E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167crlmhabxqla1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2005-02 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2005. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Summary of Features

• Up to 111 General Purpose I/O Lines,

partly with Selectable Input Thresholds and Hysteresis

- Supported by a Large Range of Development Tools like C-Compilers, Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers, Simulators, Logic Analyzer Disassemblers, Programming Boards
- On-Chip Bootstrap Loader
- 144-Pin MQFP Package
- 176-Pin BGA Package¹⁾

Ordering Information

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For the available ordering codes for the C167CR please refer to the **"Product Catalog Microcontrollers"**, which summarizes all available microcontroller variants.

Note: The ordering codes for Mask-ROM versions are defined for each product after verification of the respective ROM code.

This document describes several derivatives of the C167 group. **Table 1** enumerates these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product.

For simplicity all versions are referred to by the term **C167CR** throughout this document.

¹⁾ The external connections of the C167CR in P-BGA-176-2 are referred to as pins throughout this document, although they are mechanically realized as solder balls.

Table 2	Pi	in Defini	tions and I	Functions P-MQFP-144-8 (cont'd)					
Symbol	Pin No.	Input Outp.	Function						
P2		IO	Port 2 is a	16-bit bidirectional I/O port. It is bit-wise					
			programmable for input or output via direction bits. For a pin						
			configured	d as input, the output driver is put into high-					
			impedanc	e state. Port 2 outputs can be configured as					
			push/pull	or open drain drivers. The input threshold of Port 2					
			is selectal	ble (TTL or special).					
			The follow	ving Port 2 pins also serve for alternate functions:					
P2.0	47	I/O	CC0IO	CAPCOM1: CC0 Capture Inp./Compare Output					
P2.1	48	I/O	CC1IO	CAPCOM1: CC1 Capture Inp./Compare Output					
P2.2	49	I/O	CC2IO	CAPCOM1: CC2 Capture Inp./Compare Output					
P2.3	50	I/O	CC3IO	CAPCOM1: CC3 Capture Inp./Compare Output					
P2.4	51	I/O	CC4IO	CAPCOM1: CC4 Capture Inp./Compare Output					
P2.5	52	I/O	CC5IO	CAPCOM1: CC5 Capture Inp./Compare Output					
P2.6	53	I/O	CC6IO	CAPCOM1: CC6 Capture Inp./Compare Output					
P2.7	54	I/O	CC7IO	CAPCOM1: CC7 Capture Inp./Compare Output					
P2.8	57	I/O	CC8IO CAPCOM1: CC8 Capture Inp./Compare Output,						
		I	EX0IN	Fast External Interrupt 0 Input					
P2.9	58	I/O	CC9IO	CAPCOM1: CC9 Capture Inp./Compare Output,					
		1	EX1IN	Fast External Interrupt 1 Input					
P2.10	59	I/O	CC10IO	CAPCOM1: CC10 Capture Inp./Compare Outp.,					
		1	EX2IN	Fast External Interrupt 2 Input					
P2.11	60	I/O	CC11IO	CAPCOM1: CC11 Capture Inp./Compare Outp.,					
			EX3IN	Fast External Interrupt 3 Input					
P2.12	61	I/O	CC12IO	CAPCOM1: CC12 Capture Inp./Compare Outp.,					
			EX4IN	Fast External Interrupt 4 Input					
P2.13	62	I/O	CC13IO	CAPCOM1: CC13 Capture Inp./Compare Outp.,					
			EX5IN	Fast External Interrupt 5 Input					
P2.14	63	I/O	CC14IO	CAPCOM1: CC14 Capture Inp./Compare Outp.,					
			EX6IN	Fast External Interrupt 6 Input					
P2.15	64	I/O	CC15IO	CAPCOM1: CC15 Capture Inp./Compare Outp.,					
			EX7IN	Fast External Interrupt 7 Input,					
			T7IN	CAPCOM2: Timer T7 Count Input					

