

1. **Overview**

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C CPU core, and are packaged in a 32-pin molded-plastic LQFP. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/27 Group has on-chip data flash (1 KB \times 2 blocks).

The difference between the R8C/26 Group and R8C/27 Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1 **Applications**

Electronic household appliances, office equipment, audio equipment, consumer products, automotive, etc.

1.6 Pin Functions

Table 1.5 lists Pin Functions.

Table 1.5 Pin Functions

Туре	Symbol	I/O Type	Description
Power supply input	VCC, VSS	I	Apply 2.2 to 5.5 V (J, K version are 2.7 to 5.5 V) to the VCC pin. Apply 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between the
XIN clock output	XOUT	0	XIN and XOUT pins. To use an external clock, input it to the XIN pin and leave the XOUT pin open.
XCIN clock input (N, D version)	XCIN	I	These pins are provided for XCIN clock generation circuit I/O. Connect a crystal oscillator between the XCIN and XCOUT
XCIN clock output (N, D version)	XCOUT	0	pins. To use an external clock, input it to the XCIN pin and leave the XCOUT pin open.
INT interrupt input	INTO, INT1, INT3	I	INT interrupt input pins
Key input interrupt	KIO to KI3	I	Key input interrupt input pins
Timer RA	TRAO	0	Timer RA output pin
	TRAIO	I/O	Timer RA I/O pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
Timer RC	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Sharing output-compare output / input-capture input / PWM / PWM2 output pins
Timer RE	TREO	0	Timer RE output pin
Serial interface	CLK0, CLK1	I/O	Clock I/O pin
	RXD0, RXD1	I	Receive data input pin
	TXD0, TXD1	0	Transmit data output pin
I ² C bus interface	SCL	I/O	Clock I/O pin
	SDA	I/O	Data I/O pin
Clock synchronous	SSI	I/O	Data I/O pin
serial I/O with chip	SCS	I/O	Chip-select signal I/O pin
select	SSCK	I/O	Clock I/O pin
	SSO	I/O	Data I/O pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
I/O port	P0_0 to P0_7, P1_0 to P1_7, P3_1, P3_3 to P3_7, P4_5, P5_3, P5_4	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P1_0 to P1_7 also function as LED drive ports (N, D version).
Input port	P4_2, P4_6, P4_7	I	Input-only ports
			1

I: Input

O: Output

I/O: Input and output

Table 1.6 Pin Name Information by Pin Number

				I/O Pin I	Functions for o	of Peripheral Mo	dules	
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	I ² C bus Interface	A/D Converter
1		P3_5		(TRCIOD) ⁽¹⁾		SSCK	SCL	
2		P3_7		TRAO	RXD1/ (TXD1) ^(1, 3)	SSO		
3	RESET							
4	XOUT/XCOUT ⁽²⁾	P4_7						
5	VSS/AVSS							
6	XIN/XCIN(2)	P4_6						
7	VCC/AVCC							
8	MODE							
9		P4_5	INT0		(RXD1) ^(1, 3)			
10		P1_7	INT1	TRAIO				
11		P3_6	(INT1) ⁽¹⁾		(TXD1)/ (RXD1) ^(1, 3)			
12		P3_1		TRBO				
13		P5_4		TRCIOD				
14		P5_3		TRCIOC				
15		P1_6			CLK0	(SSI) ⁽¹⁾		
16		P1_5	(INT1)(1)	(TRAIO) ⁽¹⁾	RXD0			
17		P1_4			TXD0			
18		P1_3	KI3	(TRBO)				AN11
19		P1_2	KI2	TRCIOB				AN10
20	VRFF	P4_2						
21		P1_1	KI1	TRCIOA/ TRCTRG				AN9
22		P1_0	KI0					AN8
23		P3_3	ĪNT3	TRCCLK		SSI		
24		P3_4		(TRCIOC) ⁽¹⁾		SCS	SDA	
25		P0_7						AN0
26		P0_6						AN1
27		P0_5			CLK1			AN2
28		P0_4		TREO				AN3
29		P0_3						AN4
30		P0_2						AN5
31		P0_1						AN6
32		P0_0			(TXD1) ^(1, 3)			AN7

- 1. This can be assigned to the pin in parentheses by a program.
- 2. XCIN, XCOUT can be used only for N or D version.
- 3. For the combination of using pins TXD1 and RXD1, refer to **Figure 15.7 Registers PINSR1 and PMR** of Hardware Manual (REJ09B0278).

