

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21274sdfp-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 **Block Diagram**

Figure 1.1 shows a Block Diagram.

Figure 1.1 **Block Diagram**

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 to be used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3. Memory

3.1 R8C/26 Group

Figure 3.1 is a Memory Map of R8C/26 Group. The R8C/26 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Figure 3.1 Memory Map of R8C/26 Group

3.2 R8C/27 Group

Figure 3.2 is a Memory Map of R8C/27 Group. The R8C/27 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Figure 3.2 Memory Map of R8C/27 Group

Address	Register	Symbol	After reset
0080h			
0081h			
0082h			
0083h			
00846			
000411			
00850			
0086h			
0087h			
0088h			
0089h			
008Ah			
008Bh			
008Ch			
008Dh			
000Eh			
000Eh			
008FN			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h		İ	
0096h		1	
0097h			
00986		ł	
0000h			
009911			
009An			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UARTO Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	UOTB	XXh
00A3h		00.5	XXh
00/(0h	UAPTO Transmit/Passiva Control Pagistar 0	11000	00001000b
00A411	UARTO Transmit/Receive Control Register 0	0000	000010000
UUA5h	UARTO Transmit/Receive Control Register 1	0001	d01000010b
00A6h	UARI0 Receive Buffer Register	UORB	XXh
00A7h			XXh
00A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
00A9h	UART1 Bit Rate Register	U1BRG	XXh
00AAh	UART1 Transmit Buffer Register	U1TB	XXh
00ABh			XXh
00ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
004 Dh	UART1 Transmit/Receive Control Register 1	U1C1	0000010b
	UIADT1 Deceive Buffer Degister		XXP
	UNNEE RECEIVE DUILEE REGISTER	UIRD	
UUAFn			77U
00B0h			
00B1h			
00B2h			
00B3h			
00B4h			
00B5h		İ	
00B6h		1	
00B7h			1
00Bah	SS Control Paginter H / IIC hup Control Paginter (2)		00b
UUB9h	SS Control Register L / IIC bus Control Register 2 ⁽²⁾	SSCRL / ICCR2	011111010
00BAh	SS Mode Register / IIC bus Mode Register ⁽²⁾	SSMR / ICMR	00011000b
00BBh	SS Enable Register / IIC bus Interrupt Enable Register ⁽²⁾	SSER / ICIER	00h
00BCh	SS Status Register / IIC bus Status Register ⁽²⁾	SSSR / ICSR	00h / 0000X000b
00BDh	SS Mode Register 2 / Slave Address Register ⁽²⁾	SSMR2/SAR	00h
OOPEN	CO Mouse Register 2 / Slave Audiess Register		CCh
UUBEN	55 Transmit Data Register / IIC bus Transmit Data Register ⁽²⁾	SSIDK/ICDKI	
00BFh	SS Receive Data Register / IIC bus Receive Data Register ⁽²⁾	SSRDR / ICDRR	FFh
X. Undefined			

SFR Information (3)⁽¹⁾ Table 4.3

NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. Selected by the IICSEL bit in the PMR register.

Symbol	Baramatar	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Min. Typ. Max.		Unit
_	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
-	Byte program time (program/erase endurance \leq 1,000 times)		-	50	400	μS
-	Byte program time (program/erase endurance > 1,000 times)		-	65	_	μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	9	S
-	Block erase time (program/erase endurance > 1,000 times)		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97 + CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	_	μS
-	Interval from program start/restart until following suspend request		0	-	-	ns
_	Time from suspend until program/erase restart		-	-	3 + CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	-	85	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55°C	20	-	_	year

Table 5.5	Flash Memory	(Data flash Block A,	Block B) Electrical	Characteristics ⁽⁴⁾
-----------	--------------	----------------------	----------------------------	--------------------------------

NOTES

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A and B can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. -40°C for D version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Linit		
Symbol	i didinetei	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	1	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	300	μS
Vccmin	MCU operating voltage minimum value		2.2	-	-	V

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Deremeter	Condition		l locit		
Symbol	Palameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level ⁽⁴⁾		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		(40	(μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	- 1	0.6	- 1	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾			_	100	μS

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Deremeter	Condition		Linit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		_	_	100	μs

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Lloit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec

Table 5.9 Power-on Reset Circuit, Voltage Monitor U Reset Electrical Characteristi	Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Cha	aracteristics ⁽³
--	--	-----------------------------

NOTES:

1. The measurement condition is T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. This condition (external power Vcc rise gradient) does not apply if Vcc \ge 1.0 V.

- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. $t_{w(por1)}$ indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain $t_{w(por1)}$ for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain $t_{w(por1)}$ for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.

