Renesas Electronics America Inc - R5F21272SNFP#V2 Datasheet

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21272snfp-v2

Email: info@E-XFL.COM

R8C/26 Group, R8C/27 Group SINGLE-CHIP 16-BIT CMOS MCU

REJ03B0168-0210 Rev.2.10 Sep 26, 2008

1. **Overview**

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C CPU core, and are packaged in a 32-pin molded-plastic LQFP. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/27 Group has on-chip data flash (1 KB \times 2 blocks).

The difference between the R8C/26 Group and R8C/27 Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1 **Applications**

Electronic household appliances, office equipment, audio equipment, consumer products, automotive, etc.

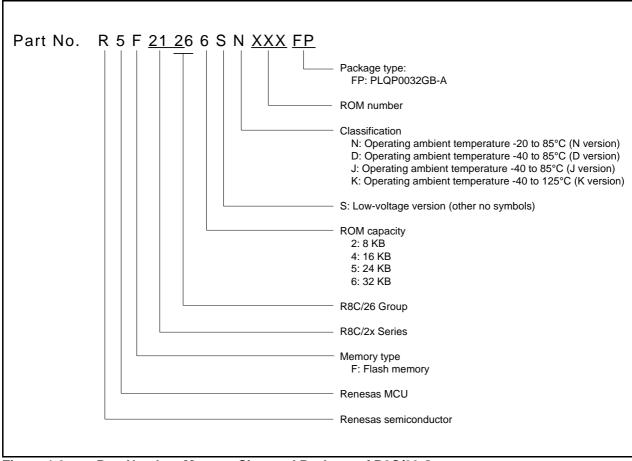


Figure 1.2 Part Number, Memory Size, and Package of R8C/26 Group

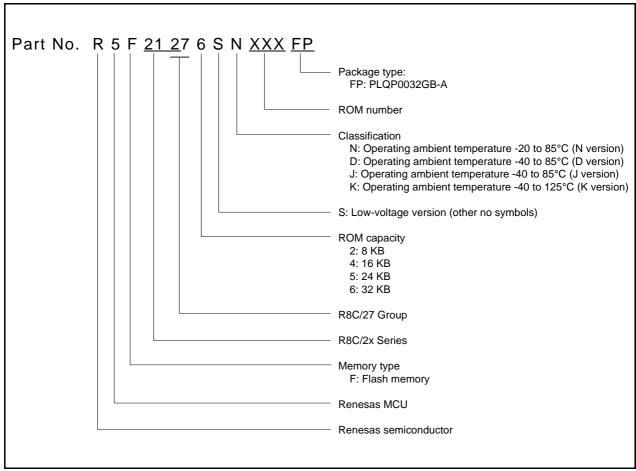


Figure 1.3 Part Number, Memory Size, and Package of R8C/27 Group

1.5 Pin Assignments

Figure 1.4 shows Pin Assignments (Top View).