Table 2Pin Definitions and Functions P-MQFP-144-8 (cont'd)										
Symbol	Pin No.	Input Outp.	Function							
Р3		10	Port 3 is a	15-bit bidirectional I/O port. It is bit-wise						
			programm	able for input or output via direction bits. For a pin						
			configured	as input, the output driver is put into high-						
			Impedance	e state. Poil 3 outputs can be configured as						
			pusn/pun c							
			The follow	ing Dort 2 ping also convo for alternato functions:						
D3 0	65	1		CAPCOM1 Timor TO Count Input						
F J.U D3 1	66			CPT2 Timer T6 Toggle Latch Output						
D2 2	67			CPT2 Perister CAPPEL Canture Input						
P3 3	68			GPT1 Timer T3 Toggle Latch Output						
P3.4	69	I	T3EUD	GPT1 Timer T3 External Up/Down Control Input						
P3.5	70	l'	T4IN	GPT1 Timer T4 Count/Gate/Reload/Capture Inp						
P3.6	73	li	T3IN GPT1 Timer T3 Count/Gate Input							
P3.7	74	li l	T2IN GPT1 Timer T2 Count/Gate/Reload/Capture Inp							
P3.8	75	1/0	MRST	SSC Master-Receive/Slave-Transmit Inp./Outp.						
P3.9	76	I/O	MTSR	SSC Master-Transmit/Slave-Receive Outp./Inp.						
P3.10	77	0	TxD0	ASC0 Clock/Data Output (Async./Sync.)						
P3.11	78	I/O	RxD0	ASC0 Data Input (Async.) or Inp./Outp. (Sync.)						
P3.12	79	0	BHE	External Memory High Byte Enable Signal,						
		0	WRH	External Memory High Byte Write Strobe						
P3.13	80	I/O	SCLK	SSC Master Clock Output / Slave Clock Input.						
P3.15	81	0	CLKOUT	System Clock Output (= CPU Clock)						
OWE	84	I	Oscillator \	Watchdog Enable. This input enables the oscillator						
(V_{PP})			watchdog	when high or disables it when low e.g. for testing						
			purposes.	An internal pull-up device holds this input high if						
			nothing is	driving it.						
			For norma	For normal operation pin OWE should be high or not						
			connected							
			In order to	drive pin OWE low draw a current of at least						
			200 μA.							

Table 2Pin Definitions and Functions P-MQFP-144-8 (cont'd)

Symbol	Pin No.	Input Outp.	Function
V _{DD}	17, 46, 56, 72, 82, 93, 109, 126, 136, 144	-	Digital Supply Voltage: + 5 V during normal operation and idle mode. ≥ 2.5 V during power down mode.
V _{SS}	18, 45, 55, 71, 83, 94, 110, 127, 139, 143	_	Digital Ground.

Note: The following behavioural differences must be observed when the bidirectional reset is active:

- Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically after a reset.
- The reset indication flags always indicate a long hardware reset.
- The PORT0 configuration is treated as if it were a hardware reset. In particular, the bootstrap loader may be activated when P0L.4 is low.
- Pin RSTIN may only be connected to external reset devices with an open drain output driver.
- A short hardware reset is extended to the duration of the internal reset sequence.

Table 3Pin Definitions and Functions P-BGA-176-2 (cont'd)

Symbol	Pin Num.	Input Outp.	Function
XTAL2 XTAL1	D13 C13	0	 XTAL2: Output of the oscillator amplifier circuit. XTAL1: Input to the oscillator amplifier and input to the internal clock generator. To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed.
RST OUT	D12	0	Internal Reset Indication Output. This pin is set to a low level when the part is executing either a hardware-, a software- or a watchdog timer reset. RSTOUT remains low until the EINIT (end of initialization) instruction is executed.
RSTIN	E11	I/O	Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the C167CR. An internal pull-up resistor permits power-on reset using only a capacitor connected to V_{SS} . A spike filter suppresses input pulses < 10 ns. Input pulses > 100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. In bidirectional reset mode (enabled by setting bit BDRSTEN in register SYSCON) the RSTIN line is internally pulled low for the duration of the internal reset sequence upon any reset (HW, SW, WDT). See note below this table. <i>Note: To let the reset configuration of PORTO settle and to let the PLL lock a reset duration of ca. 1 ms is recommended.</i>

