

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21274snfp-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/26 Group and Table 1.2 outlines the Functions and Specifications for R8C/27 Group.

	ltem	Specification
CPU	Number of	89 instructions
	fundamental	
	instructions Minimum instruction	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) (other than K version)
	Minimum instruction	
	execution time	62.5 ns (f(XIN) = 16 MHz, VCC = 3.0 to 5.5 V) (K version) 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V) (N, D version)
	Operating mode	Single-chip
	Address space	1 Mbyte
	Memory capacity	Refer to Table 1.3 Product Information for R8C/26 Group
Peripheral	Ports	I/O ports: 25 pins, Input port: 3 pins
Functions	LED drive ports	I/O ports: 8 pins (N, D version)
	Timers	Timer RA: 8 bits × 1 channel
		Timer RB: 8 bits × 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer RC: 16 bits × 1 channel
		(Input capture and output compare circuits)
		Timer RE: With real-time clock and compare match function
		(For J, K version, compare match function only.)
	Serial interfaces	2 channels (UART0, UART1)
		Clock synchronous serial I/O, UART
	Clock synchronous	1 channel
	serial interface	I ² C bus Interface ⁽¹⁾
		Clock synchronous serial I/O with chip select
	LIN module	Hardware LIN: 1 channel (timer RA, UART0)
	A/D converter	
		10-bit A/D converter: 1 circuit, 12 channels
	Watchdog timer	15 bits × 1 channel (with prescaler)
		Start-on-reset selectable
	Interrupts	Internal: 15 sources, External: 4 sources,
		Software: 4 sources, Priority levels: 7 levels
	Clock generation	3 circuits
	circuits	 XIN clock generation circuit (with on-chip feedback resistor)
		On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has a frequency adjustment function
		 XCIN clock generation circuit (32 kHz) (N, D version)
		 Real-time clock (timer RE) (N, D version)
	Oscillation-stopped	XIN clock oscillation stop detection function
	detector	
	Voltage detection	On-chip
	circuit	
	Power-on reset circuit	On-chip
Electrical	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz) (other than K version)
Characteristics		VCC = 3.0 to 5.5 V (f(XIN) = 16 MHz) (K version)
2		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)
		VCC = 2.2 to 5.5 V (f(XIN) = 5 MHz) (N, D version)
	Current consumption	Typ. 10 mA (VCC = 5.0 V , f(XIN) = 20 MHz)
	(N, D version)	Typ. 6 mA (VCC = 3.0 V , f(XIN) = 10 MHz)
		Typ. 2.0 μ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz)
		Typ. 0.7 μ A (VCC = 3.0 V, stop mode)
	Programming and	VCC = 2.7 to 5.5 V
	erasure voltage	
Flash Memory		
Flash Memory		100 time an
Flash Memory	Programming and	100 times
·	Programming and erasure endurance	
·	Programming and erasure endurance	-20 to 85°C (N version)
Operating Ambie	Programming and erasure endurance	

 Table 1.1
 Functions and Specifications for R8C/26 Group

NOTES:

1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

2. Specify the D, K version if D, K version functions are to be used.

1.4 **Product Information**

Table 1.3 lists the Product Information for R8C/26 Group and Table 1.4 lists the Product Information for R8C/27 Group.

