




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | R8C                                                                              |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 20MHz                                                                            |
| Connectivity               | I <sup>2</sup> C, LINbus, SIO, SSU, UART/USART                                   |
| Peripherals                | LED, POR, Voltage Detect, WDT                                                    |
| Number of I/O              | 25                                                                               |
| Program Memory Size        | 32KB (32K x 8)                                                                   |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | · ·                                                                              |
| RAM Size                   | 1.5K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.2V ~ 5.5V                                                                      |
| Data Converters            | A/D 12x10b                                                                       |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 32-LQFP                                                                          |
| Supplier Device Package    | 32-LQFP (7x7)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21266sdfp-v2 |
|                            |                                                                                  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 1.3 **Block Diagram**

Figure 1.1 shows a Block Diagram.

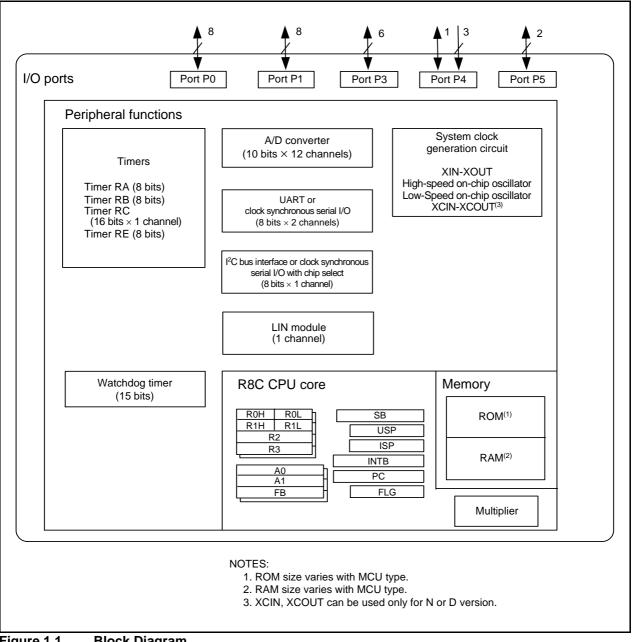



Figure 1.1 **Block Diagram** 



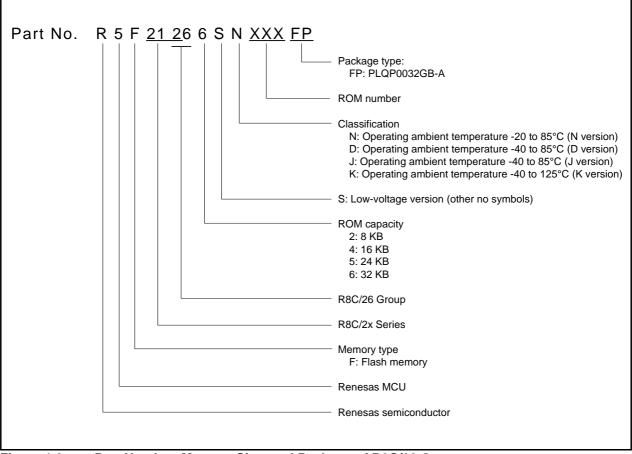



Figure 1.2 Part Number, Memory Size, and Package of R8C/26 Group



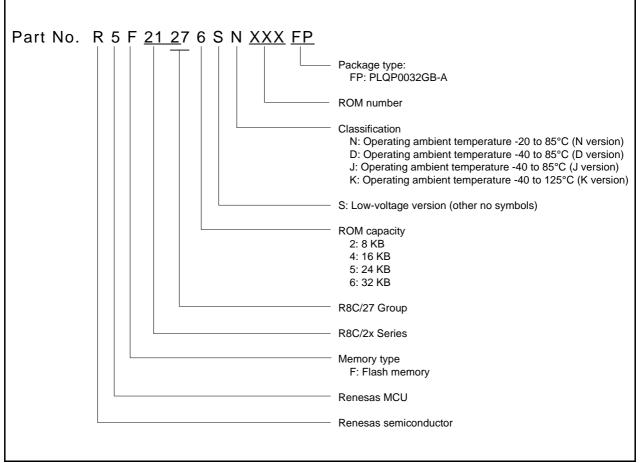



Figure 1.3 Part Number, Memory Size, and Package of R8C/27 Group



## 1.5 Pin Assignments

Figure 1.4 shows Pin Assignments (Top View).

