E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusObsoleteCore ProcessorC166Core Size16-BitSpeed25MHzConnectivityCANbus, EBI/EMI, SPI, UART/USARTPeriperalsPOR, PWM, WDTNumber of I/O111Program Memory Size-Program Memory TypeROMlessEEPROM Size-Voltage - Supply (Vcc/Vdd)4.5V ~ 0.5VData ConvertersA/D 16x10bOperating Temperature4.0°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackagePMGP-144-8Purchase URLMts://www.exfl.com/product-detail/infineon-technologies/c167crImhafxqla2		
Core Size16-BitSpeed25MHzConnectivityCANbus, EBI/EMI, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O111Program Memory Size-Program Memory TypeROMlessEEPROM Size-RAM Size4K × 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPVoltage - Supple Voltage - Supple	Product Status	Obsolete
Speed25MHzConnectivityCANbus, EBI/EMI, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O111Program Memory Size-Program Memory TypeROMlessEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP.MQFP-144-8	Core Processor	C166
ConnectivityCANbus, EBI/EMI, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O111Program Memory Size-Program Memory TypeROMIessEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSuppler Device PackagePenQFP-144-8	Core Size	16-Bit
PeripheralsPOR, PWM, WDTNumber of I/O111Program Memory Size-Program Memory TypeROMIessEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	Speed	25MHz
Number of I/O111Program Memory Size-Program Memory TypeROMIessEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Program Memory Size-Program Memory TypeROMlessEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	Peripherals	POR, PWM, WDT
Program Memory TypeROMlessEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	Number of I/O	111
EEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	Program Memory Size	
RAM Size4K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	Program Memory Type	ROMIess
Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 16x10bOscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	EEPROM Size	<u>.</u>
Data ConvertersA/D 16x10bOscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	RAM Size	4K x 8
Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	Data Converters	A/D 16x10b
Mounting TypeSurface MountPackage / Case144-BQFPSupplier Device PackageP-MQFP-144-8	Oscillator Type	External
Package / Case 144-BQFP Supplier Device Package P-MQFP-144-8	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package P-MQFP-144-8	Mounting Type	Surface Mount
	Package / Case	144-BQFP
Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/c167crlmhafxqla2	Supplier Device Package	P-MQFP-144-8
	Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167crlmhafxqla2

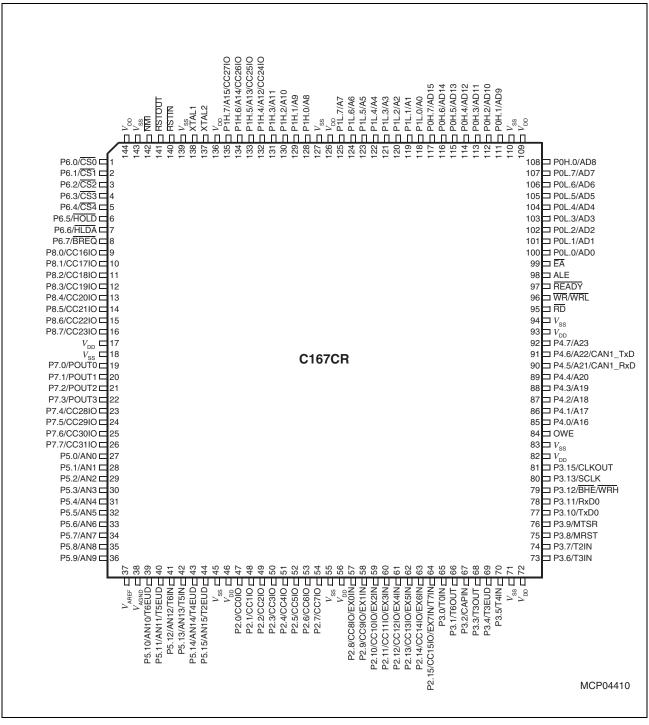
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Derivative ¹⁾	Program ROM Size	XRAM Size	Operating Frequency	Package
SAK-C167SR-LM SAB-C167SR-LM	-	2 Kbytes	25 MHz	P-MQFP-144-8
SAK-C167SR-L33M SAB-C167SR-L33M	-	2 Kbytes	33 MHz	P-MQFP-144-8
SAK-C167CR-LM SAF-C167CR-LM SAB-C167CR-LM	-	2 Kbytes	25 MHz	P-MQFP-144-8
SAK-C167CR-L33M SAB-C167CR-L33M	-	2 Kbytes	33 MHz	P-MQFP-144-8
SAK-C167CR-4RM SAB-C167CR-4RM	32 Kbytes	2 Kbytes	25 MHz	P-MQFP-144-8
SAK-C167CR-4R33M SAB-C167CR-4R33M	32 Kbytes	2 Kbytes	33 MHz	P-MQFP-144-8
SAK-C167CR-16RM	128 Kbytes	2 Kbytes	25 MHz	P-MQFP-144-8
SAK-C167CR-16R33M	128 Kbytes	2 Kbytes	33 MHz	P-MQFP-144-8
SAK-C167CR-LE	-	2 Kbytes	25 MHz	P-BGA-176-2