Part No.ROM CapacityRAM CapacityPackage TypeRemarkR5F21262SNFP8 Kbytes512 bytesPLQP0032GB-AN versionR5F21264SNFP16 Kbytes1 KbytePLQP0032GB-AN versionR5F21265SNFP24 Kbytes1.5 KbytesPLQP0032GB-AN versionR5F21266SNFP32 Kbytes1.5 KbytesPLQP0032GB-AD versionR5F21264SDFP8 Kbytes512 bytesPLQP0032GB-AD versionR5F21264SDFP16 Kbytes1 KbytePLQP0032GB-AD versionR5F21266SDFP24 Kbytes1.5 KbytesPLQP0032GB-AD versionR5F21266SDFP32 Kbytes1.5 KbytesPLQP0032GB-AD versionR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AJ versionR5F21264JFP32 Kbytes1.5 KbytesPLQP0032GB-AJ versionR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AJ versionR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AK version				
R5F21262SNFP8 Kbytes512 bytesPLQP0032GB-AN versionR5F21264SNFP16 Kbytes1 KbytePLQP0032GB-ANR5F21265SNFP24 Kbytes1.5 KbytesPLQP0032GB-AR5F21266SNFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21262SDFP8 Kbytes512 bytesPLQP0032GB-AR5F21264SDFP16 Kbytes1 KbytePLQP0032GB-AR5F21265SDFP24 Kbytes1.5 KbytesPLQP0032GB-AR5F21266SDFP24 Kbytes1.5 KbytesPLQP0032GB-AR5F21266SDFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AR5F21264JFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21266JFP32 Kbytes1.5 KbytesPLQP0032GB-A	Remarks			
R5F21265SNFP24 Kbytes1.5 KbytesPLQP0032GB-AR5F21266SNFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21262SDFP8 Kbytes512 bytesPLQP0032GB-AR5F21264SDFP16 Kbytes1 KbytePLQP0032GB-AR5F21265SDFP24 Kbytes1.5 KbytesPLQP0032GB-AR5F21266SDFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AR5F21264JFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21266JFP32 Kbytes1 KbytePLQP0032GB-A				
R5F21266SNFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21262SDFP8 Kbytes512 bytesPLQP0032GB-AR5F21264SDFP16 Kbytes1 KbytePLQP0032GB-AR5F21265SDFP24 Kbytes1.5 KbytesPLQP0032GB-AR5F21266SDFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AR5F21264JFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21266JFP32 Kbytes1 KbytePLQP0032GB-AR5F21266JFP32 Kbytes1.5 KbytesPLQP0032GB-A				
R5F21262SDFP8 Kbytes512 bytesPLQP0032GB-AD versionR5F21264SDFP16 Kbytes1 KbytePLQP0032GB-APLQP0032GB-AR5F21265SDFP24 Kbytes1.5 KbytesPLQP0032GB-AR5F21266SDFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AR5F21266JFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21266JFP32 Kbytes1.5 KbytesPLQP0032GB-A				
R5F21264SDFP16 Kbytes1 KbytePLQP0032GB-AR5F21265SDFP24 Kbytes1.5 KbytesPLQP0032GB-AR5F21266SDFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AR5F21266JFP32 Kbytes1.5 KbytesPLQP0032GB-A				
R5F21265SDFP24 Kbytes1.5 KbytesPLQP0032GB-AR5F21266SDFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AR5F21266JFP32 Kbytes1.5 KbytesPLQP0032GB-A				
R5F21266SDFP32 Kbytes1.5 KbytesPLQP0032GB-AR5F21264JFP16 Kbytes1 KbytePLQP0032GB-AR5F21266JFP32 Kbytes1.5 KbytesPLQP0032GB-A				
R5F21264JFP16 Kbytes1 KbytePLQP0032GB-AJ versionR5F21266JFP32 Kbytes1.5 KbytesPLQP0032GB-A				
R5F21266JFP 32 Kbytes 1.5 Kbytes PLQP0032GB-A				
R5F21264KFP 16 Kbytes 1 Kbyte PLOP0032GB-A K version				
R5F21266KFP 32 Kbytes 1.5 Kbytes PLQP0032GB-A				
R5F21262SNXXXFP 8 Kbytes 512 bytes PLQP0032GB-A N version Fac	ctory			
R5F21264SNXXXFP 16 Kbytes 1 Kbyte PLQP0032GB-A prog	gramming			
R5F21265SNXXXFP 24 Kbytes 1.5 Kbytes PLQP0032GB-A prod	duct ⁽¹⁾			
R5F21266SNXXXFP 32 Kbytes 1.5 Kbytes PLQP0032GB-A				
R5F21262SDXXXFP 8 Kbytes 512 bytes PLQP0032GB-A D version				
R5F21264SDXXXFP 16 Kbytes 1 Kbyte PLQP0032GB-A				
R5F21265SDXXXFP 24 Kbytes 1.5 Kbytes PLQP0032GB-A				
R5F21266SDXXXFP 32 Kbytes 1.5 Kbytes PLQP0032GB-A				
R5F21264JXXXFP 16 Kbytes 1 Kbyte PLQP0032GB-A J version				
R5F21266JXXXFP 32 Kbytes 1.5 Kbytes PLQP0032GB-A				
R5F21264KXXXFP 16 Kbytes 1 Kbyte PLQP0032GB-A K version				
R5F21266KXXXFP 32 Kbytes 1.5 Kbytes PLQP0032GB-A				