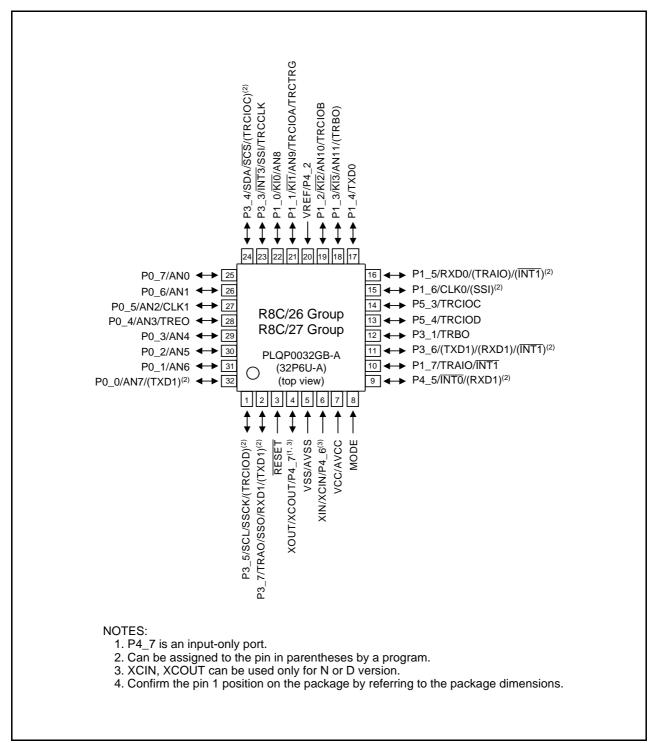


Figure 1.4 Pin Assignments (Top View)

2. **Central Processing Unit (CPU)**

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

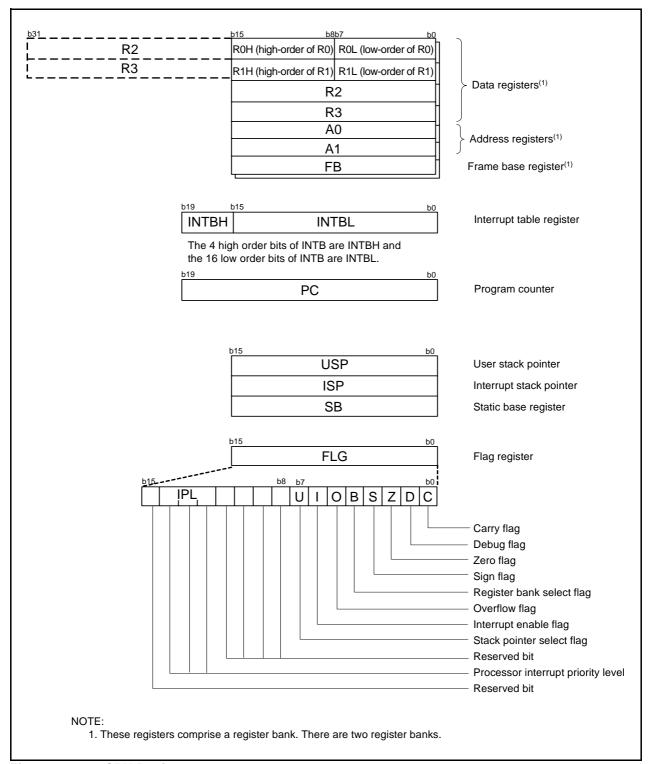
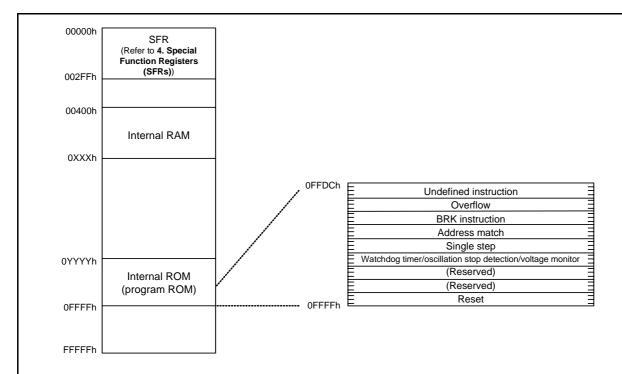


Figure 2.1 **CPU Registers**

3. Memory

3.1 R8C/26 Group


Figure 3.1 is a Memory Map of R8C/26 Group. The R8C/26 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

NOTE:

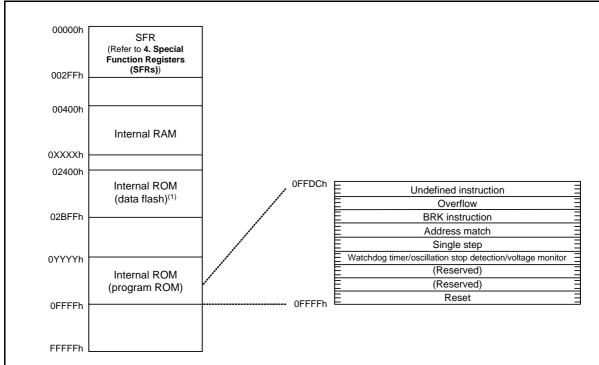
1. The blank regions are reserved. Do not access locations in these regions.