2. **Central Processing Unit (CPU)**

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

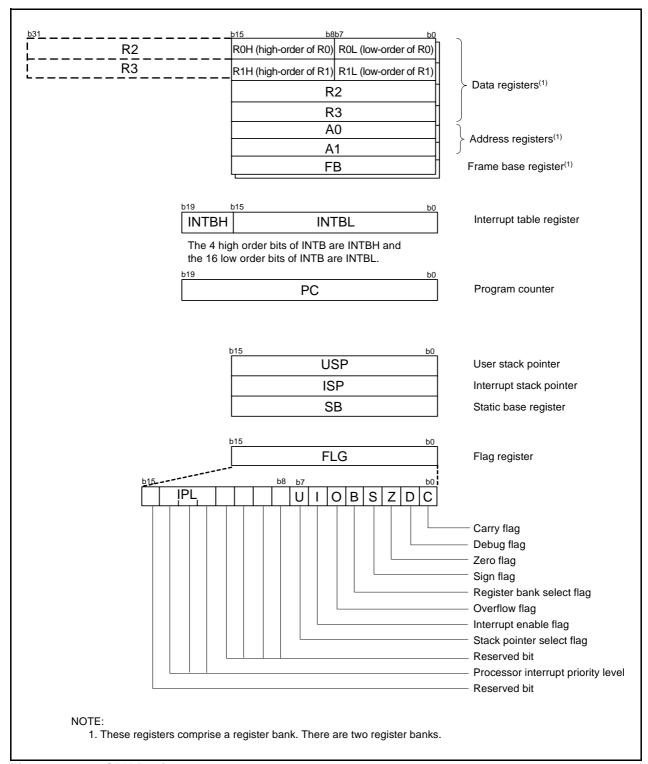


Figure 2.1 **CPU Registers**

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers.

Table 4.1 SFR Information (1)⁽¹⁾

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h	1		00h
0012h	1		00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h	- · · · ·		00h
0016h	1		00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
004Db			10000000b ⁽²⁾
001Dh 001Eh			
001Eh			
001Fh			
0021h 0022h			
	High Speed On Chip Oscillator Control Beginter C	ED AO	00h
0023h	High-Speed On-Chip Oscillator Control Register 0 High-Speed On-Chip Oscillator Control Register 1	FRA0	00h
0024h 0025h	High-Speed On-Chip Oscillator Control Register 1 High-Speed On-Chip Oscillator Control Register 2	FRA1 FRA2	When shipping 00h
0025h 0026h	riigh-speed On-Onip Oscillator Control Register 2	FRAZ	UUII
0026h			
	Clock Proceeder Penet Flog	CDCDE	00h
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4(3)	FRA4	When shipping
002Ah	4	===	1
002Bh	High-Speed On-Chip Oscillator Control Register 6(3)	FRA6	When shipping
002Ch	High-Speed On-Chip Oscillator Control Register 7 ⁽³⁾	FRA7	When shipping
002Dh			
002Eh			
002Fh			

X: Undefined

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. The CSPROINI bit in the OFS register is set to 0.
- 3. In J, K version these regions are reserved. Do not access locations in these regions.

SFR Information (4)⁽¹⁾ Table 4.4

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h			XXh
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CEn			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Control Register 2	ADCON2	00h
00D5h			
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DEh			
00E0h	Port P0 Register	P0	00h
	Port P4 Parister	P1	
00E1h	Port P1 Register		00h
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h			
00E5h	Port P3 Register	P3	00h
00E6h			
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	00h
00E9h	Port P5 Register	P5	00h
00EAh	Port P4 Direction Register	PD4	00h
00EBh	Port P5 Direction Register	PD5	00h
00ECh		1	
00EDh		+	
00EEh		+	
00EFh		+	
00E111		+	
00F0H			
		<u> </u>	
00F2h			
00F3h			
00F4h			001
00F5h	Pin Select Register 1	PINSR1	00h
00F6h	Pin Select Register 2	PINSR2	00h
00F7h	Pin Select Register 3	PINSR3	00h
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00FAh	INT Input Filter Select Register	INTF	00h
00FBh	Key Input Enable Register	KIEN	00h
00FCh	Pull-Up Control Register 0	PUR0	00h
00FDh	Pull-Up Control Register 1	PUR1	00h
00FEh	Port P1 Drive Capacity Control Register ⁽²⁾	P1DRR	00h