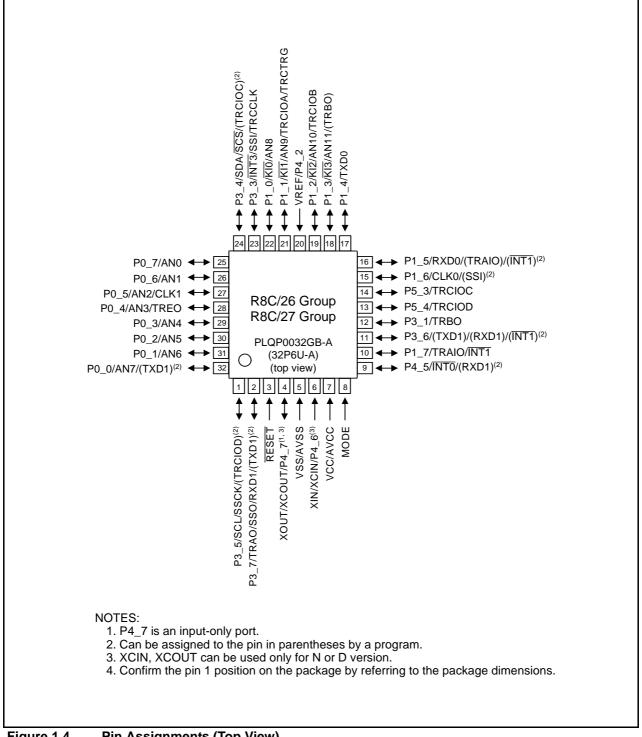
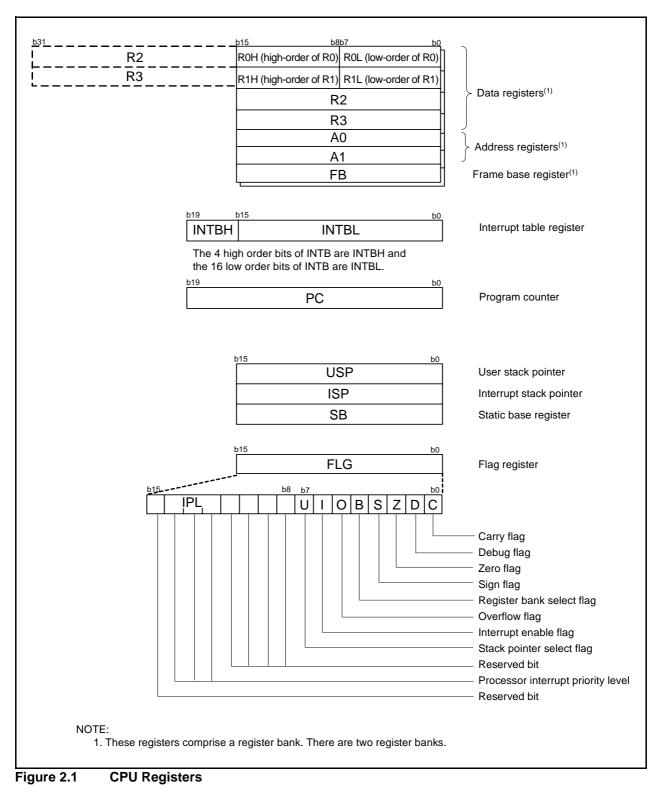


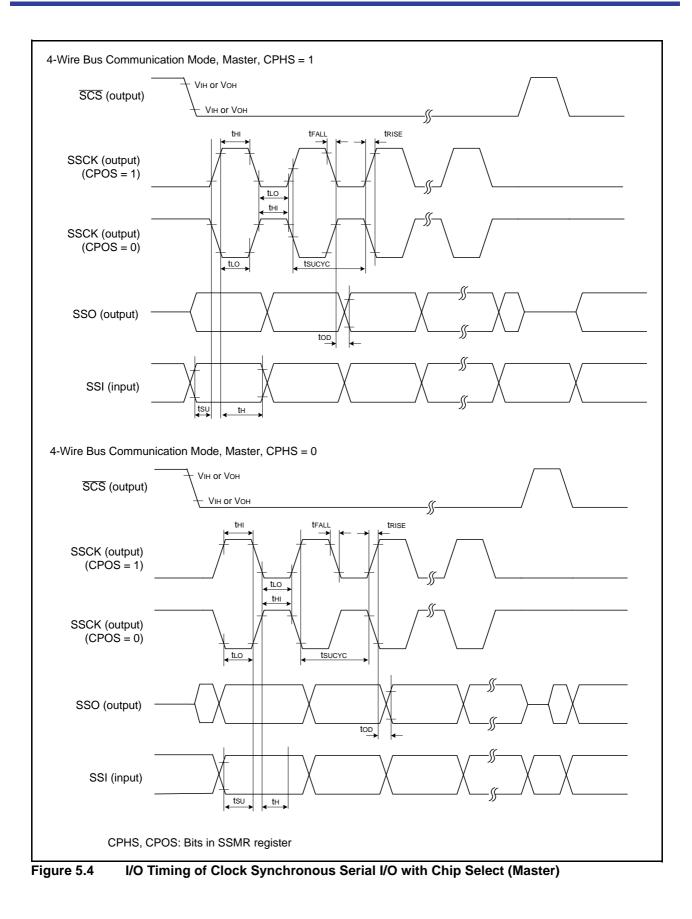

Figure 1.4 Pin Assignments (Top View)