Part Number	Inte	rnal ROM	Internal RAM		
Fait Number	Size	Address 0YYYYh	Size	Address 0XXXXh	
R5F21262SNFP, R5F21262SDFP,	8 Kbytes	0E000h	512 bytes	005FFh	
R5F21262SNXXXFP, R5F21262SDXXXFP	o Royles	OLOGOTI	312 bytes	0031111	
R5F21264SNFP, R5F21264SDFP,					
R5F21264JFP, R5F21264KFP,	16 Kbytes	0C000h	1 Kbyte	007FFh	
R5F21264SNXXXFP, R5F21264SDXXXFP,	TO Royles			0071111	
R5F21264JXXXFP, R5F21264KXXXFP					
R5F21265SNFP, R5F21265SDFP	24 Kbytes	0A000h	1.5 Kbytes	009FFh	
R5F21265SNXXXFP, R5F21265SDXXXFP	24 Noytes	UAUUUII	1.5 Rbytes	0091111	
R5F21266SNFP, R5F21266SDFP,					
R5F21266JFP, R5F21266KFP,	32 Kbytes	08000h	1.5 Kbytes	009FFh	
R5F21266SNXXXFP, R5F21266SDXXXFP,	32 Royles	0000011	1.5 Rbytes	0031111	
R5F21266JXXXFP, R5F21266KXXXFP					

Figure 3.1 Memory Map of R8C/26 Group

3.2 R8C/27 Group

Figure 3.2 is a Memory Map of R8C/27 Group. The R8C/27 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

- 1. Data flash block A (1 Kbyte) and B (1 Kbyte) are shown.
- 2. The blank regions are reserved. Do not access locations in these regions.

Dord Mosek en	Internal ROM		Internal RAM		
Part Number	Size	Address 0YYYYh	Size	Address 0XXXXh	
R5F21272SNFP, R5F21272SDFP,	0 Khyton	0E000h	E12 bytes	005FFh	
R5F21272SNXXXFP, R5F21272SDXXXFP	8 Kbytes	000011	512 bytes	003FFII	
R5F21274SNFP, R5F21274SDFP,					
R5F21274JFP, R5F21274KFP,	16 Khytos	0C000h	1 Kbyte	007FFh	
R5F21274SNXXXFP, R5F21274SDXXXFP,	16 Kbytes			0077711	
R5F21274JXXXFP, R5F21274KXXXFP					
R5F21275SNFP, R5F21275SDFP,	24 Kbytes	0A000h	1.5 Kbytes	009FFh	
R5F21275SNXXXFP, R5F21275SDXXXFP	24 Kbytes	UAUUUII	1.5 Kbytes	009FFII	
R5F21276SNFP, R5F21276SDFP,					
R5F21276JFP, R5F21276KFP,	32 Kbytes	08000h	1 E Khyton	009FFh	
R5F21276SNXXXFP, R5F21276SDXXXFP,	32 Kbytes	0000011	1.5 Kbytes	009FFII	
R5F21276JXXXFP, R5F21276KXXXFP					

Figure 3.2 Memory Map of R8C/27 Group

Table 5.3 A/I	Converter Converter	Characteristics
---------------	---------------------	-----------------

