

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21266sdfp-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R8C/26 Group, R8C/27 Group SINGLE-CHIP 16-BIT CMOS MCU

REJ03B0168-0210 Rev.2.10 Sep 26, 2008

1. **Overview**

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C CPU core, and are packaged in a 32-pin molded-plastic LQFP. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/27 Group has on-chip data flash (1 KB \times 2 blocks).

The difference between the R8C/26 Group and R8C/27 Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1 **Applications**

Electronic household appliances, office equipment, audio equipment, consumer products, automotive, etc.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/26 Group and Table 1.2 outlines the Functions and Specifications for R8C/27 Group.

Table 1.1 Functions and Specifications for R8C/26 Group

ODLI	Item	Specification
CPU	Number of	89 instructions
	fundamental	
	instructions Minimum instruction	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) (other than K version)
	execution time	62.5 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) (MINER THAIL K VERSION)
	execution time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V) (N, D version)
	Operating mode	Single-chip
	Address space	1 Mbyte
5	Memory capacity	Refer to Table 1.3 Product Information for R8C/26 Group
Peripheral	Ports	I/O ports: 25 pins, Input port: 3 pins
Functions	LED drive ports	I/O ports: 8 pins (N, D version)
	Timers	Timer RA: 8 bits x 1 channel
		Timer RB: 8 bits x 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer RC: 16 bits x 1 channel
		(Input capture and output compare circuits)
		Timer RE: With real-time clock and compare match function
		(For J, K version, compare match function only.)
	Serial interfaces	2 channels (UART0, UART1)
		Clock synchronous serial I/O, UART
	Clock synchronous	1 channel
	serial interface	I ² C bus Interface ⁽¹⁾
		Clock synchronous serial I/O with chip select
	LIN module	Hardware LIN: 1 channel (timer RA, UART0)
	A/D converter	10-bit A/D converter: 1 circuit, 12 channels
	Watchdog timer	15 bits x 1 channel (with prescaler)
	Transmission	Start-on-reset selectable
	Interrupts	Internal: 15 sources, External: 4 sources,
		Software: 4 sources, Priority levels: 7 levels
	Clock generation	3 circuits
	circuits	XIN clock generation circuit (with on-chip feedback resistor)
		On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has a frequency adjustment function
		XCIN clock generation circuit (32 kHz) (N, D version)
		Real-time clock (timer RE) (N, D version)
	Oscillation-stopped	XIN clock oscillation stop detection function
	detector	7.114 Glock Goomation Gtop actodion function
	Voltage detection	On-chip
	circuit	Off only
	Power-on reset circuit	On-chip
Electrical	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz) (other than K version)
Characteristics	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz) (other trial it version)
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)
		VCC = 2.2 to 5.5 V (f(XIN) = 10 MHz) (N, D version)
	Current consumption	Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
	(N, D version)	Typ. 6 mA (VCC = 3.0 V , f(XIN) = 20 MHz)
	(IV, D Version)	Typ. 2.0 μ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz)
		Typ. 0.7 μ A (VCC = 3.0 V, wait mode (I(XCIN) = 32 KHz)
Flash Memory	Programming and	VCC = 2.7 to 5.5 V
i idəli ivi c ililliy	erasure voltage	V 00 - 2.7 (0 0.0 V
	Programming and	100 times
		100 tillies
On a ratio = A!-	erasure endurance	20 to 95°C (N version)
Operating Ambie	int remperature	-20 to 85°C (N version)
		-40 to 85°C (D, J version) ⁽²⁾ , -40 to 125°C (K version) ⁽²⁾
Package		32-pin molded-plastic LQFP

- 1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 2. Specify the D, K version if D, K version functions are to be used.