Product Information for R8C/26 Group Table 1.3

NOTE:

1. The user ROM is programmed before shipment.

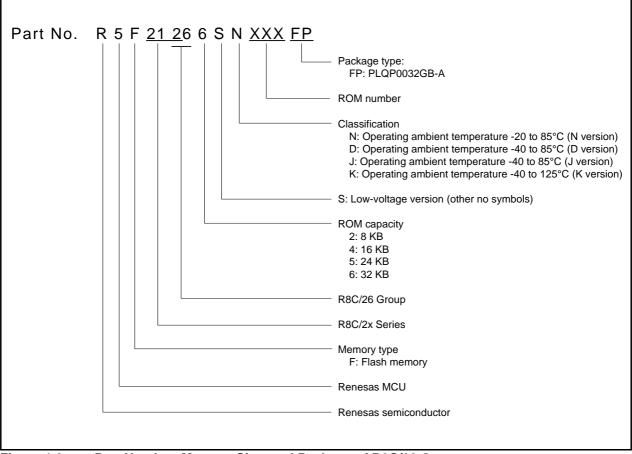


Figure 1.2 Part Number, Memory Size, and Package of R8C/26 Group

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Eh	Watchdog Timer Control Register	WDC	00X1111b
0010h	Address Match Interrupt Register 0	RMADO	00h
0011h			00h
0012h	-		00h
0012h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0014h	Address Match Interrupt Register 1	KINADI	00h
0016h	_		00h
0010h			0011
0017h			
0018h			
0019h			
001An			
001Bh	Count Source Directorian Mode Register	CSPR	00h
00101	Count Source Protection Mode Register	COFR	
			1000000b ⁽²⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4 ⁽³⁾	FRA4	When shipping
002Ah			
002Bh	High-Speed On-Chip Oscillator Control Register 6 ⁽³⁾	FRA6	When shipping
002Ch	High-Speed On-Chip Oscillator Control Register 7 ⁽³⁾	FRA7	When shipping
002Dh			
002Dh 002Eh			

Table 4.1 SFR Information (1)⁽¹⁾

X: Undefined NOTES:

1. The blank regions are reserved. Do not access locations in these regions.

2. The CSPROINI bit in the OFS register is set to 0.

3. In J, K version these regions are reserved. Do not access locations in these regions.

Table 4.2SFR Information (2)⁽¹⁾

Address	Register	Symbol	After reset
0030h	-		
0031h	Voltage Detection Register 1 (2)	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	 N, D version 00h⁽³⁾ 00100000b⁽⁴⁾ J, K version 00h⁽⁷⁾ 0100000b⁽⁸⁾
0033h			01000000000
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register (5)	VW1C	N, D version 00001000b J, K version 0000X000b ⁽⁷⁾ 0100X001b ⁽⁸⁾
0037h	Voltage Monitor 2 Circuit Control Register (5)	VW2C	00h
0038h	Voltage Monitor 0 Circuit Control Register ⁽⁶⁾	VW0C	0000X000b ⁽³⁾ 0100X001b ⁽⁴⁾
0039h			
003Fh			
0040h			
0041h			
0042h			
0043h			
0044h			
0045h			
0046h			
0047h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h			
0049h			
004Ah	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh 0050h	SSU/IIC bus Interrupt Control Register ⁽⁹⁾	SSUIC/IICIC	XXXXX000b
0050h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0051h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0052h	UART1 Transmit Interrupt Control Register	SITIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	SIRIC	XXXXX000b
0055h		51116	XXXXX0000D
0055h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0050h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INTIIC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh			
005Ch			
005Dh	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh			

006Fh 0070h

0060h

007Fh

X: Undefined

NOTES:

1. The blank regions are reserved. Do not access locations in these regions.

2. (N, D version) Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect this register.