Cumbal	Parameter		Conditions	Standard			Unit
Symbol	'	Parameter	Conditions	Min.	Тур.	Max.	Offic
-	Resolution		Vref = AVCC	-	-	10	Bits
_	Absolute	10-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	_	-	±3	LSB
	accuracy	8-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±2	LSB
		10-bit mode	φAD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±5	LSB
		8-bit mode	φAD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±2	LSB
		10-bit mode	φAD = 5 MHz, Vref = AVCC = 2.2 V	-	-	±5	LSB
		8-bit mode	φAD = 5 MHz, Vref = AVCC = 2.2 V	-	-	±2	LSB
Rladder	Resistor ladder		Vref = AVCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	3.3	=	_	μS
		8-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	2.8	-	_	μS
Vref	Reference voltag	e		2.2	-	AVcc	V
VIA	Analog input volta	age ⁽²⁾		0	=	AVcc	V
-	A/D operating	Without sample and hold	Vref = AVCC = 2.7 to 5.5 V	0.25	-	10	MHz
	clock frequency	With sample and hold	Vref = AVCC = 2.7 to 5.5 V	1	-	10	MHz
		Without sample and hold	Vref = AVCC = 2.2 to 5.5 V	0.25	-	5	MHz
		With sample and hold	Vref = AVCC = 2.2 to 5.5 V	1	-	5	MHz

- 1. AVcc = 2.2 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

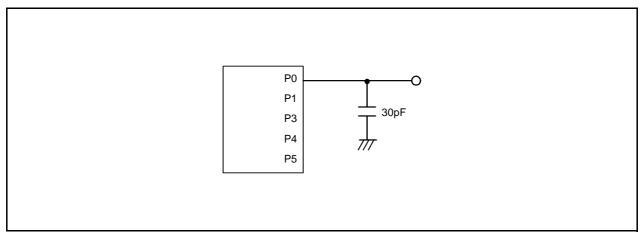


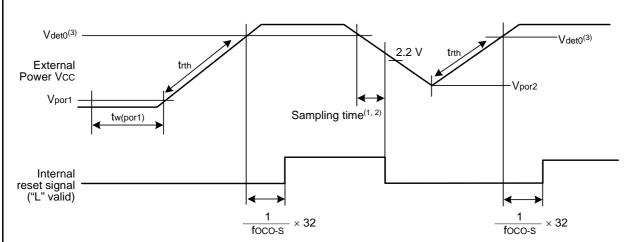
Figure 5.1 Ports P0, P1, and P3 to P5 Timing Measurement Circuit

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics⁽⁴⁾

Symbol	Parameter	Conditions		Unit		
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Offic
=	Program/erase endurance ⁽²⁾		10,000(3)	-	_	times
_	Byte program time (program/erase endurance ≤ 1,000 times)		-	50	400	μS
_	Byte program time (program/erase endurance > 1,000 times)		-	65	_	μS
_	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	9	S
_	Block erase time (program/erase endurance > 1,000 times)		-	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97 + CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	=	_	μS
_	Interval from program start/restart until following suspend request		0	-	_	ns
=	Time from suspend until program/erase restart		-	-	3 + CPU clock × 4 cycles	μS
=	Program, erase voltage		2.7	-	5.5	V
=	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	_	85	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55°C	20	_	_	year

- 1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.


However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A and B can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 8. -40°C for D version.
- 9. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.9 Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteristic

Svmbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	_	Vdet0	V
trth	External power Vcc rise gradient(2)		20	-	-	mV/msec

- 1. The measurement condition is T_{OPT} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power Vcc rise gradient) does not apply if Vcc ≥ 1.0 V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if -20°C ≤ Topr ≤ 85°C, maintain tw(por1) for 3,000 s or more if -40°C ≤ Topr < -20°C.</p>

- 1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.
- 2. The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
- 3. Vdeto indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.3 Reset Circuit Electrical Characteristics