Table 3	Pir	n Definit	tions and I	Functions P-BGA-176-2 (cont'd)						
Symbol	Pin	Input	Function							
	Num.									
P2			Port 2 is a	Port 2 is a 16-bit bidirectional I/O port. It is bit-wise						
			programmable for input or output via direction bits. For a pin							
			configured	a as input, the output driver is put into high-						
			impedanc	e state. Port 2 outputs can be configured as						
			push/pull or open drain drivers. The input threshold of Port 2 is calectable (TTL or aposial)							
			The follow	Jie (TTL OF Special).						
02.0	E2			Ang Port 2 pins also serve for alternate functions.						
P2.0	го Го	1/0		CAPCOM1. CC0 Capture Inp./Compare Output						
				CAPCOM1: CC1 Capture Inp./Compare Output						
				CAPCOM1: CC2 Capture Inp./Compare Output						
FZ.J D2 1	G4 C3		CC410	CAPCOM1: CC3 Capture Inp./Compare Output						
Г 2. 4 D2 Б	G3 G2			CAPCOM1: CC4 Capture Inp./Compare Output						
FZ.0 D2.6	G2 G1			CAPCOM1: CC5 Capture Inp./Compare Output						
P2 7	н1	1/0		CAPCOM1: CC7 Capture Inp./Compare Output						
P2.8	НА	1/0		CAPCOM1: CC8 Capture Inp./Compare Output						
1 2.0	114	1		East External Interrunt 0 Input						
P2 9	.11			CAPCOM1: CC9 Capture Inp /Compare Output						
1 2.0		1	FX1IN	Fast External Interrupt 1 Input						
P2.10	J2	I/O	CC10IO	CAPCOM1: CC10 Capture Inp./Compare Outp.						
		1	EX2IN	Fast External Interrupt 2 Input						
P2.11	J4	1/O	CC11IO	CAPCOM1: CC11 Capture Inp./Compare Outp.						
		1	EX3IN	Fast External Interrupt 3 Input						
P2.12	J3	I/O	CC12IO	CAPCOM1: CC12 Capture Inp./Compare Outp.,						
		1	EX4IN	Fast External Interrupt 4 Input						
P2.13	K1	I/O	CC13IO	CAPCOM1: CC13 Capture Inp./Compare Outp.,						
		1	EX5IN	Fast External Interrupt 5 Input						
P2.14	K2	I/O	CC14IO	CAPCOM1: CC14 Capture Inp./Compare Outp.,						
		I	EX6IN	Fast External Interrupt 6 Input						
P2.15	L1	I/O	CC15IO	CAPCOM1: CC15 Capture Inp./Compare Outp.,						
		1	EX7IN	Fast External Interrupt 7 Input,						
		1	T7IN	CAPCOM2: Timer T7 Count Input						
V _{AREF}	B2	-	Reference	e voltage for the A/D converter.						
V _{AGND}	C2		Reference	e ground for the A/D converter.						

Functional Description

3.8 A/D Converter

For analog signal measurement, a 10-bit A/D converter with 16 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 16 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C167CR supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted in a converted. In addition, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via register P5DIDIS (Port 5 Digital Input Disable).

Functional Description

Table 8C167CR Registers, Ordered by Name (cont'd)