|               |                           |      |                       | I/O Pin                 | Functions for a                     | of Peripheral Mo                                       | dules                             |                  |
|---------------|---------------------------|------|-----------------------|-------------------------|-------------------------------------|--------------------------------------------------------|-----------------------------------|------------------|
| Pin<br>Number | Control Pin               | Port | Interrupt             | Timer                   | Serial<br>Interface                 | Clock<br>Synchronous<br>Serial I/O with<br>Chip Select | l <sup>2</sup> C bus<br>Interface | A/D<br>Converter |
| 1             |                           | P3_5 |                       | (TRCIOD) <sup>(1)</sup> |                                     | SSCK                                                   | SCL                               |                  |
| 2             |                           | P3_7 |                       | TRAO                    | RXD1/<br>(TXD1) <sup>(1, 3)</sup>   | SSO                                                    |                                   |                  |
| 3             | RESET                     |      |                       |                         |                                     |                                                        |                                   |                  |
| 4             | XOUT/XCOUT <sup>(2)</sup> | P4_7 |                       |                         |                                     |                                                        |                                   |                  |
| 5             | VSS/AVSS                  |      |                       |                         |                                     |                                                        |                                   |                  |
| 6             | XIN/XCIN <sup>(2)</sup>   | P4_6 |                       |                         |                                     |                                                        |                                   |                  |
| 7             | VCC/AVCC                  |      |                       |                         |                                     |                                                        |                                   |                  |
| 8             | MODE                      |      |                       |                         |                                     |                                                        |                                   |                  |
| 9             |                           | P4_5 | INT0                  |                         | (RXD1) <sup>(1, 3)</sup>            |                                                        |                                   |                  |
| 10            |                           | P1_7 | INT1                  | TRAIO                   |                                     |                                                        |                                   |                  |
| 11            |                           | P3_6 | (INT1) <sup>(1)</sup> |                         | (TXD1)/<br>(RXD1) <sup>(1, 3)</sup> |                                                        |                                   |                  |
| 12            |                           | P3_1 |                       | TRBO                    |                                     |                                                        |                                   |                  |
| 13            |                           | P5_4 |                       | TRCIOD                  |                                     |                                                        |                                   |                  |
| 14            |                           | P5_3 |                       | TRCIOC                  |                                     |                                                        |                                   |                  |
| 15            |                           | P1_6 |                       |                         | CLK0                                | (SSI) <sup>(1)</sup>                                   |                                   |                  |
| 16            |                           | P1_5 | (INT1) <sup>(1)</sup> | (TRAIO) <sup>(1)</sup>  | RXD0                                |                                                        |                                   |                  |
| 17            |                           | P1_4 |                       |                         | TXD0                                |                                                        |                                   |                  |
| 18            |                           | P1_3 | KI3                   | (TRBO)                  |                                     |                                                        |                                   | AN11             |
| 19            |                           | P1_2 | KI2                   | TRCIOB                  |                                     |                                                        |                                   | AN10             |
| 20            | VRFF                      | P4_2 |                       |                         |                                     |                                                        |                                   |                  |
| 21            |                           | P1_1 | KI1                   | TRCIOA/<br>TRCTRG       |                                     |                                                        |                                   | AN9              |
| 22            |                           | P1_0 | KI0                   |                         |                                     |                                                        |                                   | AN8              |
| 23            |                           | P3_3 | INT3                  | TRCCLK                  |                                     | SSI                                                    |                                   |                  |
| 24            |                           | P3_4 |                       | (TRCIOC) <sup>(1)</sup> |                                     | SCS                                                    | SDA                               |                  |
| 25            |                           | P0_7 |                       |                         |                                     |                                                        |                                   | AN0              |
| 26            |                           | P0_6 |                       |                         |                                     |                                                        |                                   | AN1              |
| 27            |                           | P0_5 |                       |                         | CLK1                                |                                                        |                                   | AN2              |
| 28            |                           | P0_4 |                       | TREO                    |                                     |                                                        |                                   | AN3              |
| 29            |                           | P0_3 |                       |                         |                                     |                                                        |                                   | AN4              |
| 30            |                           | P0_2 |                       |                         |                                     |                                                        |                                   | AN5              |
| 31            |                           | P0_1 |                       |                         |                                     |                                                        |                                   | AN6              |
| 32            |                           | P0_0 |                       |                         | (TXD1) <sup>(1, 3)</sup>            |                                                        |                                   | AN7              |

 Table 1.6
 Pin Name Information by Pin Number

NOTES:


1. This can be assigned to the pin in parentheses by a program.


2. XCIN, XCOUT can be used only for N or D version.


3. For the combination of using pins TXD1 and RXD1, refer to **Figure 15.7 Registers PINSR1 and PMR** of Hardware Manual (REJ09B0278).