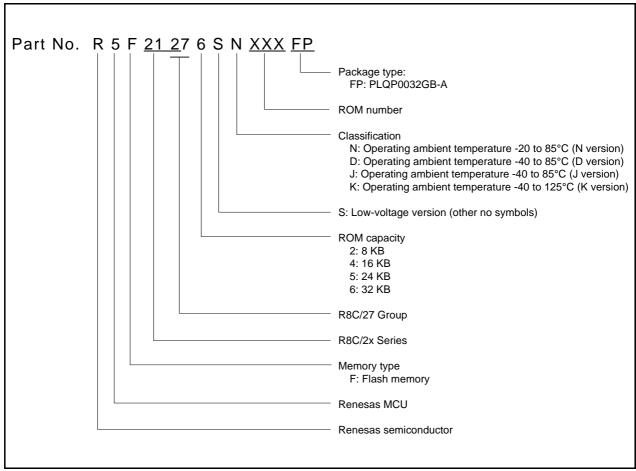


Figure 1.3 Part Number, Memory Size, and Package of R8C/27 Group

1.6 Pin Functions

Table 1.5 lists Pin Functions.

Table 1.5 Pin Functions

Туре	Symbol	I/O Type	Description	
Power supply input	VCC, VSS	I	Apply 2.2 to 5.5 V (J, K version are 2.7 to 5.5 V) to the VCC pin. Apply 0 V to the VSS pin.	
Analog power supply input	AVCC, AVSS	I	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.	
Reset input	RESET	I	Input "L" on this pin resets the MCU.	
MODE	MODE	I	Connect this pin to VCC via a resistor.	
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between the	
XIN clock output	XOUT	0	XIN and XOUT pins. To use an external clock, input it to the XIN pin and leave the XOUT pin open.	
XCIN clock input (N, D version)	XCIN	I	These pins are provided for XCIN clock generation circuit I/O. Connect a crystal oscillator between the XCIN and XCOUT	
XCIN clock output (N, D version)	XCOUT	0	o pins. To use an external clock, input it to the XCIN pin leave the XCOUT pin open.	
INT interrupt input	INTO, INT1, INT3	I	INT interrupt input pins	
Key input interrupt	KIO to KI3	I	Key input interrupt input pins	
Timer RA	TRAO	0	Timer RA output pin	
	TRAIO	I/O	Timer RA I/O pin	
Timer RB	TRBO	0	Timer RB output pin	
Timer RC	TRCCLK	I	External clock input pin	
	TRCTRG	I	External trigger input pin	
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Sharing output-compare output / input-capture input / PWM / PWM2 output pins	
Timer RE	TREO	0	Timer RE output pin	
Serial interface	CLK0, CLK1	I/O	Clock I/O pin	
	RXD0, RXD1	I	Receive data input pin	
	TXD0, TXD1	0	Transmit data output pin	
I ² C bus interface	SCL	I/O	Clock I/O pin	
	SDA	I/O	Data I/O pin	
Clock synchronous	SSI	I/O	Data I/O pin	
serial I/O with chip	SCS	I/O	Chip-select signal I/O pin	
select	SSCK	I/O	Clock I/O pin	
	SSO	I/O	Data I/O pin	
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter	
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter	
I/O port	P0_0 to P0_7, P1_0 to P1_7, P3_1, P3_3 to P3_7, P4_5, P5_3, P5_4	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P1_0 to P1_7 also function as LED drive ports (N, D version).	
Input port	P4_2, P4_6, P4_7	I	Input-only ports	
			1	