Name	Physica Addres	al s	8-Bit Addr.	Description	Reset Value
CC4	FE88 _H		44 _H	CAPCOM Register 4	0000 _H
CC4IC I	b FF80 _H		C0 _H	CAPCOM Reg. 4 Interrupt Ctrl. Reg.	0000 _H
CC5	FE8A _H		45 _H	CAPCOM Register 5	0000 _H
CC5IC I	b FF82 _H		C1 _H	CAPCOM Register 5 Interrupt Ctrl. Reg.	0000 _H
CC6	FE8C _H		46 _H	CAPCOM Register 6	0000 _H
CC6IC I	b FF84 _H		C2 _H	CAPCOM Reg. 6 Interrupt Ctrl. Reg.	0000 _H
CC7	FE8E _H		47 _H	CAPCOM Register 7	0000 _H
CC7IC I	b FF86 _H		C3 _H	CAPCOM Reg. 7 Interrupt Ctrl. Reg.	0000 _H
CC8	FE90 _H		48 _H	CAPCOM Register 8	0000 _H
CC8IC	b FF88 _H		C4 _H	CAPCOM Reg. 8 Interrupt Ctrl. Reg.	0000 _H
CC9	FE92 _H		49 _H	CAPCOM Register 9	0000 _H
CC9IC I	b FF8A _H		C5 _H	CAPCOM Reg. 9 Interrupt Ctrl. Reg.	0000 _H
ССМО І	b FF52 _H		A9 _H	CAPCOM Mode Control Register 0	0000 _H
CCM1 I	b FF54 _H		AA _H	CAPCOM Mode Control Register 1	0000 _H
CCM2	р FF56 _н		AB _H	CAPCOM Mode Control Register 2	0000 _H
CCM3	b FF58 _H		AC _H	CAPCOM Mode Control Register 3	0000 _H
CCM4	b FF22 _H		91 _H	CAPCOM Mode Control Register 4	0000 _H
CCM5	b FF24 _H		92 _H	CAPCOM Mode Control Register 5	0000 _H
CCM6	b FF26 _H		93 _H	CAPCOM Mode Control Register 6	0000 _H
CCM7	b FF28 _H		94 _H	CAPCOM Mode Control Register 7	0000 _H
СР	FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H
CRIC	b FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Register	0000 _H
CSP	FE08 _H		04 _H	CPU Code Segment Pointer Register (read only)	0000 _H
DP0L I	b F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H
DP0H I	b F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H
DP1L I	b F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H
DP1H I	b F106 _H	Ε	83 _H	P1H Direction Control Register	
DP2	b FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H
DP3 I	b FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H

Functional Description

Table 8C167CR Registers, Ordered by Name (cont'd)					
Name		Physical Address	8-Bit Addr.	Description	Reset Value
DP4	b	FFCA _H	E5 _H	Port 4 Direction Control Register	00 _H
DP6	b	FFCE _H	E7 _H	Port 6 Direction Control Register	00 _H
DP7	b	FFD2 _H	E9 _H	Port 7 Direction Control Register	00 _H
DP8	b	FFD6 _H	EB _H	Port 8 Direction Control Register	00 _H
DPP0		FE00 _H	00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H
DPP1		FE02 _H	01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
DPP2		FE04 _H	02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
DPP3		FE06 _H	03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
EXICON	b	F1C0 _H E	E0 _H	External Interrupt Control Register	0000 _H
MDC	b	FF0E _H	87 _H	CPU Multiply Divide Control Register	0000 _H
MDH		FE0C _H	06 _H	CPU Multiply Divide Reg. – High Word	0000 _H
MDL		FE0E _H	07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H
ODP2	b	F1C2 _H E	E1 _H	Port 2 Open Drain Control Register	0000 _H
ODP3	b	F1C6 _H E	E3 _H	Port 3 Open Drain Control Register	0000 _H
ODP6	b	F1CE _H E	E7 _H	Port 6 Open Drain Control Register	00 _H
ODP7	b	F1D2 _H E	E9 _H	Port 7 Open Drain Control Register	00 _H
ODP8	b	F1D6 _H E	EB _H	Port 8 Open Drain Control Register	00 _H
ONES		FF1E _H	8F _H	Constant Value 1's Register (read only)	FFFF _H
P0H	b	FF02 _H	81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H
P0L	b	FF00 _H	80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P1H	b	FF06 _H	83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H	82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H
P2	b	FFC0 _H	E0 _H	Port 2 Register	0000 _H
P3	b	FFC4 _H	E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H	E4 _H	Port 4 Register (8 bits)	00 _H
P5	b	FFA2 _H	D1 _H	Port 5 Register (read only)	XXXX _H
P5DIDIS	b	FFA4 _H	D2 _H	Port 5 Digital Input Disable Register 0	
P6	b	FFCC _H	E6 _H	Port 6 Register (8 bits)	00 _H
P7	b	FFD0 _H	E8 _H	Port 7 Register (8 bits)	00 _H
P8	b	FFD4 _H	EA _H	Port 8 Register (8 bits)	00 _H