X: Undefined

- NOTES:

 1. The blank regions are reserved. Do not access locations in these regions.
 - 2. In J, K version these regions are reserved. Do not access locations in these regions.

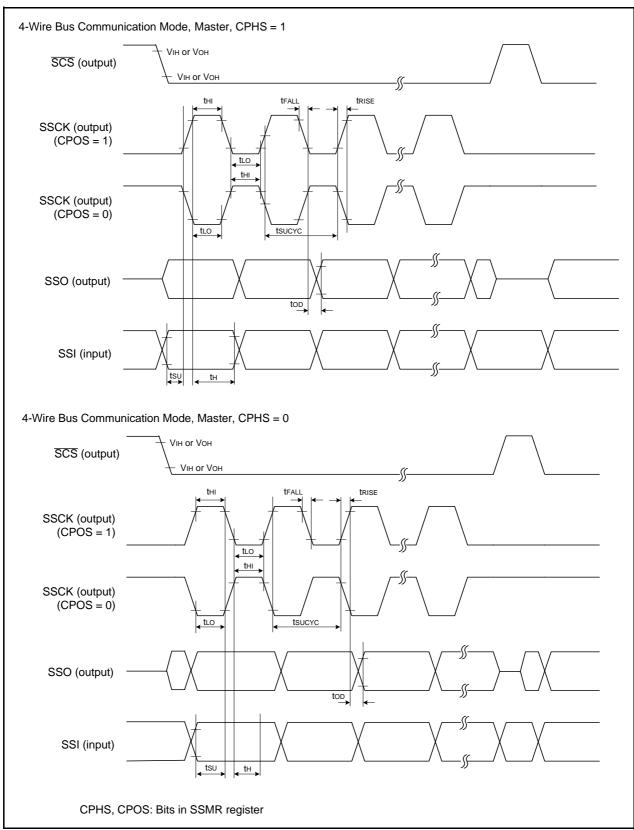


Figure 5.4 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Master)

Table 5.20 Serial Interface

Symbol	Parameter		Standard		
Symbol	Faidilletei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	200	=	ns	
tW(CKH)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	=	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

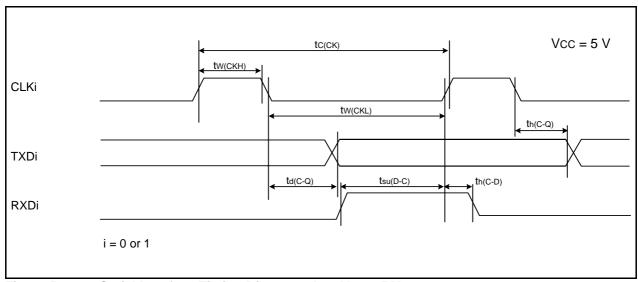
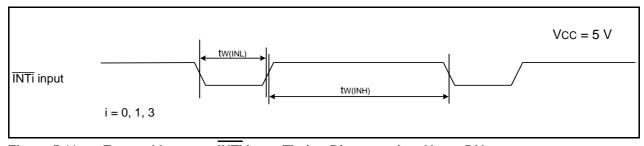



Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

External Interrupt INTi (i = 0, 1, 3) Input **Table 5.21**

Symbol	Parameter		Standard		
Syllibol	Faianielei	Min.	Max.	Unit	
tW(INH)	ĪNTi input "H" width	250 ⁽¹⁾	-	ns	
tW(INL)	INTi input "L" width	250 ⁽²⁾	-	ns	

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

External Interrupt INTi Input Timing Diagram when Vcc = 5 V Figure 5.11

Table 5.26 Serial Interface

Symbol	Parameter		Standard		
Symbol	Faidilletei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	=	ns	
tW(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	=	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