(J, K version) Software reset, watchdog timer reset, or voltage monitor 2 reset do not affect this register.

3. The LVD0ON bit in the OFS register is set to 1 and hardware reset.

4. Power-on reset, voltage monitor 0 reset or the LVD0ON bit in the OFS register is set to 0, and hardware reset.

5. (N, D version) Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect b2 and b3.

(J, K version) Software reset, watchdog timer reset, or voltage monitor 2 reset do not affect b2 and b3.

6. (N, D version) Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect this register.

(J, K version) These regions are reserved. Do not access locations in these regions.

7. The LVD1ON bit in the OFS register is set to 1 and hardware reset.

8. Power-on reset, voltage monitor 1 reset, or the LVD1ON bit in the OFS register is set to 0 and hardware reset.

9. Selected by the IICSEL bit in the PMR register.

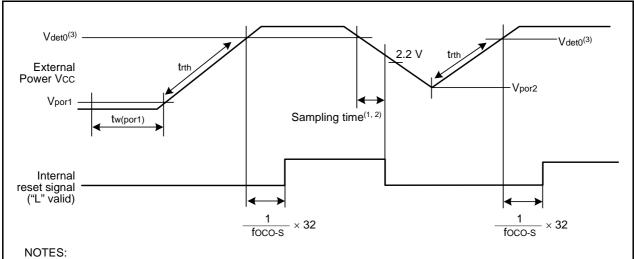

Symbol	Parameter	Condition	Condition Standard	Standard		Unit
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec

Table 5.9	Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteris	stics ⁽³⁾

1. The measurement condition is T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. This condition (external power Vcc rise gradient) does not apply if Vcc \ge 1.0 V.


- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. $t_{w(por1)}$ indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain $t_{w(por1)}$ for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain $t_{w(por1)}$ for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.

- 2. The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
- 3. Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.3 Reset Circuit Electrical Characteristics

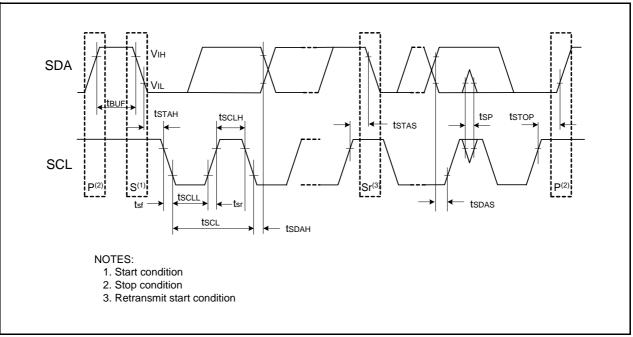


	Table 5.14	Timing Requirements of I ² C bus Interface ⁽¹⁾	
--	------------	--	--

Symbol	Parameter	Condition	Sta	Unit		
Symbol	Falameter	Condition	Min.	Тур.	Max.	
tSCL	SCL input cycle time		12tcyc + 600 ⁽²⁾	-	-	ns
t SCLH	SCL input "H" width		3tcyc + 300 ⁽²⁾	-	-	ns
tSCLL	SCL input "L" width		5tcyc + 500 ⁽²⁾	-	-	ns
tsf	SCL, SDA input fall time		-	-	300	ns
tsp	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾	ns
tbuf	SDA input bus-free time		5tcyc ⁽²⁾	-	-	ns
t STAH	Start condition input hold time		3tcyc ⁽²⁾	-	-	ns
t STAS	Retransmit start condition input setup time		3tCYC ⁽²⁾	-	-	ns
t STOP	Stop condition input setup time		3tCYC ⁽²⁾	_	-	ns
tSDAS	Data input setup time		1tcyc + 20 ⁽²⁾	-	-	ns
t SDAH	Data input hold time		0	_	-	ns

1. Vcc = 2.2 to 5.5 V, Vss = 0 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

Table 5.16Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Parameter Condition			Standar	ł	Unit
Зупрог	Falameter			Min.	Тур.	Max.	Unit
lcc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	10	17	mA
	other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	9	15	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	10	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	130	300	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	_	130	300	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	_	30	-	μA