Table 1 C167CR Derivative Synopsis


1) This Data Sheet is valid for devices manufactured in 0.5 μm technology, i.e. devices starting with and including design step GA(-T)6.

2.2 Pin Configuration and Definition for P-MQFP-144-8

The pins of the C167CR are described in detail in **Table 2**, including all their alternate functions. **Figure 2** summarizes all pins in a condensed way, showing their location on the 4 sides of the package.

Note: The P-BGA-176-2 is described in Table 3 and Figure 3.

Figure 2 Pin Configuration P-MQFP-144-8 (top view)

Table 2	Pin	Definit	tions and Functions P-MQFP-144-8				
Symbol	Pin	Input	Function				
	No.	Outp.					
P6		IO	Port 6 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 6 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 6 is selectable (TTL or special). The Port 6 pins also serve for alternate functions:				
P6.0	1	0	CS0 Chip Select 0 Output				
P6.1	2	0	CS1 Chip Select 1 Output				
P6.2	3	0	CS2 Chip Select 2 Output				
P6.3	4	0	CS3 Chip Select 3 Output				
P6.4	5	0	CS4 Chip Select 4 Output				
P6.5	6	I	HOLD External Master Hold Request Input				
P6.6	7	I/O	HLDA Hold Acknowledge Output (master mode) or				
			Input (slave mode)				
P6.7	8	0	BREQ Bus Request Output				
P8		IO	Port 8 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 8 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 8 is selectable (TTL or special). The following Port 8 pins also serve for alternate functions:				
P8.0	9	I/O	CC16IO CAPCOM2: CC16 Capture Inp./Compare Outp.				
P8.1	10	1/O	CC17IO CAPCOM2: CC17 Capture Inp./Compare Outp.				
P8.2	11	1/O	CC18IO CAPCOM2: CC18 Capture Inp./Compare Outp.				
P8.3	12	1/0	CC19IO CAPCOM2: CC19 Capture Inp./Compare Outp.				
P8.4	13	1/0	CC20IO CAPCOM2: CC20 Capture Inp./Compare Outp.				
P8.5	14	1/0	CC21IO CAPCOM2: CC21 Capture Inp./Compare Outp.				
P8.6 P8.7	15 16	I/O I/O	CC22IOCAPCOM2: CC22 Capture Inp./Compare Outp.CC23IOCAPCOM2: CC23 Capture Inp./Compare Outp.				