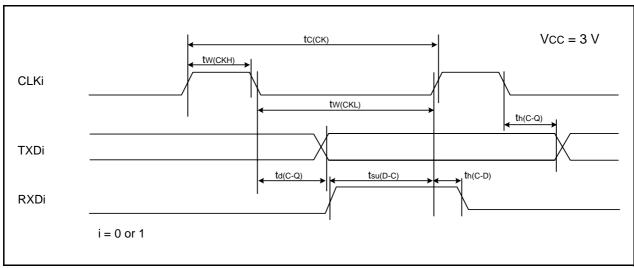


Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.27 External Interrupt \overline{INTi} (i = 0, 1, 3) Input

Symbol	Parameter		Standard		
Symbol	Faianielei	Min.	Max.	Unit	
tW(INH)	INTi input "H" width	380(1)	_	ns	
tW(INL)	INTi input "L" width	380(2)	_	ns	

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

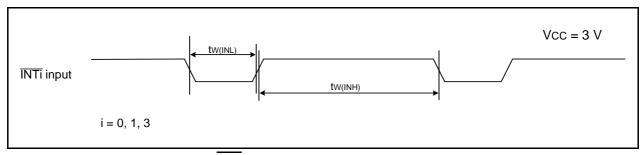


Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Table 5.28 Electrical Characteristics (5) [VCC = 2.2 V]

Cumbal	Parameter		Condition		S	tandard		Unit
Symbol	Para	imeter	Cond	aition	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P1_0 to P1_7, XOUT	Iон = -1 mA		Vcc - 0.5	=	Vcc	V
		P1_0 to P1_7	Drive capacity HIGH	Iон = -2 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	=	Vcc	V
			Drive capacity LOW	Ιοн = -50 μΑ	Vcc - 0.5	=	Vcc	V
Vol	Output "L" voltage	Except P1_0 to P1_7, XOUT	IoL = 1 mA		=	=	0.5	V
		P1_0 to P1_7	Drive capacity HIGH	IoL = 2 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 1 mA	=	=	0.5	V
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	=	=	0.5	V
			Drive capacity LOW	IOL = 50 μA	=	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, RXDO, RXD1, CLK0, CLK1, SSI, SCL, SDA, SSO			0.05	0.3	_	V
		RESET			0.05	0.15	-	V
lін	Input "H" current	I.	VI = 2.2 V		=	_	4.0	μА
lıL	Input "L" current		VI = 0 V		-	_	-4.0	μА
RPULLUP	Pull-up resistance		VI = 0 V		100	200	600	kΩ
RfXIN	Feedback resistance	XIN			=	5	=	MΩ
RfXCIN	Feedback resistance	XCIN			-	35	_	ΜΩ
VRAM	RAM hold voltage		During stop mod	e	1.8	-		V

^{1.} Vcc = 2.2 V at $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), f(XIN) = 5 MHz, unless otherwise specified.

Table 5.37 Flash Memory (Program ROM) Electrical Characteristics

Symbol	Darameter	Conditions		Linit		
Symbol	R8C/27 Group 1,000(3) - - times	Conditions	Offic			
=	Program/erase endurance ⁽²⁾	R8C/26 Group	100 ⁽³⁾	=	=	times
		R8C/27 Group	1,000(3)	-	-	times
_	Byte program time		-	50	400	μS
_	Block erase time		-	0.4	9	S
td(SR-SUS)	Time delay from suspend request until		=	-	97 + CPU clock	μS
	suspend				× 6 cycles	
_	Interval from erase start/restart until		650	_	-	μS
	following suspend request					
_			0	_	_	ns
	following suspend request					
_	Time from suspend until program/erase		-	=	3 + CPU clock	μS
	restart				× 4 cycles	
=	Program, erase voltage		2.7	-	5.5	V
=	Read voltage		2.7	-	5.5	V
=	Program, erase temperature		0	=	60	°C
_	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	_	_	year

- NOTES:

 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.
 - 2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