Symbol	Parameter		Condition		Standard			Unit
Symbol	rarameter		Cond	IIIOII	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P1_0 to P1_7, XOUT	Іон = -1 mA		Vcc - 0.5	_	Vcc	V
		P1_0 to P1_7	Drive capacity HIGH	Іон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	_	Vcc	V
VoL Output	Output "L" voltage	Except P1_0 to P1_7, XOUT	IoL = 1 mA		-	_	0.5	V
		P1_0 to P1_7	Drive capacity HIGH	IOL = 5 mA	-	-	0.5	V
			Drive capacity LOW	IOL = 1 mA	-	-	0.5	V
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	-	_	0.5	V
			Drive capacity LOW	IOL = 50 μA	-	_	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, CLK1, SSI, SCL, SDA, SSO			0.1	0.3	_	V
		RESET			0.1	0.4	-	V
Ін	Input "H" current		VI = 3 V, Vcc = 3	V	_	-	4.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 3	V	-	_	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3	V	66	160	500	kΩ
Rfxin	Feedback resistance	XIN			—	3.0	_	MΩ
Rfxcin	Feedback resistance	XCIN			_	18	_	MΩ
Vram	RAM hold voltage		During stop mode	9	1.8	-	-	V

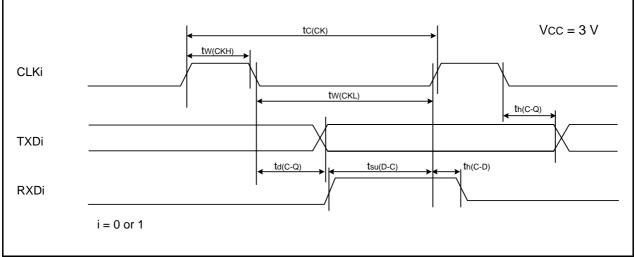

1. Vcc = 2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Table 5.23Electrical Characteristics (4) [Vcc = 3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol Parameter		rameter Condition		Standard			Unit
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open.	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	-	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5	9	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μA
c	Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	_	130	300	μΑ	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	_	30	_	μΑ	
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	70	μA
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	55	μΑ	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.8	_	μΑ	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	2.0		μA	
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.7	3.0	μΑ
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.1	_	μA

Symbol	Parameter		Standard		
	Farameter	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	-	ns	
tw(CKH)	CLKi input "H" width	150	-	ns	
tw(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Table 5.27 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width	380(1)	-	ns	
tw(INL)	INTi input "L" width	380(2)	1	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

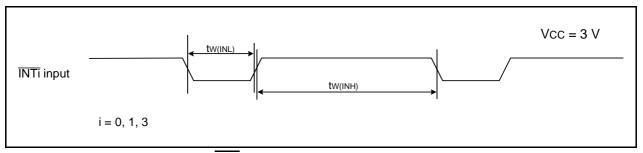


Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Symbol	Parameter		Conditions	Standard			Unit
Symbol		Farameter	Conditions	Min.	Тур.	Max.	Unit
_	Resolution		Vref = AVCC	-	-	10	Bits
-	Absolute	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±3	LSB
	accuracy	8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±2	LSB
		10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±5	LSB
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	_	±2	LSB
Rladder	Resistor ladder		Vref = AVCC	10	_	40	kΩ
tconv	Conversion time	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	3.3	_	-	μS
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	2.8	_	-	μS
Vref	Reference voltag	e		2.7	_	AVcc	V
Via	Analog input volta	age ⁽²⁾		0	-	AVcc	V
-	A/D operating	Without sample and hold		0.25	_	10	MHz
	clock frequency	With sample and hold		1	_	10	MHz