Table 2	2 Pin Definitions and Functions P-MQFP-144-8 (cont'd)									
Symbol	Pin	Input	Function	Function						
	No.	Outp.								
P2		Ю	Port 2 is a	16-bit bidirectional I/O port. It is bit-wise						
				programmable for input or output via direction bits. For a pin						
			-	as input, the output driver is put into high-						
				e state. Port 2 outputs can be configured as						
				r open drain drivers. The input threshold of Port 2						
				le (TTL or special).						
				ng Port 2 pins also serve for alternate functions:						
P2.0	47	I/O	CC0IO	CAPCOM1: CC0 Capture Inp./Compare Output						
P2.1	48	I/O	CC1IO	CAPCOM1: CC1 Capture Inp./Compare Output						
P2.2	49	I/O	CC2IO	CAPCOM1: CC2 Capture Inp./Compare Output						
P2.3	50	I/O	CC3IO	CAPCOM1: CC3 Capture Inp./Compare Output						
P2.4	51	I/O	CC4IO CAPCOM1: CC4 Capture Inp./Compare Output							
P2.5	52	I/O	CC5IO CAPCOM1: CC5 Capture Inp./Compare Output							
P2.6	53	I/O	CC6IO	CAPCOM1: CC6 Capture Inp./Compare Output						
P2.7	54	I/O	CC7IO	CAPCOM1: CC7 Capture Inp./Compare Output						
P2.8	57	I/O	CC8IO	CAPCOM1: CC8 Capture Inp./Compare Output,						
			EX0IN	Fast External Interrupt 0 Input						
P2.9	58	I/O	CC9IO	CAPCOM1: CC9 Capture Inp./Compare Output,						
			EX1IN	Fast External Interrupt 1 Input						
P2.10	59	I/O	CC10IO	CAPCOM1: CC10 Capture Inp./Compare Outp.,						
			EX2IN	Fast External Interrupt 2 Input						
P2.11	60	I/O	CC11IO	CAPCOM1: CC11 Capture Inp./Compare Outp.,						
D0 40	0.4		EX3IN	Fast External Interrupt 3 Input						
P2.12	61	I/O	CC12IO	CAPCOM1: CC12 Capture Inp./Compare Outp.,						
DO 40	<u></u>		EX4IN	Fast External Interrupt 4 Input						
P2.13	62	1/0	CC13IO	CAPCOM1: CC13 Capture Inp./Compare Outp.,						
	<u></u>			EX5IN Fast External Interrupt 5 Input						
P2.14	63	I/O		CAPCOM1: CC14 Capture Inp./Compare Outp.,						
	C 4		EX6IN	Fast External Interrupt 6 Input						
P2.15	64	I/O		CAPCOM1: CC15 Capture Inp./Compare Outp.,						
			EX7IN	Fast External Interrupt 7 Input,						
			T7IN	CAPCOM2: Timer T7 Count Input						

Table 2	2 Pin Definitions and Functions P-MQFP-144-8 (cont'd)								
Symbol	Pin	Input	Function	Function					
	No.	Outp.							
P3		IO	Port 3 is a 15-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 3 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 3 is selectable (TTL or special). The following Port 3 pins also serve for alternate functions:						
P3.0	65	1	TOIN	CAPCOM1 Timer T0 Count Input					
P3.1	66	0	T6OUT	GPT2 Timer T6 Toggle Latch Output					
P3.2	67	1	CAPIN	GPT2 Register CAPREL Capture Input					
P3.3	68	0	T3OUT	GPT1 Timer T3 Toggle Latch Output					
P3.4	69	1	T3EUD	GPT1 Timer T3 External Up/Down Control Input					
P3.5	70	1	T4IN GPT1 Timer T4 Count/Gate/Reload/Capture Inp.						
P3.6	73	1	T3IN	GPT1 Timer T3 Count/Gate Input					
P3.7	74	1	T2IN	GPT1 Timer T2 Count/Gate/Reload/Capture Inp.					
P3.8	75	I/O	MRST	SSC Master-Receive/Slave-Transmit Inp./Outp.					
P3.9	76	I/O	MTSR	SSC Master-Transmit/Slave-Receive Outp./Inp.					
P3.10	77	0	TxD0	ASC0 Clock/Data Output (Async./Sync.)					
P3.11	78	I/O	RxD0	ASC0 Data Input (Async.) or Inp./Outp. (Sync.)					
P3.12	79	0	BHE	External Memory High Byte Enable Signal,					
		0	WRH	External Memory High Byte Write Strobe					
P3.13	80	I/O	SCLK	SSC Master Clock Output / Slave Clock Input.					
P3.15	81	0	CLKOUT	System Clock Output (= CPU Clock)					
OWE (V _{PP})	84	1	watchdog v purposes. / nothing is c For normal connected.	operation pin OWE should be high or not					