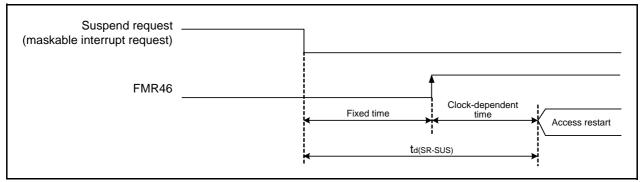


Figure 5.21 Time delay until Suspend

Table 5.39 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Syllibol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level ^(2, 4)		2.70	2.85	3.0	V
td(Vdet1-A)	Voltage monitor 1 reset generation time ⁽⁵⁾		_	40	200	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	0.6	_	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		=	-	100	μS
Vccmin	MCU operating voltage minimum value		2.70	-	-	V

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = -40 to 85°C (J version) / -40 to 125°C (K version).
- 2. Hold Vdet2 > Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.
- 5. Time until the voltage monitor 1 reset is generated after the voltage passes V_{det1} when V_{CC} falls. When using the digital filter, its sampling time is added to t_d(V_{det1}-A). When using the voltage monitor 1 reset, maintain this time until V_{CC} = 2.0 V after the voltage passes V_{det1} when the power supply falls.

Table 5.40 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level ⁽²⁾		3.3	3.6	3.9	V
td(Vdet2-A)	Voltage monitor 2 reset/interrupt request generation time ^(3, 5)		=	40	200	μS
=	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	=	0.6	_	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾			=	100	μS

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = -40 to 85°C (J version) / -40 to 125°C (K version).
- 2. Hold Vdet2 > Vdet1
- 3. Time until the voltage monitor 2 reset/interrupt request is generated after the voltage passes Vdet2.
- 4. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.
- 5. When using the digital filter, its sampling time is added to td(Vdet2-A). When using the voltage monitor 2 reset, maintain this time until Vcc = 2.0 V after the voltage passes Vdet2 when the power supply falls.

Table 5.42 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard			
Symbol	1 drameter	Condition	Min.	Тур.	Max.	Unit	
fOCO40M	High-speed on-chip oscillator frequency temperature · supply voltage dependence	Vcc = 4.75 to 5.25 V $0^{\circ}C \leq Topr \leq 60^{\circ}C^{(2)}$	39.2	40	40.8	MHz	
		Vcc = 3.0 to 5.5 V -20°C \leq Topr \leq 85°C ⁽²⁾	38.8	40	41.2	MHz	
		Vcc = 3.0 to 5.5 V -40°C \leq Topr \leq 85°C ⁽²⁾	38.4	40	41.6	MHz	
		Vcc = 3.0 to 5.5 V -40°C \leq Topr \leq 125°C ⁽²⁾	38	40	42	MHz	
		Vcc = 2.7 to 5.5 V -40°C \leq Topr \leq 125°C(2)	37.6	40	42.4	MHz	
_	Value in FRA1 register after reset		08h	-	F7h	_	
=	Oscillation frequency adjustment unit of high- speed on-chip oscillator	Adjust FRA1 register (value after reset) to -1	-	+0.3	=	MHz	
_	Oscillation stability time		-	10	100	μS	
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	400	-	μА	

- 1. Vcc = 2.7 to 5.5 V, Topr = -40 to $85^{\circ}C$ (J version) / -40 to $125^{\circ}C$ (K version), unless otherwise specified.
- 2. These standard values show when the FRA1 register value after reset is assumed.

Table 5.43 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falametei	Condition		Тур.	Max.	Offic
fOCO-S	Low-speed on-chip oscillator frequency		40	125	250	kHz
_	Oscillation stability time		-	10	100	μS
_	Self power consumption at oscillation	$VCC = 5.0 \text{ V}, \text{ Topr} = 25^{\circ}\text{C}$	_	15	_	μА

NOTE:

Table 5.44 Power Supply Circuit Timing Characteristics

Svmbol	Parameter	Condition	,	d	Unit	
Symbol		Condition		Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	=	2000	μS
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μS

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and T_{opr} = 25°C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

^{1.} Vcc = 2.7 to 5.5 V, Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

Table 5.45 Timing Requirements of Clock Synchronous Serial I/O with Chip Select(1)