Table 5.36 A/D Converter Characteristics

1. AVcc = 2.7 to 5.5 V at T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

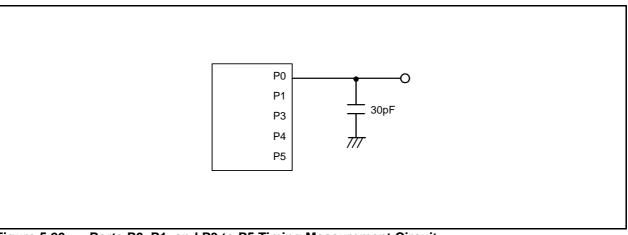


Figure 5.20 Ports P0, P1, and P3 to P5 Timing Measurement Circuit

Cumhal	Parameter	Conditions		Unit			
Symbol	Faranielei	Conditions	Min.	Тур.	Max.	Unit	
-	Program/erase endurance ⁽²⁾	R8C/26 Group	100 ⁽³⁾	-	-	times	
		R8C/27 Group	1,000 ⁽³⁾	-	-	times	
-	Byte program time		-	50	400	μS	
-	Block erase time		-	0.4	9	S	
td(SR-SUS)	Time delay from suspend request until		-	-	97 + CPU clock	μS	
	suspend				× 6 cycles		
_	Interval from erase start/restart until following suspend request		650	-	_	μS	
-	Interval from program start/restart until following suspend request		0	-	-	ns	
-	Time from suspend until program/erase restart		-	_	3 + CPU clock × 4 cycles	μS	
-	Program, erase voltage		2.7	_	5.5	V	
-	Read voltage		2.7	-	5.5	V	
_	Program, erase temperature		0	-	60	°C	
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	_	year	

Table 5.37 Flash Memory (Program ROM) Electrical Characteristics

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Condition		Unit		
Symbol	Faranieter	Condition	Min.	Тур.	Max.	Unit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 1 reset valid voltage		0	-	Vdet1	V
trth	External power Vcc rise gradient	$Vcc \le 3.6 V$	20(2)	-	-	mV/msec
		Vcc > 3.6 V	20 ⁽²⁾	-	2,000	mV/msec

Table 5.41	Power-on Reset Circuit,	Voltage Monitor	1 Reset Electrical Characteristics ⁽³⁾
		vontago mornitor	

- 1. The measurement condition is Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.
- 2. This condition (the minimum value of external power Vcc rise gradient) does not apply if $V_{Por2} \ge 1.0 V$.
- 3. To use the power-on reset function, enable voltage monitor 1 reset by setting the LVD1ON bit in the OFS register to 0, the VW1C0 and VW1C6 bits in the VW1C register to 1 respectively, and the VCA26 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if $-20^{\circ}C \le T_{opr} \le 125^{\circ}C$, maintain tw(por1) for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

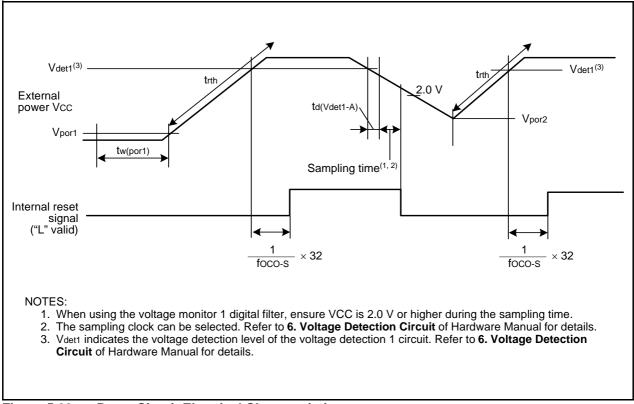


Figure 5.22 Reset Circuit Electrical Characteristics

Table 5.46 Ti	iming Requirements	of I ² C bus Interface ⁽¹⁾
---------------	--------------------	--

Symbol	Parameter	Condition	Sta		Unit	
	Parameter	Condition	Min.	Тур.	Max.	
tSCL	SCL input cycle time		12tcyc + 600 ⁽²⁾	-	-	ns
t SCLH	SCL input "H" width		3tcyc + 300 ⁽²⁾	-	-	ns
tSCLL	SCL input "L" width		5tcyc + 500 ⁽²⁾	-	_	ns
tsf	SCL, SDA input fall time		-	-	300	ns
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾	ns
tbuf	SDA input bus-free time		5tcyc ⁽²⁾	-	-	ns
t STAH	Start condition input hold time		3tcyc ⁽²⁾	-	-	ns
t STAS	Retransmit start condition input setup time		3tCYC ⁽²⁾	-	-	ns
t STOP	Stop condition input setup time		3tcyc ⁽²⁾	-	-	ns
tsdas	Data input setup time		1tcyc + 20 ⁽²⁾	-	-	ns
t SDAH	Data input hold time		0	-	-	ns