- 2. The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
- 3. Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.3 Reset Circuit Electrical Characteristics

Symbol	Doromoto		Conditions	Standard			Unit
Symbol	Falamete		Conditions	Min.	Тур.	Max.	
tsucyc	SSCK clock cycle time)		4	=	-	tCYC ⁽²⁾
tнı	SSCK clock "H" width			0.4	-	0.6	tsucyc
tLO	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising	Master		-	=	1	tCYC ⁽²⁾
	time	Slave		-	-	1	μs
tFALL	SSCK clock falling	Master		-	=	1	tCYC ⁽²⁾
	time	Slave		-	-	1	μs
ts∪	SSO, SSI data input s	etup time		100	-	-	ns
tн	SSO, SSI data input h	old time		1	-	-	tCYC ⁽²⁾
t LEAD	SCS setup time	Slave		1tcyc + 50	-	_	ns
tlag	SCS hold time	Slave		1tcyc + 50	-	_	ns
top	SSO, SSI data output	delay time		-	-	1	tCYC ⁽²⁾
tSA	SSI slave access time		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	-	1.5tcyc + 100	ns
			$2.2 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	1.5tcyc + 200	ns
tOR	SSI slave out open tim	ne	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_	=	1.5tcyc + 100	ns
			2.2 V ≤ Vcc < 2.7 V	_	-	1.5tcyc + 200	ns

Table 5.13 Timing Requirements of Clock Synchronous Serial I/O with Chip Select⁽¹⁾

NOTES:

1. Vcc = 2.2 to 5.5 V, Vss = 0 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. 1tcvc = 1/f1(s)

Table 5.16Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter Condition		Standard			Llnit	
Symbol	i alametei		Condition	Min.	Тур.	Max.	Offic
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	10	17	mA
	other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	9	15	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	_	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	10	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μΑ
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	_	130	300	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	_	30	_	μΑ

RENESAS

Table 5.20 Serial Interface

Symbol	Derometer		Standard		
	Falanielei	Min.	Max.	Offic	
tc(CK)	CLKi input cycle time	200	-	ns	
tW(CKH)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.21 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter		Standard		
			Max.	Onit	
tw(INH)	INTi input "H" width	250(1)	-	ns	
tw(INL)	INTi input "L" width	250 ⁽²⁾	=	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.11 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

Symbol	Poro	motor	Cond	Condition		dition				Unit
Symbol	T did		Cond	lion	Min.	Тур.	Max.	Onit		
Vон	Output "H" voltage	Except P1_0 to P1_7, XOUT	Іон = -1 mA		Vcc - 0.5	_	Vcc	V		
		P1_0 to P1_7	Drive capacity HIGH	Іон = -2 mA	Vcc - 0.5	-	Vcc	V		
			Drive capacity LOW	Іон = -1 mA	Vcc - 0.5	-	Vcc	V		
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	_	Vcc	V		
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5		Vcc	V		
Vol	Output "L" voltage	Except P1_0 to P1_7, XOUT	IOL = 1 mA		-	-	0.5	V		
		P1_0 to P1_7	Drive capacity HIGH	IOL = 2 mA	-	_	0.5	V		
			Drive capacity LOW	IOL = 1 mA	-		0.5	V		
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	_	-	0.5	V		
			Drive capacity LOW	IOL = 50 μA	-	_	0.5	V		
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, CLK1, SSI, SCL, SDA, SSO			0.05	0.3	_	V		
		RESET			0.05	0.15	-	V		
Ін	Input "H" current	•	VI = 2.2 V		-	-	4.0	μA		
lı∟	Input "L" current		VI = 0 V		-	-	-4.0	μA		
RPULLUP	Pull-up resistance		VI = 0 V		100	200	600	kΩ		
Rfxin	Feedback resistance	XIN			_	5	-	MΩ		
Rfxcin	Feedback resistance	XCIN			_	35	-	MΩ		
VRAM	RAM hold voltage		During stop mode	;	1.8	—	-	V		

Table 5.28	Electrical Characteristics (5) [Vcc = 2.2 \	v 1
		- 1

NOTE:

1. Vcc = 2.2 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

5.2 J, K Version

Table 5.34	Absolute	Maximum	Ratings
------------	----------	---------	---------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vi	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	-40 °C \leq Topr \leq 85 °C	300	mW
		85 °C \leq Topr \leq 125 °C	125	mW
Topr	Operating ambient temperature		-40 to 85 (J version) / -40 to 125 (K version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.35 Recommended Operating Conditions