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Courada a l	Davarantas	Condition		Standard		I India	
Symbol	Parameter	Condition		Тур.	Max.	Unit	
fOCO40M	High-speed on-chip oscillator frequency temperature • supply voltage dependence	Vcc = 4.75 to 5.25 V $0^{\circ}C \leq T_{opr} \leq 60^{\circ}C^{(2)}$	39.2	40	40.8	MHz	
		Vcc = 3.0 to 5.5 V -20°C \leq Topr \leq 85°C ⁽²⁾	38.8	40	41.2	MHz	
		Vcc = 3.0 to 5.5 V -40°C \leq Topr \leq 85°C ⁽²⁾	38.4	40	41.6	MHz	
		Vcc = 2.7 to 5.5 V -20°C \leq Topr \leq 85°C ⁽²⁾	38	40	42	MHz	
		Vcc = 2.7 to 5.5 V -40°C \leq Topr \leq 85°C(2)	37.6	40	42.4	MHz	
		Vcc = 2.2 to 5.5 V -20° C \leq Topr \leq 85 $^{\circ}$ C ⁽³⁾	35.2	40	44.8	MHz	
		Vcc = 2.2 to 5.5 V -40°C \leq Topr \leq 85°C(3)	34	40	46	MHz	
		$Vcc = 5.0 V \pm 10\%$ -20°C \le Topr \le 85°C ⁽²⁾	38.8	40	40.8	MHz	
		$Vcc = 5.0 V \pm 10\%$ -40°C \le Topr \le 85°C(2)	38.4	40	40.8	MHz	
	High-speed on-chip oscillator frequency when	Vcc = 5.0 V, Topr = 25°C	-	36.864	_	MHz	
	correction value in FRA7 register is written to FRA1 register ⁽⁴⁾	Vcc = 3.0 to 5.5 V -20°C \le Topr \le 85°C	-3%	-	3%	%	
_	Value in FRA1 register after reset		08h ⁽³⁾	-	F7h ⁽³⁾	-	
_	Oscillation frequency adjustment unit of high- speed on-chip oscillator	Adjust FRA1 register (value after reset) to -1	-	+0.3	-	MHz	
_	Oscillation stability time		-	10	100	μS	
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	400	_	μΑ	

- 1. Vcc = 2.2 to 5.5 V, $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.
- 2. These standard values show when the FRA1 register value after reset is assumed.
- 3. These standard values show when the corrected value of the FRA6 register is written to the FRA1 register.
- 4. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
_	Oscillation stability time		-	10	100	μS
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	15	-	μА

NOTE:

1. Vcc = 2.2 to 5.5 V, $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.

Table 5.12 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	,	Unit		
Syllibol	Symbol Parameter		Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	=	2000	μS
td(R-S)	STOP exit time ⁽³⁾		=	=	150	μS

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = 25°C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

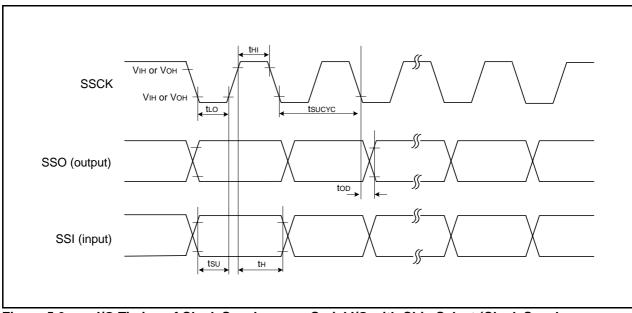


Figure 5.6 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Clock Synchronous Communication Mode)

Table 5.17 Electrical Characteristics (3) [Vcc = 5 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition	;	Standar	d	Unit
Syllibol	Farameter		Condition	Min.	Тур.	Max.	Ullit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open, other pins are Vss	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	25	75	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	60	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	4.0	-	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	2.2	-	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.8	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.2	_	μА