3.1 Memory Organization

The memory space of the C167CR is configured in a Von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 Mbytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

The C167CR incorporates 128/32 Kbytes (depending on the derivative) of on-chip maskprogrammable ROM for code or constant data. The lower 32 Kbytes of the on-chip ROM can be mapped either to segment 0 or segment 1.

2 Kbytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes (2×512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C166 Family.

2 Kbytes of on-chip Extension RAM (XRAM) are provided to store user data, user stacks, or code. The XRAM is accessed like external memory and therefore cannot be used for the system stack or for register banks and is not bitaddressable. The XRAM permits 16-bit accesses with maximum speed.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 16 Mbytes of external RAM and/or ROM can be connected to the microcontroller.

3.2 External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx / BUSCONx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0.

Up to 5 external $\overline{\text{CS}}$ signals (4 windows plus default) can be generated in order to save external glue logic. The C167CR offers the possibility to switch the $\overline{\text{CS}}$ outputs to an unlatched mode. In this mode the internal filter logic is switched off and the $\overline{\text{CS}}$ signals are directly generated from the address. The unlatched $\overline{\text{CS}}$ mode is enabled by setting CSCFG (SYSCON.6).

Access to very slow memories or memories with varying access times is supported via a particular 'Ready' function.

A HOLD/HLDA protocol is available for bus arbitration and allows to share external resources with other bus masters. The bus arbitration is enabled by setting bit HLDEN in register PSW. After setting HLDEN once, pins P6.7 ... P6.5 (BREQ, HLDA, HOLD) are automatically controlled by the EBC. In Master Mode (default after reset) the HLDA pin is an output. By setting bit DP6.7 to '1' the Slave Mode is selected where pin HLDA is switched to input. This allows to directly connect the slave controller to another master controller without glue logic.

For applications which require less than 16 Mbytes of external memory space, this address space can be restricted to 1 Mbyte, 256 Kbyte, or to 64 Kbyte. In this case Port 4 outputs four, two, or no address lines at all. It outputs all 8 address lines, if an address space of 16 Mbytes is used.

3.4 Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C167CR is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C167CR supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C167CR has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

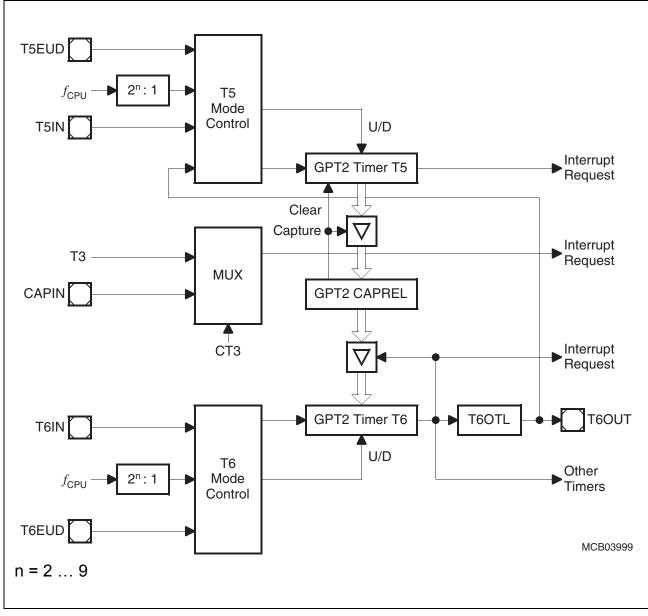
 Table 4 shows all of the possible C167CR interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