I: Input

O: Output

I/O: Input and output

2. **Central Processing Unit (CPU)**

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

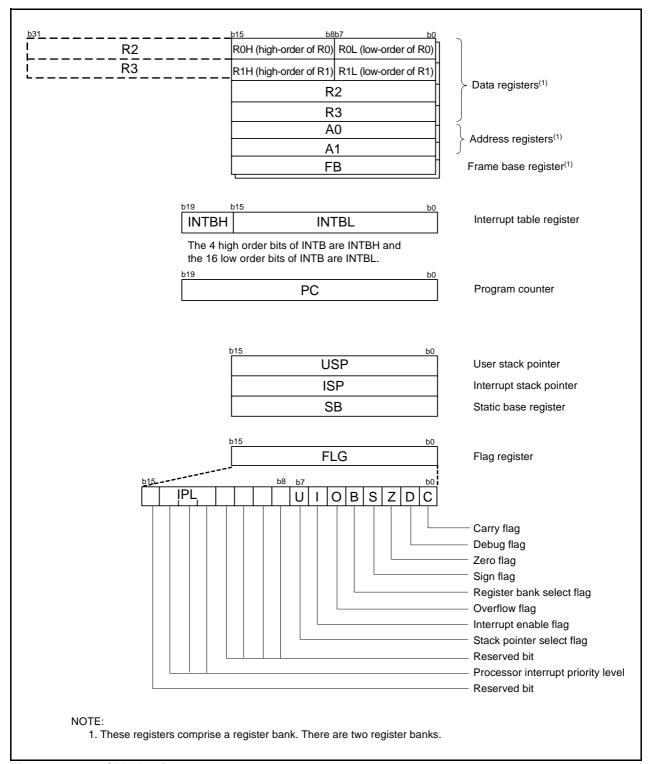
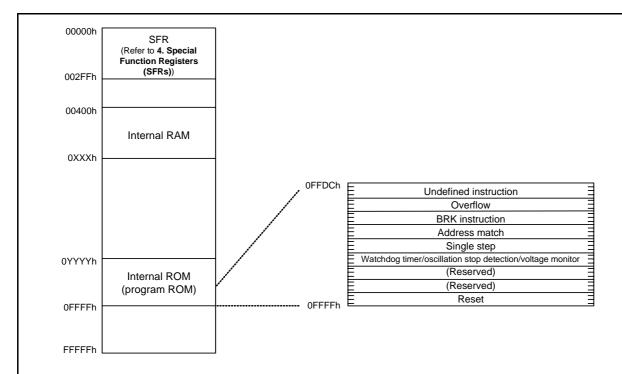


Figure 2.1 **CPU Registers**

3. Memory

3.1 R8C/26 Group


Figure 3.1 is a Memory Map of R8C/26 Group. The R8C/26 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

Part Number	Inte	rnal ROM Internal RAM		rnal RAM
Fait Number	Size	Address 0YYYYh	Size	Address 0XXXXh
R5F21262SNFP, R5F21262SDFP,	8 Kbytes	0E000h	512 bytes	005FFh
R5F21262SNXXXFP, R5F21262SDXXXFP	o Royles	OLOGOTI	312 bytes	0031111
R5F21264SNFP, R5F21264SDFP,				
R5F21264JFP, R5F21264KFP,	16 Kbytes	0C000h	1 Kbyte	007FFh
R5F21264SNXXXFP, R5F21264SDXXXFP,	10 Haytes			0071111
R5F21264JXXXFP, R5F21264KXXXFP				
R5F21265SNFP, R5F21265SDFP	24 Kbytes	0A000h	1.5 Kbytes	009FFh
R5F21265SNXXXFP, R5F21265SDXXXFP	24 Noytes	UAUUUII	1.5 Rbytes	0091111
R5F21266SNFP, R5F21266SDFP,				
R5F21266JFP, R5F21266KFP,	32 Kbytes	08000h	1.5 Kbytes	009FFh
R5F21266SNXXXFP, R5F21266SDXXXFP,	32 Royles	0000011	1.5 Rbytes	0031111
R5F21266JXXXFP, R5F21266KXXXFP				

Figure 3.1 Memory Map of R8C/26 Group

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers.

Table 4.1 SFR Information (1)⁽¹⁾

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h	1		00h
0012h	1		00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h	- · · · ·		00h
0016h	1		00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
004Db			10000000b ⁽²⁾
001Dh 001Eh			
001Eh			
001Fh			
0021h 0022h			
	High Speed On Chip Oscillator Control Beginter C	ED AO	00h
0023h	High-Speed On-Chip Oscillator Control Register 0 High-Speed On-Chip Oscillator Control Register 1	FRA0	00h
0024h 0025h	High-Speed On-Chip Oscillator Control Register 1 High-Speed On-Chip Oscillator Control Register 2	FRA1 FRA2	When shipping 00h
0025h 0026h	riigh-speed On-Onip Oscillator Control Register 2	FRAZ	UUII
0026h			
	Clock Proceeder Penet Flog	CDCDE	00h
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4(3)	FRA4	When shipping
002Ah	4	===	1
002Bh	High-Speed On-Chip Oscillator Control Register 6(3)	FRA6	When shipping
002Ch	High-Speed On-Chip Oscillator Control Register 7 ⁽³⁾	FRA7	When shipping
002Dh			
002Eh			
002Fh			

X: Undefined

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. The CSPROINI bit in the OFS register is set to 0.
- 3. In J, K version these regions are reserved. Do not access locations in these regions.