Table 5.37 Flash Memory (Program ROM) Electrical Characteristics

Symbol	Parameter	Conditions	Standa		ard	Unit	
Symbol	Farameter	Coriditions	Min.	Тур.	Max.	Offic	
=	Program/erase endurance ⁽²⁾	R8C/26 Group	100 ⁽³⁾	=	=	times	
		R8C/27 Group	1,000(3)	-	-	times	
_	Byte program time		-	50	400	μS	
_	Block erase time		-	0.4	9	S	
td(SR-SUS)	Time delay from suspend request until		=	-	97 + CPU clock	μS	
	suspend				× 6 cycles		
_	Interval from erase start/restart until		650	_	-	μS	
	following suspend request						
_	Interval from program start/restart until		0	_	_	ns	
	following suspend request						
_	Time from suspend until program/erase		-	=	3 + CPU clock	μS	
	restart				× 4 cycles		
=	Program, erase voltage		2.7	-	5.5	V	
=	Read voltage		2.7	-	5.5	V	
=	Program, erase temperature		0	=	60	°C	
_	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	_	_	year	

- NOTES:

 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.
 - 2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

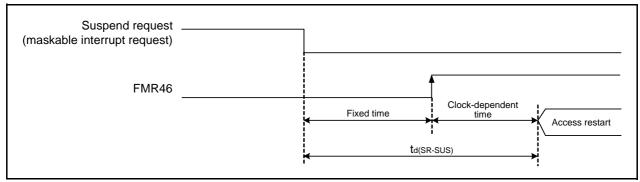


Figure 5.21 Time delay until Suspend

Table 5.39 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard		
Syllibol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level ^(2, 4)		2.70	2.85	3.0	V
td(Vdet1-A)	Voltage monitor 1 reset generation time ⁽⁵⁾		_	40	200	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	0.6	_	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		=	-	100	μS
Vccmin	MCU operating voltage minimum value		2.70	-	-	V

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = -40 to 85°C (J version) / -40 to 125°C (K version).
- 2. Hold Vdet2 > Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.
- 5. Time until the voltage monitor 1 reset is generated after the voltage passes V_{det1} when V_{CC} falls. When using the digital filter, its sampling time is added to t_d(V_{det1}-A). When using the voltage monitor 1 reset, maintain this time until V_{CC} = 2.0 V after the voltage passes V_{det1} when the power supply falls.

Table 5.40 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level ⁽²⁾		3.3	3.6	3.9	V
td(Vdet2-A)	Voltage monitor 2 reset/interrupt request generation time ^(3, 5)		=	40	200	μS
=	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	=	0.6	_	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		I	=	100	μS

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = -40 to 85°C (J version) / -40 to 125°C (K version).
- 2. Hold Vdet2 > Vdet1
- 3. Time until the voltage monitor 2 reset/interrupt request is generated after the voltage passes Vdet2.
- 4. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.
- 5. When using the digital filter, its sampling time is added to td(Vdet2-A). When using the voltage monitor 2 reset, maintain this time until Vcc = 2.0 V after the voltage passes Vdet2 when the power supply falls.

Table 5.45 Timing Requirements of Clock Synchronous Serial I/O with Chip Select(1)

Symbol	Parameter		Conditions		Stand	Unit	
Symbol			Conditions	Min.	Тур.	Max.	
tsucyc	SSCK clock cycle time			4	-	-	tcyc(2)
tHI	SSCK clock "H" width			0.4	-	0.6	tsucyc
tLO	SSCK clock "L" width			0.4	_	0.6	tsucyc
trise	SSCK clock rising	Master		=	=	1	tcyc(2)
	time	Slave		=	_	1	μS
tFALL	SSCK clock falling time	Master		-	-	1	tcyc(2)
		Slave		=	_	1	μS
tsu	SSO, SSI data input setup time			100	-	-	ns
tH	SSO, SSI data input h	old time		1	=	-	tcyc(2)
tLEAD	SCS setup time	Slave		1tcyc + 50	-	-	ns
tLAG	SCS hold time	Slave		1tcyc + 50	=	-	ns
top	SSO, SSI data output delay time			_	-	1	tcyc(2)
tsa	SSI slave access time			-	_	1.5tcyc + 100	ns
tor	SSI slave out open time			_	_	1.5tcyc + 100	ns