Reset

Value

0000_н

0000_H

0000_н

0000_H

0000_H

0000_H

0000_H

0000_н

0000_н

0000_н

0000_н

0000_H

0000_н

0000_H

0000_H

0000_н

0000_H

0000_H

0000_H

0000_H

0000_H

0000_H

0000_H

0000_н

0000_H

0000_H

0000_H

²⁾00XX_H

Functional Description

C167CR Registers, Ordered by Name (cont'd) Table 8 8-Bit Name Physical Description **Address** Addr. T2IC b FF60_H B0_H GPT1 Timer 2 Interrupt Control Register FE42_H 21_H **T**3 **GPT1** Timer 3 Register A1_H T3CON FF42_H **GPT1** Timer 3 Control Register b T3IC b FF62_H B1_н **GPT1** Timer 3 Interrupt Control Register Τ4 FE44_H 22_н **GPT1** Timer 4 Register T4CON FF44_H **GPT1** Timer 4 Control Register b А2_н FF64_H T4IC **GPT1** Timer 4 Interrupt Control Register b B2_H **T5** FE46_H 23_H GPT2 Timer 5 Register T5CON FF46_H A3_H **GPT2** Timer 5 Control Register b T5IC b FF66_µ B3_H GPT2 Timer 5 Interrupt Control Register **T6** FE48_H 24_H **GPT2** Timer 6 Register A4_H **T6CON** FF48_H **GPT2** Timer 6 Control Register b $B4_{H}$ T6IC **b** | FF68_H GPT2 Timer 6 Interrupt Control Register **E** | 28_H T7 F050_н CAPCOM Timer 7 Register **T78CON** b FF20_H 90_H CAPCOM Timer 7 and 8 Ctrl. Reg. T7IC **b** | F17А_н E BE_H CAPCOM Timer 7 Interrupt Ctrl. Reg. F054_H T7REL CAPCOM Timer 7 Reload Register E 2A_н F052_H **T8** Ε **CAPCOM Timer 8 Register** 29_н F17C_H T8IC CAPCOM Timer 8 Interrupt Ctrl. Reg. b Ε BF_H F056_H $2B_{H}$ T8REL Ε CAPCOM Timer 8 Reload Register FFAC_H TFR Trap Flag Register b D6_н WDT FEAE_H Watchdog Timer Register (read only) 57_H

1) The system configuration is selected during reset.

FFAE_H

F186_H

F18E_H

F196_н

b | F19E_н

b | FF1C_H

b

b

b

D7_H

C3_H

С7_н

CB_H

8E_н

E | CF_H

E

E

E

2) The reset value depends on the indicated reset source.

WDTCON

XP0IC

XP1IC

XP2IC

XP3IC

ZEROS

Watchdog Timer Control Register

CAN1 Module Interrupt Control Register

Unassigned Interrupt Control Register

Unassigned Interrupt Control Register

Constant Value 0's Register (read only)

PLL/OWD Interrupt Control Register

4.1 General Parameters

Table 9Absolute Maximum Rating Parameters

Parameter	Symbol	Limit	Values	Unit	Notes	
		Min.	Max.			
Storage temperature	T _{ST}	-65	150	°C	-	
Junction temperature	TJ	-40	150	°C	under bias	
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	-0.5	6.5	V	_	
Voltage on any pin with respect to ground (V_{SS})	$V_{\rm IN}$	-0.5	V _{DD} + 0.5	V	_	
Input current on any pin during overload condition	-	-10	10	mA	_	
Absolute sum of all input currents during overload condition	_	-	100	mA	_	
Power dissipation	P_{DISS}	_	1.5	W	-	

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C167CR and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C167CR will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C167CR.