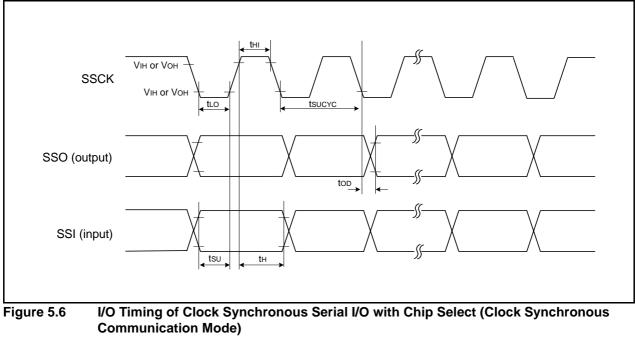

# 2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

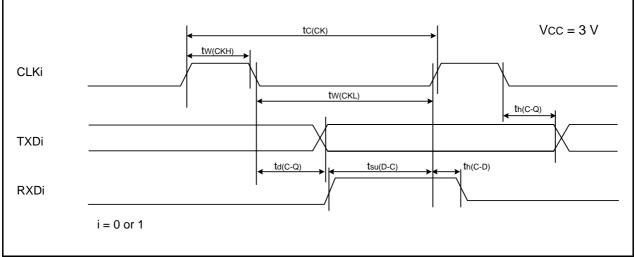








# Table 5.16Electrical Characteristics (2) [Vcc = 5 V]<br/>(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)


| Symbol | Paramotor                                                          |                                             | Condition                                                                                                                                                                              |      | Standar | ł    | Unit |
|--------|--------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|------|------|
| Symbol | Parameter                                                          |                                             |                                                                                                                                                                                        | Min. | Тур.    | Max. | Unit |
| Icc    | (Vcc = 3.3 to 5.5 V)<br>Single-chip mode,<br>output pins are open, | High-speed<br>clock mode                    | XIN = 20 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                            | _    | 10      | 17   | mA   |
|        | other pins are Vss                                                 |                                             | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                            | _    | 9       | 15   | mA   |
|        |                                                                    |                                             | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                            | -    | 6       | -    | mA   |
|        |                                                                    |                                             | XIN = 20 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                            | -    | 5       | -    | mA   |
|        |                                                                    |                                             | XIN = 16 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                            | _    | 4       | -    | mA   |
|        |                                                                    |                                             | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                            | _    | 2.5     | _    | mA   |
|        |                                                                    | High-speed<br>on-chip<br>oscillator<br>mode | XIN clock off<br>High-speed on-chip oscillator on fOCO = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                            | _    | 10      | 15   | mA   |
|        |                                                                    |                                             | XIN clock off<br>High-speed on-chip oscillator on fOCO = 20 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                            | _    | 4       | _    | mA   |
|        |                                                                    |                                             | XIN clock off<br>High-speed on-chip oscillator on fOCO = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                            | _    | 5.5     | 10   | mA   |
|        |                                                                    |                                             | XIN clock off<br>High-speed on-chip oscillator on fOCO = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                            | _    | 2.5     | -    | mA   |
|        |                                                                    | Low-speed<br>on-chip<br>oscillator<br>mode  | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                              | _    | 130     | 300  | μA   |
|        |                                                                    | Low-speed<br>clock mode                     | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>FMR47 = 1                                               | _    | 130     | 300  | μA   |
|        |                                                                    |                                             | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>Program operation on RAM<br>Flash memory off, FMSTP = 1 | _    | 30      | -    | μA   |

# Table 5.23Electrical Characteristics (4) [Vcc = 3 V]<br/>(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

| Symbol Parameter |                                                                                            | Condition                                  |                                                                                                                                                                                                                            | Standard |      |      | Unit |
|------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|------|
| Symbol           | Parameter                                                                                  |                                            | Condition                                                                                                                                                                                                                  | Min.     | Тур. | Max. | Unit |
| Icc              | Power supply current<br>(Vcc = 2.7 to 3.3 V)<br>Single-chip mode,<br>output pins are open. | High-speed<br>clock mode                   | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                | _        | 6    | -    | mA   |
|                  | other pins are Vss                                                                         |                                            | XIN = 10 MHz (square wave)<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                | _        | 2    | _    | mA   |
|                  |                                                                                            | High-speed<br>on-chip<br>oscillator        | XIN clock off<br>High-speed on-chip oscillator on fOCO = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                | -        | 5    | 9    | mA   |
|                  |                                                                                            | mode                                       | XIN clock off<br>High-speed on-chip oscillator on fOCO = 10 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                | _        | 2    | _    | mA   |
|                  |                                                                                            | Low-speed<br>on-chip<br>oscillator<br>mode | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                                                                  | -        | 130  | 300  | μA   |
|                  |                                                                                            | Low-speed<br>clock mode                    | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>FMR47 = 1                                                                                   | _        | 130  | 300  | μA   |
|                  |                                                                                            |                                            | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz<br>Program operation on RAM<br>Flash memory off, FMSTP = 1                                     | _        | 30   | _    | μΑ   |
|                  |                                                                                            | Wait mode                                  | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1            | _        | 25   | 70   | μA   |
|                  |                                                                                            |                                            | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                  | _        | 23   | 55   | μΑ   |
|                  |                                                                                            |                                            | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (high drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1 | _        | 3.8  | _    | μΑ   |
|                  |                                                                                            |                                            | XIN clock off<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1  | -        | 2.0  |      | μA   |
|                  |                                                                                            | Stop mode                                  | XIN clock off, $T_{opr} = 25^{\circ}C$<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                           | _        | 0.7  | 3.0  | μΑ   |
|                  |                                                                                            |                                            | XIN clock off, $T_{opr} = 85^{\circ}C$<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0                                           | _        | 1.1  | _    | μA   |