Table 4 C167CR Interrupt Nodes

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
CAPCOM Register 0	CC0IR	CC0IE	CC0INT	00'0040 _H	10 _H
CAPCOM Register 1	CC1IR	CC1IE	CC1INT	00'0044 _H	11 _H
CAPCOM Register 2	CC2IR	CC2IE	CC2INT	00'0048 _H	12 _H
CAPCOM Register 3	CC3IR	CC3IE	CC3INT	00'004C _H	13 _H
CAPCOM Register 4	CC4IR	CC4IE	CC4INT	00'0050 _H	14 _H
CAPCOM Register 5	CC5IR	CC5IE	CC5INT	00'0054 _H	15 _H
CAPCOM Register 6	CC6IR	CC6IE	CC6INT	00'0058 _H	16 _H
CAPCOM Register 7	CC7IR	CC7IE	CC7INT	00'005C _H	17 _H
CAPCOM Register 8	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
CAPCOM Register 9	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
CAPCOM Register 10	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
CAPCOM Register 11	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
CAPCOM Register 12	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
CAPCOM Register 13	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
CAPCOM Register 14	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
CAPCOM Register 15	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
CAPCOM Register 16	CC16IR	CC16IE	CC16INT	00'00C0 _H	30 _H
CAPCOM Register 17	CC17IR	CC17IE	CC17INT	00'00C4 _H	31 _H
CAPCOM Register 18	CC18IR	CC18IE	CC18INT	00'00C8 _H	32 _H
CAPCOM Register 19	CC19IR	CC19IE	CC19INT	00'00CC _H	33 _H
CAPCOM Register 20	CC20IR	CC20IE	CC20INT	00'00D0 _H	34 _H
CAPCOM Register 21	CC21IR	CC21IE	CC21INT	00'00D4 _H	35 _H
CAPCOM Register 22	CC22IR	CC22IE	CC22INT	00'00D8 _H	36 _H
CAPCOM Register 23	CC23IR	CC23IE	CC23INT	00'00DC _H	37 _H
CAPCOM Register 24	CC24IR	CC24IE	CC24INT	00'00E0 _H	38 _H
CAPCOM Register 25	CC25IR	CC25IE	CC25INT	00'00E4 _H	39 _H
CAPCOM Register 26	CC26IR	CC26IE	CC26INT	00'00E8 _H	3A _H
CAPCOM Register 27	CC27IR	CC27IE	CC27INT	00'00EC _H	3B _H
CAPCOM Register 28	CC28IR	CC28IE	CC28INT	00'00E0 _H	3C _H
CAPCOM Register 29	CC29IR	CC29IE	CC29INT	00'0110 _H	44 _H

The C167CR also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.


Table 5 shows all of the possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Priority	
Reset Functions:Hardware ResetSoftware ResetW-dog Timer Overflow	_	RESET RESET RESET	00'0000 _H 00'0000 _H 00'0000 _H	00 _H 00 _H 00 _H	 	
Class A Hardware Traps:Non-Maskable InterruptStack OverflowStack Underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008 _H 00'0010 _H 00'0018 _H	02 _H 04 _H 06 _H	 	
Class B Hardware Traps:Undefined OpcodeProtected Instruction Fault	UNDOPC PRTFLT	BTRAP BTRAP	00'0028 _H 00'0028 _H	0A _H 0A _H	1	
 Illegal Word Operand Access 	ILLOPA	BTRAP	00'0028 _H	0A _H	I	
 Illegal Instruction Access 	ILLINA	BTRAP	00'0028 _H	0A _H	1	
 Illegal External Bus Access 	ILLBUS	BTRAP	00'0028 _H	0A _H	I	
Reserved	-	-	[2C _H - 3C _H]	[0B _H - 0F _H]	_	
Software Traps TRAP Instruction 	_	_	Any [00'0000 _H - 00'01FC _H] in steps of 4 _H	Any [00 _H - 7F _H]	Current CPU Priority	