Table 4.5 SFR Information (5)⁽¹⁾

Address	Register	Symbol	After reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h			
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h			
011711 0118h	Timer RE Second Data Register / Counter Data Register	TRESEC	00h
0119h	Timer RE Minute Data Register / Compare Data Register	TREMIN	00h
0119H		TREHR	00h
	Timer RE Hour Data Register ⁽²⁾		
011Bh	Timer RE Day of Week Data Register ⁽²⁾	TREWK	00h
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Count Source Select Register	TRECSR	00001000b
011Fh			
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0127h			00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h			FFh
012Ah	Timer RC General Register B	TRCGRB	FFh
012Bh			FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh	-		FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh	-		FFh
	Timer RC Control Register 2	TRCCR2	00011111b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0133h	·		
0134h			
0135h			
0136h			
0137h			
0138h			
0139h			
0139h			
013An			
013Ch			
013Dh			
013Dh			
013Fh			

- The blank regions are reserved. Do not access locations in these regions.
 In J, K version these regions are reserved. Do not access locations in these regions.

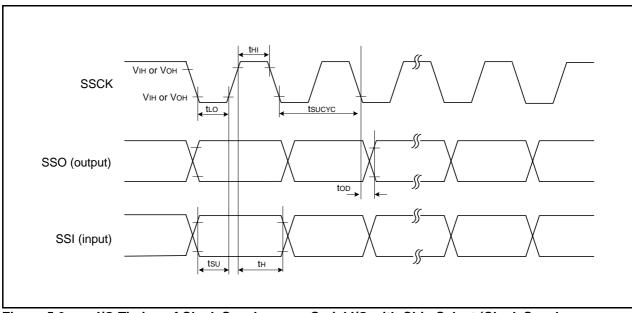


Figure 5.6 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Clock Synchronous Communication Mode)

Timing Requirements

(Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.18 XIN Input, XCIN Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(XIN)	XIN input cycle time	50	-	ns	
twh(xin)	XIN input "H" width	25	-	ns	
tWL(XIN)	XIN input "L" width	25	-	ns	
tc(XCIN)	XCIN input cycle time	14	=	μS	
twh(xcin)	XCIN input "H" width	7	Ī	μS	
tWL(XCIN)	XCIN input "L" width	7	=	μS	

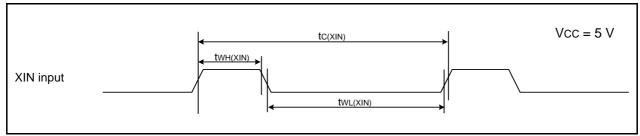


Figure 5.8 XIN Input and XCIN Input Timing Diagram when Vcc = 5 V

Table 5.19 TRAIO Input

Symbol tc(TRAIO)	Parameter		Standard		
Symbol	raidilletei	Min.	Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	=	ns	
twh(traio)	TRAIO input "H" width	40	=	ns	
twl(traio)	TRAIO input "L" width	40	=	ns	

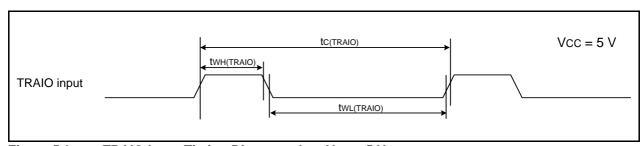


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.20 Serial Interface

Symbol	Parameter -		Standard		
Symbol			Max.	Unit	
tc(CK)	CLKi input cycle time	200	=	ns	
tW(CKH)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	=	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

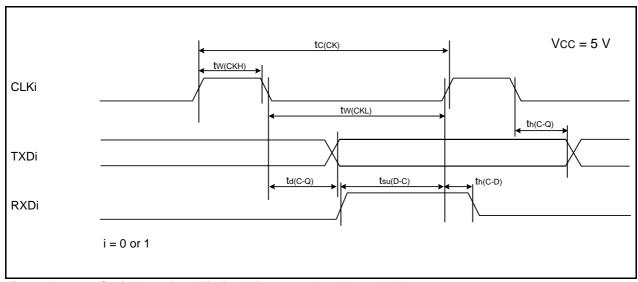
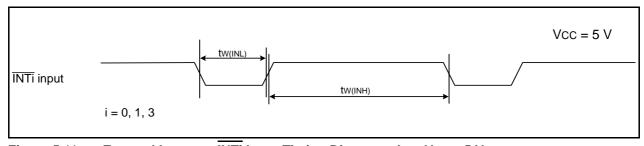



Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

External Interrupt INTi (i = 0, 1, 3) Input **Table 5.21**

Symbol	Symbol Parameter -		Standard	
Syllibol			Max.	Unit
tW(INH)	ĪNTi input "H" width	250 ⁽¹⁾	-	ns
tW(INL)	INTi input "L" width	250 ⁽²⁾	-	ns

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

External Interrupt INTi Input Timing Diagram when Vcc = 5 V Figure 5.11

Table 5.22 Electrical Characteristics (3) [Vcc = 3 V]

Symbol	Parameter Condition		dition	Standard			Unit	
Symbol	Fala	imetei	Conc	aition	Min.	Тур.	Max.	Offic
Vон	Output "H" voltage	Except P1_0 to P1_7, XOUT	Iон = -1 mA		Vcc - 0.5	_	Vcc	V
		P1_0 to P1_7	Drive capacity HIGH	Iон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	=	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -50 μΑ	Vcc - 0.5	-	Vcc	V
VoL Output "L" v	Output "L" voltage	Except P1_0 to P1_7, XOUT	IoL = 1 mA		-	_	0.5	V
		P1_0 to P1_7	Drive capacity HIGH	IoL = 5 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 1 mA	-	_	0.5	V
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	=	=	0.5	V
			Drive capacity LOW	IOL = 50 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, RXDO, RXD1, CLKO, CLK1, SSI, SCL, SDA, SSO			0.1	0.3	_	V
		RESET			0.1	0.4	-	V
Іін	Input "H" current	I	VI = 3 V, Vcc = 3 V		=	_	4.0	μА
lıL	Input "L" current		VI = 0 V, Vcc = 3 V		_	_	-4.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 3 V		66	160	500	kΩ
RfXIN	Feedback resistance	XIN			-	3.0	-	МΩ
RfXCIN	Feedback resistance	XCIN			=	18	=	МΩ
VRAM	RAM hold voltage		During stop mode	е	1.8	_	-	V

^{1.} Vcc = 2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

J, K Version 5.2

Table 5.34 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	-40 °C ≤ Topr ≤ 85 °C	300	mW
		85 °C ≤ Topr ≤ 125 °C	125	mW
Topr	Operating ambient temperature		-40 to 85 (J version) / -40 to 125 (K version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.35 Recommended Operating Conditions

Symbol	Dor	ameter	Conditions		Standard		Unit
Symbol	Fale	ameter	Conditions	Min.	Тур.	Max.	Offic
Vcc/AVcc	Supply voltage			2.7	_	5.5	V
Vss/AVss	Supply voltage			-	0	_	V
ViH	Input "H" voltage			0.8 Vcc	_	Vcc	V
VIL	Input "L" voltage			0	_	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		_	-	-60	mA
IOH(peak)	Peak output "H" current			-	=	-10	mA
IOH(avg)	Average output "H" current			-	=	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		_	-	60	mA
IOL(peak)	Peak output "L" currents			_	-	10	mA
IOL(avg)	Average output "L" current			_	-	5	mA
f(XIN)	XIN clock input oscillation frequency		3.0 V ≤ Vcc ≤ 5.5 V (other than K version)	0	=	20	MHz
			3.0 V ≤ Vcc ≤ 5.5 V (K version)	0	_	16	MHz
			2.7 V ≤ Vcc < 3.0 V	0	_	10	MHz
=	System clock	OCD2 = 0 XIN clock selected	3.0 V ≤ Vcc ≤ 5.5 V (other than K version)	0	=	20	MHz
			3.0 V ≤ Vcc ≤ 5.5 V (K version)	0	_	16	MHz
			2.7 V ≤ Vcc < 3.0 V	0	_	10	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	=	kHz
			FRA01 = 1 High-speed on-chip oscillator clock selected (other than K version)		-	20	MHz
			FRA01 = 1 High-speed on-chip oscillator clock selected	-	_	10	MHz

- 1. Vcc = 2.7 to 5.5 V at $T_{opr} = -40$ to $85^{\circ}C$ (J version) / -40 to $125^{\circ}C$ (K version), unless otherwise specified.
- 2. The average output current indicates the average value of current measured during 100 ms.