| Symbol   | Parameter              |      | Standard |      |  |
|----------|------------------------|------|----------|------|--|
| Symbol   | Farameter              | Min. | Max.     | Unit |  |
| tc(CK)   | CLKi input cycle time  | 300  | -        | ns   |  |
| tw(CKH)  | CLKi input "H" width   | 150  | -        | ns   |  |
| tw(CKL)  | CLKi Input "L" width   | 150  | -        | ns   |  |
| td(C-Q)  | TXDi output delay time | -    | 80       | ns   |  |
| th(C-Q)  | TXDi hold time         | 0    | -        | ns   |  |
| tsu(D-C) | RXDi input setup time  | 70   | -        | ns   |  |
| th(C-D)  | RXDi input hold time   | 90   | -        | ns   |  |

i = 0 or 1





### Table 5.27 External Interrupt INTi (i = 0, 1, 3) Input

| Symbol  | Parameter            | Standard<br>Min. Max. |      | Unit |
|---------|----------------------|-----------------------|------|------|
| Symbol  | Parameter            |                       | Max. | Unit |
| tw(INH) | INTi input "H" width | 380(1)                | -    | ns   |
| tw(INL) | INTi input "L" width | 380(2)                | 1    | ns   |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

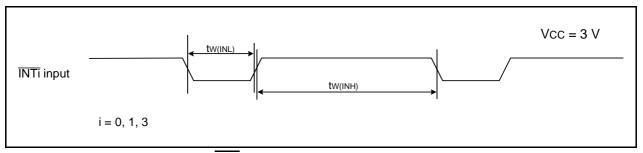



Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

| Symbol  |                    | Parameter               | Conditions                              | Standard |      |      | Unit |
|---------|--------------------|-------------------------|-----------------------------------------|----------|------|------|------|
| Symbol  |                    | Farameter               | Conditions                              | Min.     | Тур. | Max. | Unit |
| _       | Resolution         |                         | Vref = AVCC                             | -        | -    | 10   | Bits |
| -       | Absolute           | 10-bit mode             | $\phi$ AD = 10 MHz, Vref = AVCC = 5.0 V | -        | -    | ±3   | LSB  |
|         | accuracy           | 8-bit mode              | $\phi$ AD = 10 MHz, Vref = AVCC = 5.0 V | -        | -    | ±2   | LSB  |
|         |                    | 10-bit mode             | $\phi$ AD = 10 MHz, Vref = AVCC = 3.3 V | -        | -    | ±5   | LSB  |
|         |                    | 8-bit mode              | $\phi$ AD = 10 MHz, Vref = AVCC = 3.3 V | -        | _    | ±2   | LSB  |
| Rladder | Resistor ladder    |                         | Vref = AVCC                             | 10       | _    | 40   | kΩ   |
| tconv   | Conversion time    | 10-bit mode             | $\phi$ AD = 10 MHz, Vref = AVCC = 5.0 V | 3.3      | _    | -    | μS   |
|         |                    | 8-bit mode              | $\phi$ AD = 10 MHz, Vref = AVCC = 5.0 V | 2.8      | _    | -    | μS   |
| Vref    | Reference voltag   | e                       |                                         | 2.7      | _    | AVcc | V    |
| Via     | Analog input volta | age <sup>(2)</sup>      |                                         | 0        | -    | AVcc | V    |
| -       | A/D operating      | Without sample and hold |                                         | 0.25     | _    | 10   | MHz  |
|         | clock frequency    | With sample and hold    |                                         | 1        | _    | 10   | MHz  |

Table 5.36 A/D Converter Characteristics

NOTES:

1. AVcc = 2.7 to 5.5 V at  $T_{opr}$  = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

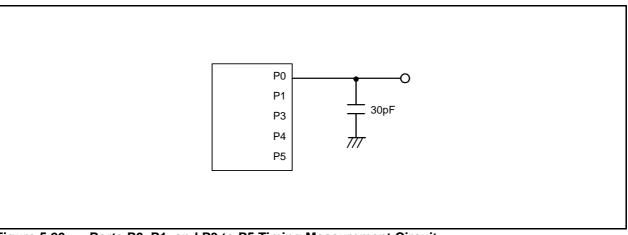



Figure 5.20 Ports P0, P1, and P3 to P5 Timing Measurement Circuit

| Cumhal     | Parameter                                                            | Conditions                 |                      | Unit |                             |       |
|------------|----------------------------------------------------------------------|----------------------------|----------------------|------|-----------------------------|-------|
| Symbol     | i didificter                                                         | Conditions                 | Min.                 | Тур. | Max.                        | Unit  |
| -          | Program/erase endurance <sup>(2)</sup>                               | R8C/26 Group               | 100 <sup>(3)</sup>   | -    | -                           | times |
|            |                                                                      | R8C/27 Group               | 1,000 <sup>(3)</sup> | -    | -                           | times |
| -          | Byte program time                                                    |                            | -                    | 50   | 400                         | μS    |
| -          | Block erase time                                                     |                            | -                    | 0.4  | 9                           | S     |
| td(SR-SUS) | Time delay from suspend request until                                |                            | -                    | -    | 97 + CPU clock              | μS    |
|            | suspend                                                              |                            |                      |      | × 6 cycles                  |       |
| _          | Interval from erase start/restart until<br>following suspend request |                            | 650                  | -    | _                           | μS    |
| -          | Interval from program start/restart until following suspend request  |                            | 0                    | -    | -                           | ns    |
| -          | Time from suspend until program/erase restart                        |                            | -                    | _    | 3 + CPU clock<br>× 4 cycles | μS    |
| -          | Program, erase voltage                                               |                            | 2.7                  | _    | 5.5                         | V     |
| -          | Read voltage                                                         |                            | 2.7                  | -    | 5.5                         | V     |
| _          | Program, erase temperature                                           |                            | 0                    | -    | 60                          | °C    |
| -          | Data hold time <sup>(7)</sup>                                        | Ambient temperature = 55°C | 20                   | -    | _                           | year  |

**Table 5.37** Flash Memory (Program ROM) Electrical Characteristics

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

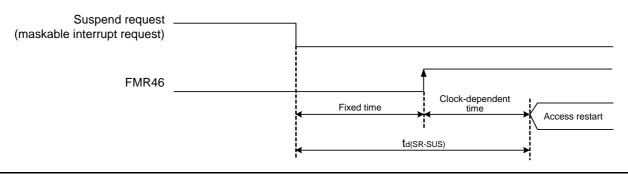



Figure 5.21 Time delay until Suspend

#### Table 5.39 Voltage Detection 1 Circuit Electrical Characteristics

| Symbol      | Parameter                                                                    | Condition              |      | Unit |                 |      |
|-------------|------------------------------------------------------------------------------|------------------------|------|------|-----------------|------|
| Symbol      | Faianielei                                                                   | Condition              | Min. | Тур. | 85 3.0<br>0 200 | Onit |
| Vdet1       | Voltage detection level <sup>(2, 4)</sup>                                    |                        | 2.70 | 2.85 | 3.0             | V    |
| td(Vdet1-A) | Voltage monitor 1 reset generation time <sup>(5)</sup>                       |                        | -    | 40   | 200             | μS   |
| -           | Voltage detection circuit self power consumption                             | VCA26 = 1, Vcc = 5.0 V | -    | 0.6  | -               | μΑ   |
| td(E-A)     | Waiting time until voltage detection circuit operation starts <sup>(3)</sup> |                        | -    | -    | 100             | μS   |
| Vccmin      | MCU operating voltage minimum value                                          |                        | 2.70 | _    | _               | V    |

NOTES:

1. The measurement condition is Vcc = 2.7 to 5.5 V and  $T_{opr} = -40$  to  $85^{\circ}C$  (J version) / -40 to  $125^{\circ}C$  (K version).

2. Hold Vdet2 > Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

4. This parameter shows the voltage detection level when the power supply drops.

- The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.
- 5. Time until the voltage monitor 1 reset is generated after the voltage passes Vdet1 when Vcc falls. When using the digital filter, its sampling time is added to td(Vdet1-A). When using the voltage monitor 1 reset, maintain this time until Vcc = 2.0 V after the voltage passes Vdet1 when the power supply falls.