Table 5 Hardware Trap Summary

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

Table 7 Instruction Set Summary (cont'd)							
Mnemonic	Description	Bytes					
DISWDT	Disable Watchdog Timer	4					
EINIT	Signify End-of-Initialization on RSTOUT-pin	4					
ATOMIC	Begin ATOMIC sequence	2					
EXTR	Begin EXTended Register sequence	2					
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4					
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4					
NOP	Null operation	2					

Table 8C167CR Registers, Ordered by Name (cont'd)

Name	Physical 8-Bit Description Address Addr.		Reset Value						
CC4		FE88 _H		44 _H	CAPCOM Register 4	0000 _H			
CC4IC	b	FF80 _H		C0 _H	CAPCOM Reg. 4 Interrupt Ctrl. Reg.	0000 _H			
CC5		FE8A _H		45 _H	CAPCOM Register 5	0000 _H			
CC5IC	b	FF82 _H		C1 _H	CAPCOM Register 5 Interrupt Ctrl. Reg.	0000 _H			
CC6		FE8C _H		46 _H	CAPCOM Register 6	0000 _H			
CC6IC	b	FF84 _H		C2 _H	CAPCOM Reg. 6 Interrupt Ctrl. Reg.	0000 _H			
CC7		FE8E _H		47 _H	CAPCOM Register 7	0000 _H			
CC7IC	b	FF86 _H		C3 _H	CAPCOM Reg. 7 Interrupt Ctrl. Reg.	0000 _H			
CC8		FE90 _H		48 _H	CAPCOM Register 8	0000 _H			
CC8IC	b	FF88 _H		C4 _H	CAPCOM Reg. 8 Interrupt Ctrl. Reg.	0000 _H			
CC9		FE92 _H		49 _H	CAPCOM Register 9	0000 _H			
CC9IC	b	FF8A _H		C5 _H	CAPCOM Reg. 9 Interrupt Ctrl. Reg.	0000 _H			
ССМО	b	FF52 _H		A9 _H	CAPCOM Mode Control Register 0	0000 _H			
CCM1	b	FF54 _H		AA _H	CAPCOM Mode Control Register 1	0000 _H			
CCM2	b	FF56 _H		AB _H	CAPCOM Mode Control Register 2	0000 _H			
ССМЗ	b	FF58 _H		AC _H	CAPCOM Mode Control Register 3	0000 _H			
CCM4	b	FF22 _H	F22 _H 91 _H		CAPCOM Mode Control Register 4	0000 _H			
CCM5	b	FF24 _H		92 _H	CAPCOM Mode Control Register 5	0000 _H			
CCM6	b	FF26 _H		93 _H	CAPCOM Mode Control Register 6	0000 _H			
CCM7	b	FF28 _H		94 _H	CAPCOM Mode Control Register 7	0000 _H			
СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H			
CRIC	b	FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Register	0000 _H			
CSP		FE08 _H		04 _H	CPU Code Segment Pointer Register (read only)	0000 _H			
DP0L	b	F100 _H	Е	80 _H	P0L Direction Control Register	00 _H			
DP0H	b	F102 _H	Е	81 _H	P0H Direction Control Register	00 _H			
DP1L	b	F104 _H	Е	82 _H	P1L Direction Control Register				
DP1H	b	F106 _H	Е	83 _H	P1H Direction Control Register				
DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register 0				
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register 00				

4.1 General Parameters

Table 9Absolute Maximum Rating Parameters

Parameter	Symbol	Limi	t Values	Unit	Notes
		Min.	Max.		
Storage temperature	T _{ST}	-65	150	°C	-
Junction temperature	T _J	-40	150	°C	under bias
Voltage on $V_{\rm DD}$ pins with respect to ground ($V_{\rm SS}$)	V _{DD}	-0.5	6.5	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	V _{DD} + 0.5	V	-
Input current on any pin during overload condition	-	-10	10	mA	-
Absolute sum of all input currents during overload condition	-	-	100	mA	-
Power dissipation	P_{DISS}	-	1.5	W	_