1. Vcc = 2.7 to 5.5 V, Vss = 0 V at Topr = -40 to 85° C (J version) / -40 to 125° C (K version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

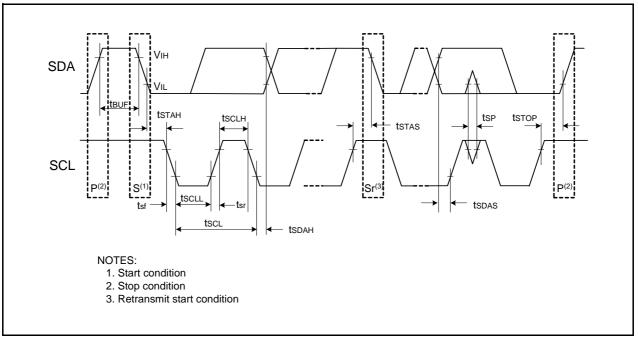


Figure 5.26 I/O Timing of I²C bus Interface

Table 5.48Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.)

				01		
Parameter		Condition	Min.		Max.	Unit
Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	10	17	mA
output pins are open, other pins are Vss		High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz	_	9	15	mA
		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	l	mA
		XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	5	-	mA
		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8		2.5	l	mA
	High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz (J version) Low-speed on-chip oscillator on = 125 kHz No division	-	10	15	mA
	mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz (J version) Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
		XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5.5	10	mA
		XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	_	mA
	Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1		130	300	μA
	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1		25	75	μA
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	60	μA
	Stop mode	XIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.8	3.0	μA
		XIN clock off, Topr = 85° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.2	_	μA
		XIN clock off, Topr = 125°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	_	4.0	_	μA
	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open, other pins are Vss High-speed Image: High-speed on-chip oscillator mode High-speed Image: High-speed on-chip oscillator mode Low-speed Image: High-speed on-chip oscillator Note Image: High-speed on-chip oscillator Note	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, other pins are Vss XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip	Parameter Condition Min. Power supply current (VCc = 3.3 to 5.5 V) Single-chip mode, other pins are Vss High-speed lock mode XIN = 20 MHz (square wave) High-speed on-chip oscillator of Low-speed on-chip oscillator on 125 kHz Divide-by-8	Parameter Condition Min. Typ. Power supply current (VCc a 3, 31 6 5 V) Single-thip mode, output prins are vss KIN = 20 MHz (square wave) High-speed on-chip occiliator of Low-speed on-chip occiliator of 125 kHz Divide-by-8 - 2.5 XIN tock off High-speed on-chip occiliator on 10C0 = 20 MHz (J version occiliator nocle - 4 - 2.5 XIN tock off High-speed on-chip osciliator on 10C0 = 10 MHz Low-speed on-chip osciliator on 10C0 = 10 MHz Low-speed on-chip osciliator on 125 kHz Divide-by-8 - 2.5 XIN tock off High-speed on-chip osciliator on 125 kHz Divide-by-8 - 2.5 - 2.5 XIN tock off High-speed on-chip osciliator on 125 kHz Divide-by-8	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip model, output pins are open, other pins are Vss XIN = 20 MHz (square wave) High-speed on-the scalinot off Low-speed on-the scalinot off Low-speed on-the Low-speed on-the scalinot off Low-speed on-the scalinot off

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.49XIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	50	-	ns	
twh(xin)	XIN input "H" width	25	-	ns	
twl(XIN)	XIN input "L" width	25	-	ns	

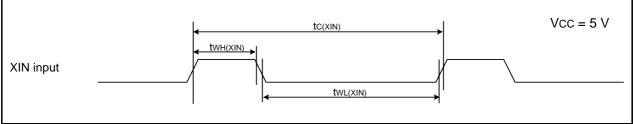


Figure 5.27 XIN Input Timing Diagram when Vcc = 5 V

Table 5.50 TRAIO Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width 40 –		ns	
twl(traio)	TRAIO input "L" width 40 -		ns	