4.2 DC Parameters

Paramotor	Symbol		Limit		Unit	Tost Condition
Farameter	Synn	001			Unit	rest condition
			Min.	Max.		
Input low voltage (TTL, all except XTAL1)	V_{IL}	SR	-0.5	0.2 V _{DD} - 0.1	V	_
Input low voltage XTAL1	$V_{\rm IL2}$	SR	-0.5	0.3 V _{DD}	V	-
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	2.0	V	_
Input high voltage (TTL, all except RSTIN and XTAL1)	V _{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	_
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	_
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	_
Input Hysteresis (Special Threshold)	HYS		400	-	mV	Series resistance = 0 Ω
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT, RSTIN ²⁾)	V _{OL}	CC	_	0.45	V	I _{OL} = 2.4 mA
Output low voltage (all other outputs)	V _{OL1}	CC	_	0.45	V	I _{OL} = 1.6 mA

Table 11 DC Characteristics (Operating Conditions apply)¹⁾

4.3 Analog/Digital Converter Parameters

Table 13	A/D Converter Characteristics	(Operating Conditions apply)
----------	--------------------------------------	------------------------------

Parameter	Symbol		Limit	Values	Unit	Test	
			Min.	Max.		Condition	
Analog reference supply	V_{AREF}	SR	4.0	V _{DD} + 0.1	V	1)	
Analog reference ground	VAGNE	SR	V _{SS} - 0.1	V _{SS} + 0.2	V	-	
Analog input voltage range	V_{AIN}	SR	V_{AGND}	V _{AREF}	V	2)	
Basic clock frequency	$f_{\rm BC}$		0.5	6.25	MHz	3)	
Conversion time	t _C	CC	_	40 $t_{\rm BC}$ + $t_{\rm S}$	_	4)	
				+ 2 t _{CPU}		$t_{\rm CPU} = 1/f_{\rm CPU}$	
Calibration time after reset	t _{CAL}	CC	-	3328 t _{BC}	-	5)	
Total unadjusted error	TUE	CC	-	±2	LSB	1)	
Internal resistance of	R_{AREF}	SR	_	t _{BC} / 60	kΩ	t _{BC} in [ns] ⁶⁾⁷⁾	
reference voltage source				- 0.25			
Internal resistance of	R _{ASRC}	SR	_	t _S / 450	kΩ	t _s in [ns] ⁷⁾⁸⁾	
analog source				- 0.25			
ADC input capacitance	C_{AIN}	CC	_	33	pF	7)	

1) TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DD} = 4.9 V. It is guaranteed by design for all other voltages within the defined voltage range.

If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V

(i.e. $V_{AREF} = V_{DD} + 0.2 \text{ V}$) the maximum TUE is increased to ±3 LSB. This range is not 100% tested.

The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see I_{OV} specification) does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be \pm 4 LSB.

- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- 3) The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- 4) This parameter includes the sample time t_S, the time for determining the digital result and the time to load the result register with the conversion result.
 Values for the basic clock t_{BC} depend on programming and can be taken from Table 14.
 This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.
- This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.
- During the reset calibration conversions can be executed (with the current accuracy). The time required for these conversions is added to the total reset calibration time.
- 6) During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within each conversion step. The maximum internal resistance results from the programmed conversion timing.
- 7) Not subject to production test verified by design/characterization.

4.4 AC Parameters

4.4.1 Definition of Internal Timing

The internal operation of the C167CR is controlled by the internal CPU clock f_{CPU} . Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations.

The specification of the external timing (AC Characteristics) therefore depends on the time between two consecutive edges of the CPU clock, called "TCL" (see Figure 10).

Figure 10 Generation Mechanisms for the CPU Clock

The CPU clock signal $f_{\rm CPU}$ can be generated from the oscillator clock signal $f_{\rm OSC}$ via different mechanisms. The duration of TCLs and their variation (and also the derived external timing) depends on the used mechanism to generate $f_{\rm CPU}$. This influence must be regarded when calculating the timings for the C167CR.

Note: The example for PLL operation shown in the fig. above refers to a PLL factor of 4.

The used mechanism to generate the basic CPU clock is selected by bitfield CLKCFG in register RP0H.7-5.

Upon a long hardware reset register RP0H is loaded with the logic levels present on the

(2)

Electrical Parameters

Direct Drive

When direct drive is configured (CLKCFG = 011_B) the on-chip phase locked loop is disabled and the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of $f_{\rm CPU}$ directly follows the frequency of $f_{\rm OSC}$ so the high and low time of $f_{\rm CPU}$ (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock $f_{\rm OSC}$.