Cumbal	Parameter		Conditions		Stand	Unit	
Symbol	Paramete	Parameter Conditions Mir		Min.	Тур.	Max.	
tsucyc	SSCK clock cycle time	е		4	-	=	tcyc(2)
tHI	SSCK clock "H" width			0.4	-	0.6	tsucyc
tLO	SSCK clock "L" width			0.4	_	0.6	tsucyc
trise	SSCK clock rising	Master		=	=	1	tcyc(2)
	time	Slave		=	_	1	μS
tFALL	SSCK clock falling	Master		-	-	1	tcyc(2)
	time	Slave		=	_	1	μS
tsu	SSO, SSI data input s	setup time		100	-	-	ns
tH	SSO, SSI data input h	nold time		1	=	=	tcyc(2)
tLEAD	SCS setup time	Slave		1tcyc + 50	-	-	ns
tLAG	SCS hold time	Slave		1tcyc + 50	=	=	ns
top	SSO, SSI data output	delay time		_	-	1	tcyc(2)
tsa	SSI slave access time	9		-	_	1.5tcyc + 100	ns
tor	SSI slave out open tir	SSI slave out open time		_	_	1.5tcyc + 100	ns

- 1. Vcc = 2.7 to 5.5 V, Vss = 0 V at $T_{opr} = -40$ to $85^{\circ}C$ (J version) / -40 to $125^{\circ}C$ (K version), unless otherwise specified. 2. 1tcyc = 1/f1(s)

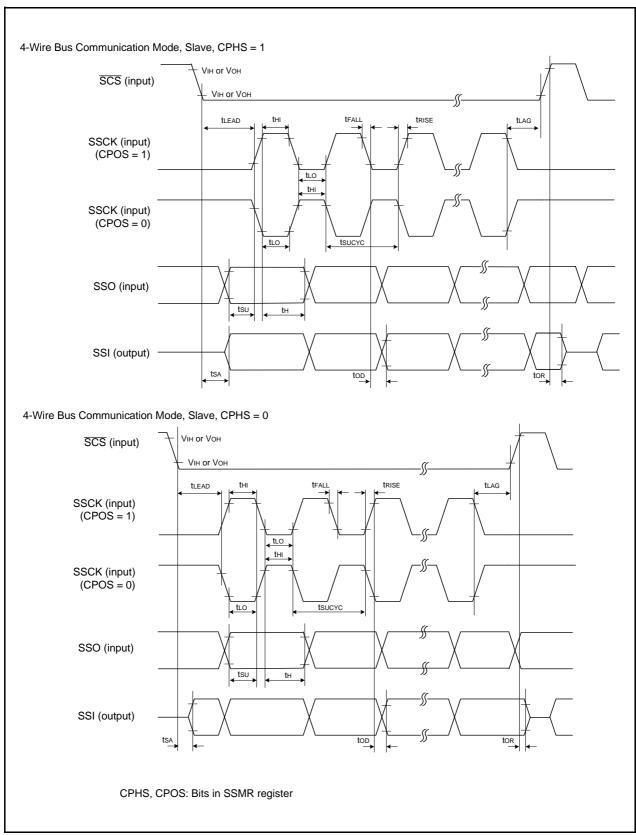


Figure 5.24 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Slave)

Table 5.47 Electrical Characteristics (1) [Vcc = 5 V]

Symbol	Por	ameter	Conditio	n	S	Standard		Unit	
Symbol	Fai	ameter	Conditio	11	Min.	lin. Typ. Ma		Offic	
Vон	Output "H" voltage Except XOUT IOH = -5 mA		Iон = -5 mA		Vcc - 2.0	-	Vcc	V	
			Іон = -200 μА		Vcc - 0.3	-	Vcc	V	
		XOUT	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	=	Vcc	V	
			Drive capacity LOW	IOH = -500 μA	Vcc - 2.0	=	Vcc	V	
Vol	Output "L" voltage	Except XOUT	IoL = 5 mA		=	-	2.0	V	
			IOL = 200 μA		=	-	0.45	V	
		XOUT	Drive capacity HIGH	IoL = 1 mA	=	-	2.0	V	
			Drive capacity LOW	IoL = 500 μA	=	-	2.0	V	
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, CLK1, SSI, SCL, SDA, SSO			0.1	0.5	_	>	
		RESET			0.1	1.0	_	V	
Іін	Input "H" current	•	VI = 5 V, Vcc = 5V		_	-	5.0	μА	
lıL	Input "L" current		VI = 0 V, Vcc = 5V		_	_	-5.0	μΑ	
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 5V		30	50	167	kΩ	
RfXIN	Feedback resistance	XIN			-	1.0	_	ΜΩ	
VRAM	RAM hold voltage		During stop mode		2.0	-	-	V	

^{1.} Vcc = 4.2 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.48 Electrical Characteristics (2) [Vcc = 5 V] (Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.)