### Table 5.40 Voltage Detection 2 Circuit Electrical Characteristics

| Symbol      | Parameter                                                                    | Condition              |      | Unit |      |      |
|-------------|------------------------------------------------------------------------------|------------------------|------|------|------|------|
| Symbol      | Falanetei                                                                    | Condition              | Min. | Тур. | Max. | Unit |
| Vdet2       | Voltage detection level <sup>(2)</sup>                                       |                        | 3.3  | 3.6  | 3.9  | V    |
| td(Vdet2-A) | Voltage monitor 2 reset/interrupt request generation time <sup>(3, 5)</sup>  |                        | -    | 40   | 200  | μS   |
| -           | Voltage detection circuit self power consumption                             | VCA27 = 1, Vcc = 5.0 V | -    | 0.6  | -    | μA   |
| td(E-A)     | Waiting time until voltage detection circuit operation starts <sup>(4)</sup> |                        | -    | -    | 100  | μS   |

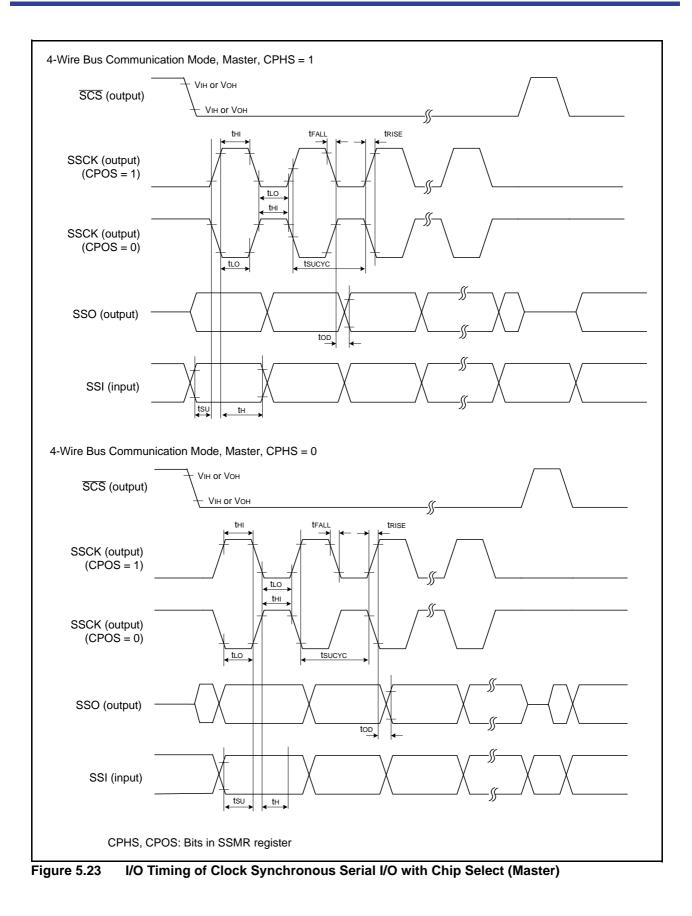
NOTES:

1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = -40 to 85°C (J version) / -40 to 125°C (K version).

2. Hold Vdet2 > Vdet1.

3. Time until the voltage monitor 2 reset/interrupt request is generated after the voltage passes Vdet2.

- 4. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.
- 5. When using the digital filter, its sampling time is added to td(Vdet2-A). When using the voltage monitor 2 reset, maintain this time until Vcc = 2.0 V after the voltage passes Vdet2 when the power supply falls.


| Cumhal        | Doromote              |              | Conditions |            | Standard |               |                     |  |  |
|---------------|-----------------------|--------------|------------|------------|----------|---------------|---------------------|--|--|
| Symbol        | Paramete              | er           | Conditions | Min.       | Тур.     | Max.          |                     |  |  |
| tsucyc        | SSCK clock cycle tim  | e            |            | 4          | -        | _             | tCYC <sup>(2)</sup> |  |  |
| tнı           | SSCK clock "H" width  | 1            |            | 0.4        | -        | 0.6           | tsucyc              |  |  |
| tlo           | SSCK clock "L" width  |              |            | 0.4        | -        | 0.6           | tsucyc              |  |  |
| trise         | SSCK clock rising     | Master       |            | -          | -        | 1             | tCYC <sup>(2)</sup> |  |  |
|               | time                  | Slave        |            | -          | -        | 1             | μS                  |  |  |
| tFALL         | SSCK clock falling    | Master       |            | -          | -        | 1             | tCYC <sup>(2)</sup> |  |  |
|               | time                  | Slave        |            | -          |          | 1             | μS                  |  |  |
| ts∪           | SSO, SSI data input   | setup time   |            | 100        | -        | _             | ns                  |  |  |
| tн            | SSO, SSI data input   | hold time    |            | 1          | -        | -             | tCYC <sup>(2)</sup> |  |  |
| <b>t</b> LEAD | SCS setup time        | Slave        |            | 1tcyc + 50 | 1        |               | ns                  |  |  |
| tlag          | SCS hold time         | Slave        |            | 1tcyc + 50 | _        | -             | ns                  |  |  |
| top           | SSO, SSI data outpu   | t delay time |            | -          | -        | 1             | tCYC <sup>(2)</sup> |  |  |
| tSA           | SSI slave access time | э            |            | -          | _        | 1.5tcyc + 100 | ns                  |  |  |
| tor           | SSI slave out open ti | me           |            | -          | -        | 1.5tcyc + 100 | ns                  |  |  |