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

Table 19 External Bus Cycle Timing (Operating Conditions apply)

Parameter		Symbol		Limits	
			Min.	Max.	
Output delay from CLKOUT falling edge Valid for: address, BHE, early CS, write data out, ALE	<i>tc</i> ₁₀	CC	-2	11	ns
Output delay from CLKOUT rising edge Valid for: latched CS, ALE low	<i>tc</i> ₁₁	CC	-2	6	ns
Output de <u>lay</u> from CLKOUT rising <u>edge</u> Valid for: WR low (no RW delay), RD low (no RW delay)	<i>tc</i> ₁₂	CC	-2	8	ns
Output delay from CLKOUT falling edge Valid for: RD/WR low (with RW delay), RD high (with RW delay)	<i>tc</i> ₁₃	CC	-2	6	ns
Input setup time to CLKOUT falling edge Valid for: read data in	<i>tc</i> ₁₄	SR	14	-	ns
Input hold time after CLKOUT falling edge Valid for: read data in ¹⁾	<i>tc</i> ₁₅	SR	0	-	ns
Output hold time after CLKOUT falling edge Valid for: address, \overline{BHE} , early $\overline{CS}^{2)}$	<i>tc</i> ₁₇	CC	-2	6	ns
Output hold time after CLKOUT edge ³⁾ Valid for: write data out	<i>tc</i> ₁₈	CC	-2	-	ns
Output delay from CLKOUT falling edge Valid for: WR high	<i>tc</i> ₁₉	CC	-2	4	ns
Turn off delay after CLKOUT edge ³⁾ Valid for: write data out	<i>tc</i> ₂₀	CC	-	7	ns
Turn on delay after CLKOUT falling edge ³⁾ Valid for: write data out	<i>tc</i> ₂₁	CC	-5	-	ns

 Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge of RD. Therefore the read data may be removed immediately after the rising edge of RD. Address changes before the end of RD have also no impact on (demultiplexed) read cycles.

2) Due to comparable propagation delays (at comparable capacitive loads) the address does not change before $\overline{\text{WR}}$ goes high. The minimum output delay ($tc_{17\text{min}}$) is therefore the actual value of tc_{19} .

3) Not subject to production test - verified by design/characterization.

Figure 16 Demultiplexed Bus, Write Access

Figure 18 Multiplexed Bus, Write Access

Bus Cycle Control via READY Input

The duration of an external bus cycle can be controlled by the external circuitry via the READY input signal.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

Asynchronous READY puts no timing constraints on the input signal but incurs one waitstate minimum due to the additional synchronization stage.

Table 20	READY Timing	(Operating	Conditions	apply)

Parameter	Symbol		Limits		Unit
			Min.	Max.	
Input setup time to CLKOUT rising edge Valid for: READY input	<i>tc</i> ₂₅ C0	С	12	-	ns
Input hold time after CLKOUT rising edge Valid for: READY input	<i>tc</i> ₂₆ C0	С	0	-	ns
Asynchronous READY input low time ⁶⁾	<i>tc</i> ₂₇ C0	С	$tc_5 + tc_{25}$	_	ns

Notes (Valid also for Figure 20)

- 4. Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).
- 5. READY sampled HIGH at this sampling point generates a READY controlled waitstate, READY sampled LOW at this sampling point terminates the currently running bus cycle.
- 6. These timings are given for test purposes only, in order to assure recognition at a specific clock edge. If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT, it must fulfill tc₂₇ in order to be safely synchronized. Proper deactivation of READY is guaranteed if READY is deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).
- 7. Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may be inserted here. For a multiplexed bus **with** MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus **without** MTTC waitstate this delay is zero.
- 8. If the next following bus cycle is READY controlled, an active READY signal must be disabled before the first valid sample point for the next bus cycle. This sample point depends on the MTTC waitstate of the current cycle, and on the MCTC waitstates and the ALE mode of the next following cycle. If the current cycle uses a multiplexed bus the intrinsic MUX waitstate adds another CLKOUT cycle to the READY deactivation time.