Cumbal	Doromotor	Parameter Condition			Standar	d	ناما ا
Symbol	Parameter	Parameter Condition	Min.	Тур.	Max.	Unit	
lcc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	10	17	mA
	output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	9	15	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5	=	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4	=	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	_	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz (J version) Low-speed on-chip oscillator on = 125 kHz No division	-	10	15	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz (J version) Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5.5	10	m/
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	75	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	23	60	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.8	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	1.2	_	μА
			XIN clock off, Topr = 125°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	=	4.0	=	μА

Symbol	Parameter		Standard		
	Faidilletei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	200	=	ns	
tW(CKH)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	=	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

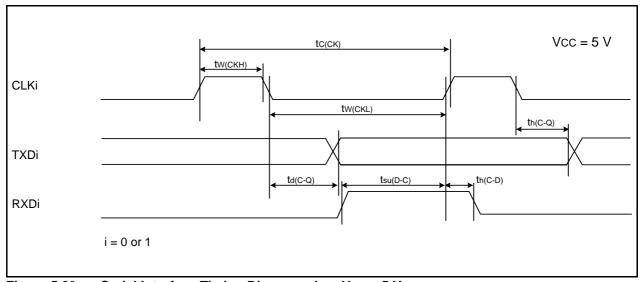


Figure 5.29 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.52 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter	Stan	dard	Unit
Symbol	raiailletei	Min.	Max.	Offic
tW(INH)	INTi input "H" width	250 ⁽¹⁾	-	ns
tW(INL)	INTi input "L" width	250(2)	-	ns

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

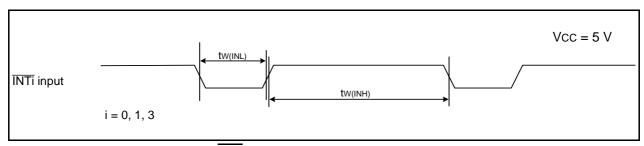


Figure 5.30 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

REVISION HISTORY

R8C/26 Group, R8C/27 Group Datasheet

Rev.	Date		Description
Rev.	Date	Page	Summary
1.30	May 25, 2007	16	Figure 3.2 part number revised
		30	Table 5.10 revised
		53	Table 5.39 NOTE4 added
		55	Table 5.42 revised
1.40a	Jun 14, 2007	5, 7	Table 1.3 and Table 1.4 revised
2.00	Mar 01, 2008	1, 49	1.1, 5.2 "J and K versions are" deleted
		5, 7	Table 1.3, Table 1.4 revised
		11	Table 1.6 NOTE3 added
		15, 16	Figure 3.1, Figure 3.2; "Expanded area" deleted
		17	Table 4.1 "002Ch" added
		18	Table 4.2 "0036h"; J, K version "0100X000b" → "0100X001b"
		24, 49	Table 5.2, Table 5.35; NOTE2 revised
		30	Table 5.10 revised, NOTE4 added
2.10	Sep 26, 2008	_	"RENESAS TECHNICAL UP DATE" reflected: TN-16C-A172A/E
		26, 51	Table 5.4, Table 5.37 NOTE2, NOTE4 revised
		27, 52	Table 5.5, Table 5.38 NOTE2, NOTE5 revised
		53	Table 5.39 Parameter: Voltage monitor 1 reset generation time added NOTE5 added
			Table 5.40 revised
		54	Table 5.41 revised Figure 5.22 revised

All trademarks and registered trademarks are the property of their respective owners.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the description of the such and the procedure of the description of the such and the procedure of the description of the description of the such as the such and the procedure of the description of the such as the such and the procedure of the such and

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510