#### Table 5.45 Timing Requirements of Clock Synchronous Serial I/O with Chip Select<sup>(1)</sup>

NOTES:

1. Vcc = 2.7 to 5.5 V, Vss = 0 V at T<sub>opr</sub> = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified. 2.  $1t_{CYC} = 1/f1(s)$ 





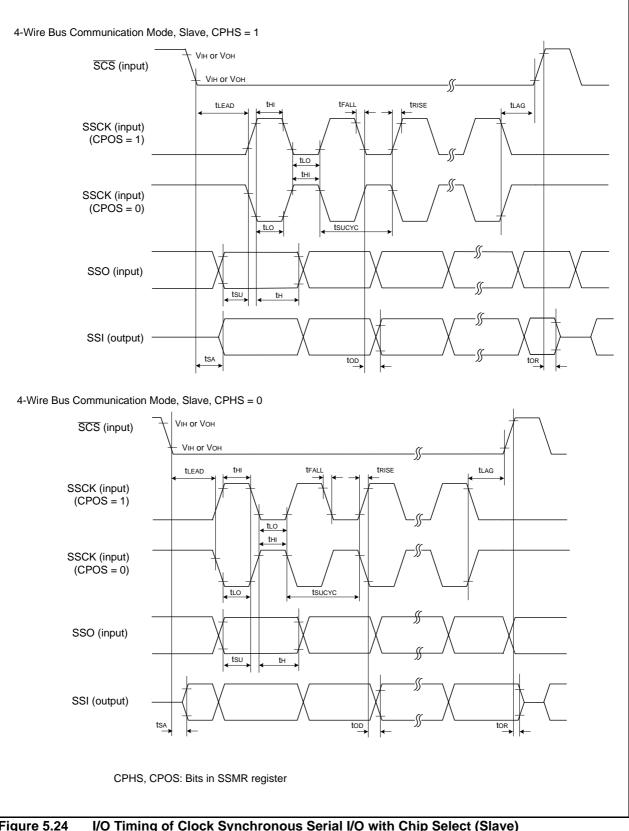



Figure 5.24 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Slave)

### Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

### Table 5.49XIN Input

| Symbol   | Parameter            | Standard |      | Unit |
|----------|----------------------|----------|------|------|
|          |                      | Min.     | Max. | Unit |
| tc(XIN)  | XIN input cycle time | 50       | -    | ns   |
| twh(xin) | XIN input "H" width  | 25       | -    | ns   |
| twl(XIN) | XIN input "L" width  | 25       | -    | ns   |

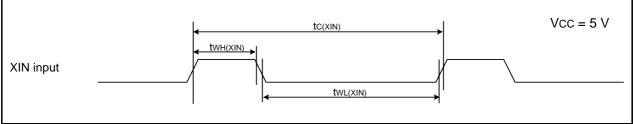



Figure 5.27 XIN Input Timing Diagram when Vcc = 5 V

#### Table 5.50 TRAIO Input

| Symbol     | Parameter              | Standard |      | Unit |
|------------|------------------------|----------|------|------|
|            |                        | Min.     | Max. | Unit |
| tc(TRAIO)  | TRAIO input cycle time | 100      | -    | ns   |
| twh(traio) | TRAIO input "H" width  | 40       | -    | ns   |
| twl(traio) | TRAIO input "L" width  | 40       | -    | ns   |

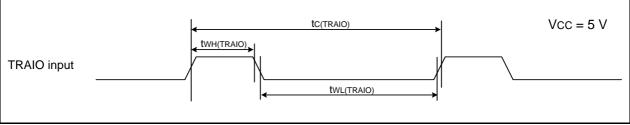
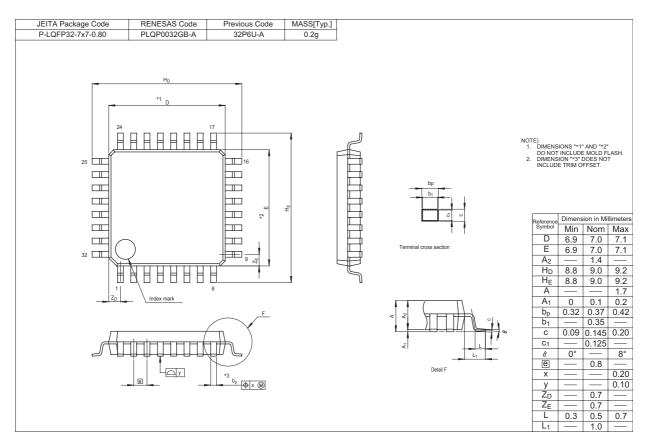




Figure 5.28 TRAIO Input Timing Diagram when Vcc = 5 V

## **Package Dimensions**

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