Table 5.37 Flash Memory (Program ROM) Electrical Characteristics

Symbol	Parameter	Conditions		Stand	ard	Unit	
Symbol	Farameter	Coriditions	Min.	Тур.	Max.	Cilit	
=	Program/erase endurance ⁽²⁾	R8C/26 Group	100 ⁽³⁾	=	=	times	
		R8C/27 Group	1,000(3)	-	-	times	
_	Byte program time		-	50	400	μS	
_	Block erase time		-	0.4	9	S	
td(SR-SUS)	Time delay from suspend request until		=	-	97 + CPU clock	μS	
	suspend				× 6 cycles		
_	Interval from erase start/restart until		650	_	-	μS	
	following suspend request						
_	Interval from program start/restart until		0	_	_	ns	
	following suspend request						
_	Time from suspend until program/erase		-	=	3 + CPU clock	μS	
	restart				× 4 cycles		
=	Program, erase voltage		2.7	-	5.5	V	
=	Read voltage		2.7	-	5.5	V	
=	Program, erase temperature		0	=	60	°C	
_	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	_	_	year	

- NOTES:

 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.
 - 2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.38 Flash Memory (Data flash Block A, Block B) Electrical Characteristics⁽⁴⁾

Symbol	Parameter	Conditions		Stand	dard	Unit
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Offic
_	Program/erase endurance ⁽²⁾		10,000(3)	-	_	times
_	Byte program time (program/erase endurance ≤ 1,000 times)		_	50	400	μS
_	Byte program time (program/erase endurance > 1,000 times)		_	65	_	μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		_	0.2	9	S
_	Block erase time (program/erase endurance > 1,000 times)		_	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		_	-	97 + CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	=	_	μS
_	Interval from program start/restart until following suspend request		0	-	_	ns
_	Time from suspend until program/erase restart		_	-	3 + CPU clock × 4 cycles	μS
=	Program, erase voltage		2.7	-	5.5	V
=	Read voltage		2.7	П	5.5	V
_	Program, erase temperature		-40	-	85(8)	°C
-	Data hold time ⁽⁹⁾	Ambient temperature = 55°C	20	-	_	year

- 1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.
 - However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A and B can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 8. 125°C for K version.
- 9. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.47 Electrical Characteristics (1) [Vcc = 5 V]

Symbol	Por	rameter	Conditio	n	Standard			Unit
Symbol	Fai	ameter	Conditio	11	Min. Typ. Ma		Max.	Offic
Vон	Output "H" voltage	Except XOUT	Iон = -5 mA		Vcc - 2.0	-	Vcc	V
			Іон = -200 μА		Vcc - 0.3	-	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	=	Vcc	V
			Drive capacity LOW	IOH = -500 μA	Vcc - 2.0	=	Vcc	V
Vol	Output "L" voltage	Except XOUT	IoL = 5 mA		=	-	2.0	V
			IOL = 200 μA		=	-	0.45	V
		XOUT	Drive capacity HIGH	IoL = 1 mA	=	-	2.0	V
			Drive capacity LOW	IoL = 500 μA	=	-	2.0	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, CLK1, SSI, SCL, SDA, SSO			0.1	0.5	-	>
		RESET			0.1	1.0	_	V
Іін	Input "H" current		VI = 5 V, Vcc = 5V		Ī	-	5.0	μΑ
lıL	Input "L" current		VI = 0 V, Vcc = 5V		_	_	-5.0	μА
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 5V		30	50	167	kΩ
RfXIN	Feedback resistance	XIN			-	1.0	_	ΜΩ
VRAM	RAM hold voltage		During stop mode		2.0	-	-	V

^{1.} Vcc = 4.2 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Parameter	Standard		Unit	
Symbol	Faidilletei	Min.	Min. Max.		
tc(CK)	CLKi input cycle time	200	=	ns	
tW(CKH)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	=	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