Symbol	Dorr	motor	Standard		Standard		Linit
Symbol	Fala	ameter	Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage			2.7	_	5.5	V
Vss/AVss	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8 Vcc	_	Vcc	V
VIL	Input "L" voltage			0	_	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	-	-60	mA
IOH(peak)	Peak output "H" current			-	-	-10	mA
IOH(avg)	Average output "H" current			-	-	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	-	60	mA
IOL(peak)	Peak output "L" currents			-	-	10	mA
IOL(avg)	Average output "L" current			-	-	5	mA
f(XIN)	XIN clock input os	cillation frequency	3.0 V \leq Vcc \leq 5.5 V (other than K version)	0	-	20	MHz
			$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ (K version)	0	-	16	MHz
			$2.7 \text{ V} \leq \text{Vcc} < 3.0 \text{ V}$	0	_	10	MHz
_	System clock	OCD2 = 0 XIN clock selected	3.0 V \leq Vcc \leq 5.5 V (other than K version)	0	-	20	MHz
			$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ (K version)	0	=	16	MHz
			$2.7 \text{ V} \leq \text{Vcc} < 3.0 \text{ V}$	0	_	10	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	-	kHz
			FRA01 = 1 High-speed on-chip oscillator clock selected (other than K version)	-	_	20	MHz
			FRA01 = 1 High-speed on-chip oscillator clock selected	-	-	10	MHz

NOTES:

1. Vcc = 2.7 to 5.5 V at T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

Symbol	Parameter	Conditions		Linit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
-	Byte program time (program/erase endurance \leq 1,000 times)		_	50	400	μS
-	Byte program time (program/erase endurance > 1,000 times)		_	65	-	μS
-	Block erase time (program/erase endurance \leq 1,000 times)		-	0.2	9	S
-	Block erase time (program/erase endurance > 1,000 times)		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97 + CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	-	μS
-	Interval from program start/restart until following suspend request		0	-	-	ns
-	Time from suspend until program/erase restart		-	-	3 + CPU clock × 4 cycles	μS
—	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.7	-	5.5	V
-	Program, erase temperature		-40	-	85 ⁽⁸⁾	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55°C	20	-	_	year

Table 5.38	Flash Memory	(Data flash	Block A,	Block B)	Electrical	Characteristics ⁽⁴⁾
------------	--------------	-------------	----------	----------	------------	--------------------------------

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A and B can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. 125°C for K version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Baramotor	Condition		Llnit		
Symbol Farameter		Condition	Min.	Тур.	Max.	Onit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 1 reset valid voltage		0	-	Vdet1	V
trth	External power Vcc rise gradient	$Vcc \le 3.6 V$	20(2)	-	-	mV/msec
		Vcc > 3.6 V	20 ⁽²⁾	-	2,000	mV/msec

Table 5.41	Power-on Reset Circuit,	Voltage Monitor 1	Reset Electrical	Characteristics ⁽³⁾
------------	-------------------------	-------------------	------------------	--------------------------------

NOTES:

- 1. The measurement condition is Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.
- 2. This condition (the minimum value of external power Vcc rise gradient) does not apply if $V_{Por2} \ge 1.0 V$.
- 3. To use the power-on reset function, enable voltage monitor 1 reset by setting the LVD1ON bit in the OFS register to 0, the VW1C0 and VW1C6 bits in the VW1C register to 1 respectively, and the VCA26 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if $-20^{\circ}C \le T_{opr} \le 125^{\circ}C$, maintain tw(por1) for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

Figure 5.22 Reset Circuit Electrical Characteristics

RENESAS

Table 5.48Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.)

Symbol	hal Darameter Condition		:	Standar	d	Unit	
Symbol	Falameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	10	17	mA
	output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	9	15	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6	_	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	-	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz (J version) Low-speed on-chip oscillator on = 125 kHz No division	-	10	15	mA
	mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz (J version) Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	-	mA	
		XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5.5	10	mA	
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	25	75	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	23	60	μA
	Stop mode	XIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.8	3.0	μΑ	
			XIN clock off, Topr = 85° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	1.2	_	μA
			XIN clock off, Topr = 125°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	4.0	_	μA

RENESAS

	Table	5.57	Serial	Interface
--	-------	------	--------	-----------

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
tc(CK)	CLKi input cycle time	300	-	ns
tW(CKH)	CLKi input "H" width	150	-	ns
tW(CKL)	CLKi Input "L" width	150	-	ns
td(C-Q)	TXDi output delay time	-	80	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	70	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1

Table 5.58 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter	Standard		Lloit
		Min.	Max.	Onit
tw(INH)	INTi input "H" width	380(1)	-	ns
tw(INL)	INTi input "L" width	380(2)	-	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

Figure 5.34 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

RENESAS

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the tendology described in this document.
 The order data. diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document with a pay with use. When exporting the products or the tendology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, but has product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document, when the set of the date their document, we have been purchasing or using any Renesas products for the tendes of the date their document.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a state of the total system before deciding about the applicability of the interest of the second of the s

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com