- 1. Vcc = 2.7 to 5.5 V, Vss = 0 V at $T_{opr} = -40$ to $85^{\circ}C$ (J version) / -40 to $125^{\circ}C$ (K version), unless otherwise specified. 2. 1tCyc = 1/f1(s)

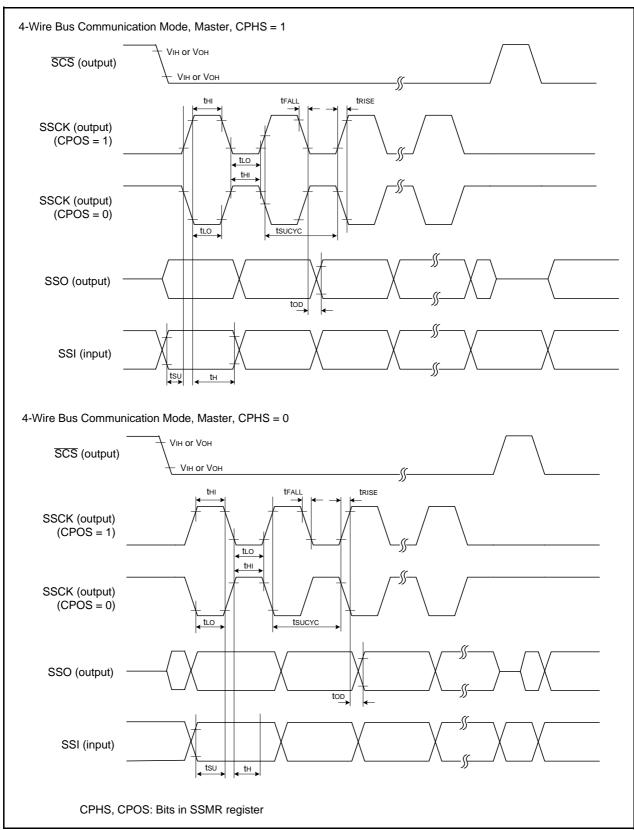


Figure 5.23 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Master)

Timing requirements

(Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.55 XIN Input

Symbol	Parameter	Stan	dard	Unit
	Falanietei	Min. Max.	Offic	
tc(XIN)	XIN input cycle time	100	-	ns
twh(xin)	XIN input "H" width	40	=	ns
tWL(XIN)	XIN input "L" width	40	=	ns

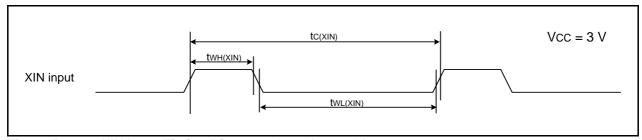


Figure 5.31 XIN Input Timing Diagram when Vcc = 3 V

Table 5.56 TRAIO Input

Symbol	Parameter	Stan	Unit	
	r didilletei	Min. Max.		
tc(TRAIO)	TRAIO input cycle time	300	-	ns
tWH(TRAIO)	TRAIO input "H" width	120	=	ns
twl(traio)	TRAIO input "L" width	120	=	ns