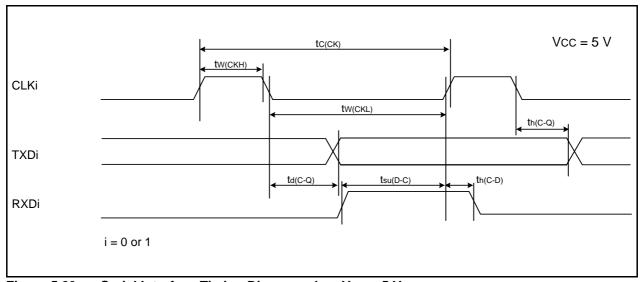


Figure 5.29 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.52 External Interrupt INTi (i = 0, 1, 3) Input

Cymhal	Parameter	Standard Min. Max.		Unit
Symbol	raialletei			Offic
tW(INH)	INTi input "H" width	250 ⁽¹⁾	-	ns
tW(INL)	INTi input "L" width	250(2)	-	ns

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

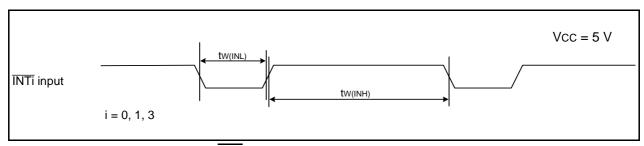


Figure 5.30 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

Table 5.54 Electrical Characteristics (4) [Vcc = 3 V] (Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.)

Symbol	Parameter	arameter Condition		Standard			Unit
Symbol	Faiailielei		Condition	Min.	Тур.	Max.	UIIIL
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6	-	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	=	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5	9	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	Ι	2	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	I	130	300	μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1		25	70	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	23	55	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	=	0.7	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	I	1.1	_	μА
			XIN clock off, Topr = 125°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	3.8	_	μА

REVISION HISTORY

R8C/26 Group, R8C/27 Group Datasheet

	5.4		Description
Rev.	Date	Page	Summary
0.10	Nov 14, 2005	-	First edition issued
0.20	Feb 06, 2006	2, 3	Table 1.1 Functions and Specifications for R8C/26Group and Table 1.2 Functions and Specifications for R8C/27 Group; Minimum instruction execution time and Supply voltage revised
		9	Table 1.6 Pin Name Information by Pin Number; "XOUT" \rightarrow "XOUT/XCOUT" and "XIN" \rightarrow "XIN/XCIN" revised
		18	Table 4.4 SFR Information (4); 00FEh: "DRR" → "P1DRR" revised
		19	Table 4.5 SFR Information (5); -0119h: "Timer RE Minute Data Register / Compare Register" → "Timer RE Minute Data Register / Compare Data Register" -011Ah: "Timer RE Time Data Register" → "Timer RE Hour Data Register" -011Bh: "Timer RE Day Data Register" → "Timer RE Day of Week Data Register" revised
		22 to 45	5. Electrical Characteristics added
1.00	Nov 08, 2006	All pages	"Preliminary" deleted
		2	Table 1.1 revised
		3	Table 1.2 revised
		4	Figure 1.1 revised
		5	Table 1.3 revised
		6	Table 1.4 revised
		7	Figure 1.4 revised
		9	Table 1.6 revised
		15	Table 4.1;
			 • 001Ch: "00h" → "00h, 10000000b" revised • 000Fh: "000XXXXXb" → "00X11111b" revised • 0029h: "High-Speed On-Chip Oscillator Control Register 4, FRA4, When shipping" added • 002Bh: "High-Speed On-Chip Oscillator Control Register 6, FRA6, When shipping" added • 0032h: "00h, 01000000b" → "00h, 00100000b" revised • 0038h: "00001000b, 01001001b" → "0000X000b, 0100X001b" revised • NOTE3 and 4 revised; NOTE6 added
		18	Table 4.4; • 00E0h, 00E1h, 00E5h, 00E8h, 00E9h: "XXh" → "00h" revised • 00FDh: "XX00000000b" → "00h" revised
		22	Table 5.2 revised
		23	Figure 5.1 title revised
		24	Table 5.4 revised
		25	Table 5.5 revised
		26	Figure 5.2 title revised and Table 5.7 NOTE4 added

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510