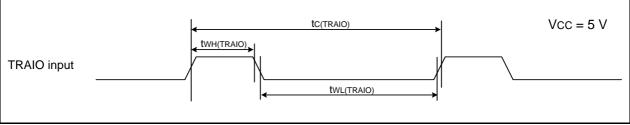
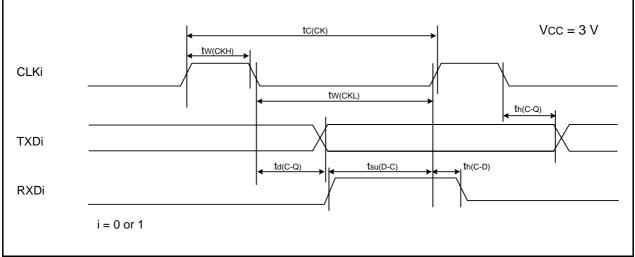



Figure 5.28 TRAIO Input Timing Diagram when Vcc = 5 V

Symbol	Parameter	Sta	Standard	
	Parameter		Max.	Unit
tc(CK)	CLKi input cycle time		-	ns
tw(CKH)	CLKi input "H" width 150 –			
tW(CKL)	CLKi Input "L" width	150	-	ns
td(C-Q)	TXDi output delay time - 80		80	ns
th(C-Q)	TXDi hold time 0 -		ns	
tsu(D-C)	RXDi input setup time 70 -		ns	
th(C-D)	RXDi input hold time 90 -			

i = 0 or 1

Table 5.58 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tw(INH)	INTi input "H" width		-	ns
tw(INL)	INTi input "L" width		-	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

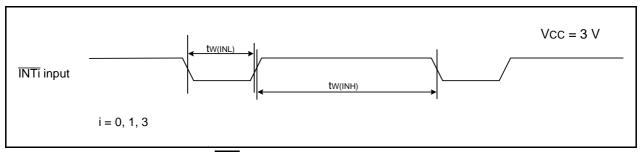


Figure 5.34 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

REVISION HISTORY

R8C/26 Group, R8C/27 Group Datasheet

Davi	Dete		Description
Rev.	Date	Page	Summary
1.00	Nov 08, 2006	27	Table 5.9, Figure 5.3 revised and Table 5.10 deleted
		28	Table 5.10, Table 5.11 revised
		34	Table 5.15 revised
		35	Table 5.16 revised
		36	Table 5.17 revised
		39	Table 5.22 revised
		40	Table 5.23 revised
		44	Table 5.29 revised
		47	Package Dimensions; "Diagrams showing the latestwebsite." added
1.10	Nov 29, 2006	All pages	"J, K version" added
		1	1 "J and K versions are under developmentnotice." added 1.1 revised
		2	Table 1.1 revised
		3	Table 1.2 revised
		4	Figure 1.1 NOTE3 added
		5	Table 1.3, Figure 1.2 revised
		6	Table 1.4, Figure 1.3 revised
		7	Figure 1.4 NOTE3 added
		8	Table 1.5 revised
		9	Table 1.6 NOTE2 added
		13	Figure 3.1 revised
		14	Figure 3.2 revised
		15	Table 4.1; "0000h to 003Fh" → "0000h to 002Fh" revised • NOTE3 added
		16	Table 4.2; "0040h to 007Fh" \rightarrow "0030h to 007Fh" revised • 0032h, 0036h: "After reset" is revised • 0038h: NOTE revised • NOTES 2, 5, 6 revised and NOTE 7, 8 added
		19	Table 4.5 NOTE2 added
		28	Table 5.10 revised
		48 to 66	5.2 J, K Version added
1.20	Jan 17, 2007	18	Table 4.4 NOTE2 added
1.30	May 25, 2007	2	Table 1.1 revised
		3	Table 1.2 revised
		5	Table 1.3 revised
		6	Figure 1.2 revised
		7	Table 1.4 revised
		8	Figure 1.3 revised
		9	Figure 1.4 NOTE4 added
		15	Figure 3.1 part number revised