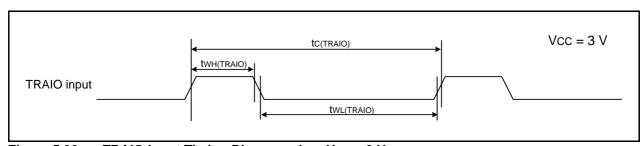


Figure 5.32 TRAIO Input Timing Diagram when Vcc = 3 V

REVISION HISTORY

R8C/26 Group, R8C/27 Group Datasheet

	5.4		Description
Rev.	Date	Page	Summary
0.10	Nov 14, 2005	-	First edition issued
0.20	Feb 06, 2006	2, 3	Table 1.1 Functions and Specifications for R8C/26Group and Table 1.2 Functions and Specifications for R8C/27 Group; Minimum instruction execution time and Supply voltage revised
		9	Table 1.6 Pin Name Information by Pin Number; "XOUT" \rightarrow "XOUT/XCOUT" and "XIN" \rightarrow "XIN/XCIN" revised
		18	Table 4.4 SFR Information (4); 00FEh: "DRR" → "P1DRR" revised
		19	Table 4.5 SFR Information (5); -0119h: "Timer RE Minute Data Register / Compare Register" → "Timer RE Minute Data Register / Compare Data Register" -011Ah: "Timer RE Time Data Register" → "Timer RE Hour Data Register" -011Bh: "Timer RE Day Data Register" → "Timer RE Day of Week Data Register" revised
		22 to 45	5. Electrical Characteristics added
1.00	Nov 08, 2006	All pages	"Preliminary" deleted
		2	Table 1.1 revised
		3	Table 1.2 revised
		4	Figure 1.1 revised
		5	Table 1.3 revised
		6	Table 1.4 revised
		7	Figure 1.4 revised
		9	Table 1.6 revised
		15	Table 4.1;
			 • 001Ch: "00h" → "00h, 10000000b" revised • 000Fh: "000XXXXXb" → "00X11111b" revised • 0029h: "High-Speed On-Chip Oscillator Control Register 4, FRA4, When shipping" added • 002Bh: "High-Speed On-Chip Oscillator Control Register 6, FRA6, When shipping" added • 0032h: "00h, 01000000b" → "00h, 00100000b" revised • 0038h: "00001000b, 01001001b" → "0000X000b, 0100X001b" revised • NOTE3 and 4 revised; NOTE6 added
		18	Table 4.4; • 00E0h, 00E1h, 00E5h, 00E8h, 00E9h: "XXh" → "00h" revised • 00FDh: "XX00000000b" → "00h" revised
		22	Table 5.2 revised
		23	Figure 5.1 title revised
		24	Table 5.4 revised
		25	Table 5.5 revised
		26	Figure 5.2 title revised and Table 5.7 NOTE4 added

Dov	Data		Description
Rev.	Date	Page	Summary
1.00	Nov 08, 2006	27	Table 5.9, Figure 5.3 revised and Table 5.10 deleted
		28	Table 5.10, Table 5.11 revised
		34	Table 5.15 revised
		35	Table 5.16 revised
		36	Table 5.17 revised
		39	Table 5.22 revised
		40	Table 5.23 revised
		44	Table 5.29 revised
		47	Package Dimensions; "Diagrams showing the latestwebsite." added
1.10	Nov 29, 2006	All pages	"J, K version" added
		1	1 "J and K versions are under developmentnotice." added
			1.1 revised
		2	Table 1.1 revised
		3	Table 1.2 revised
		4	Figure 1.1 NOTE3 added
		5	Table 1.3, Figure 1.2 revised
		6	Table 1.4, Figure 1.3 revised
		7	Figure 1.4 NOTE3 added
		8	Table 1.5 revised
		9	Table 1.6 NOTE2 added
		13	Figure 3.1 revised
		14	Figure 3.2 revised
		15	Table 4.1; "0000h to 003Fh" → "0000h to 002Fh" revised • NOTE3 added
		16	Table 4.2; "0040h to 007Fh" → "0030h to 007Fh" revised • 0032h, 0036h: "After reset" is revised • 0038h: NOTE revised • NOTES 2, 5, 6 revised and NOTE 7, 8 added
		19	Table 4.5 NOTE2 added
		28	Table 5.10 revised
		48 to 66	5.2 J, K Version added
1.20	Jan 17, 2007	18	Table 4.4 NOTE2 added
1.30	May 25, 2007	2	Table 1.1 revised
		3	Table 1.2 revised
		5	Table 1.3 revised
		6	Figure 1.2 revised
		7	Table 1.4 revised
		8	Figure 1.3 revised
		9	Figure 1.4 NOTE4 added
		15	Figure 3.1 part number revised