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C167CR. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit	Values	Unit	Notes	
		Min.	Max.			
Digital supply voltage	V _{DD}	4.5	5.5	V	Active mode, f_{CPUmax} = 33 MHz	
		2.5 ¹⁾	5.5	V	Power Down mode	
Digital ground voltage	V _{SS}		0	V	Reference voltage	
Overload current	I _{OV}	_	±5	mA	Per pin ²⁾³⁾	
Absolute sum of overload currents	$\Sigma I_{OV} $	-	50	mA	3)	
External Load Capacitance	CL	-	50	pF	Pin drivers in fast edge mode (PDCR.BIPEC = '0')	
		-	30	pF	Pin drivers in reduced edge mode (PDCR.BIPEC = '1') ³⁾	
		-	100	рF	Pin drivers in fast edge mode, f_{CPUmax} = 25 MHz ⁴⁾	
Ambient temperature	T _A	0	70	°C	SAB-C167CR	
		-40	85	°C	SAF-C167CR	
		-40	125	°C	SAK-C167CR	

Table 10Operating Condition Parameters

1) Output voltages and output currents will be reduced when $V_{\rm DD}$ leaves the range defined for active mode.

2) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. $V_{OV} > V_{DD} + 0.5 \text{ V}$ or $V_{OV} < V_{SS} - 0.5 \text{ V}$). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins like XTAL1, $\overline{\text{RD}}$, $\overline{\text{WR}}$, etc.

3) Not subject to production test - verified by design/characterization.

4) The increased capacitive load is valid for the 25 MHz-derivatives up to a CPU clock frequency of 25 MHz. Under these circumstances the timing parameters as specified in the "C167CR Data Sheet 1999-06" are valid.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C167CR and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C167CR will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C167CR.

4.2 DC Parameters

Parameter	Sym	bol	Limit V	Values	Unit	Test Condition	
			Min. Max.				
Input low voltage (TTL, all except XTAL1)	V _{IL}	SR	-0.5	0.2 V _{DD} - 0.1	V	-	
Input low voltage XTAL1	$V_{\rm IL2}$	SR	-0.5	0.3 V _{DD}	V	-	
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	2.0	V	-	
Input high voltage (TTL, all except RSTIN and XTAL1)	V _{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	-	
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	-	
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	-	
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	-	
Input Hysteresis (Special Threshold)	HYS		400	_	mV	Series resistance = 0 Ω	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT, RSTIN ²⁾)	V _{OL}	CC	-	0.45	V	I _{OL} = 2.4 mA	
Output low voltage (all other outputs)	V _{OL1}	CC	-	0.45	V	I _{OL} = 1.6 mA	

Table 11 DC Characteristics (Operating Conditions apply)¹⁾

4.4.4 External Bus Timing

Table 17CLKOUT Reference Signal

Parameter		Symbol		Limits	
			Min.	Max.	
CLKOUT cycle time	tc_5	CC	3	30 ¹⁾	ns
CLKOUT high time	tc ₆	CC	8	_	ns
CLKOUT low time	tc ₇	CC	6	_	ns
CLKOUT rise time	tc ₈	CC	_	4	ns
CLKOUT fall time	tc ₉	CC	-	4	ns

1) The CLKOUT cycle time is influenced by the PLL jitter.

For a single CLKOUT cycle (2 TCL) the deviation caused by the PLL jitter is below 1 ns (for f_{CPU} > 25 MHz). For longer periods the relative deviation decreases (see PLL deviation formula).

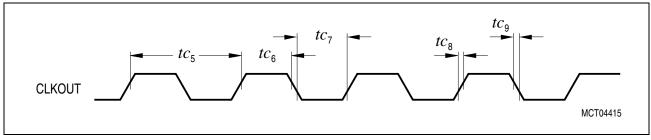


Figure 15 CLKOUT Signal Timing

Variable Memory Cycles

The bus timing shown below is programmable via the BUSCONx registers. The duration of ALE and two types of waitstates can be selected. This table summarizes the possible bus cycle durations.

Table 18	Variable M	Memory	Cycles
			Uy CIC3

Bus Cycle Type	Bus Cycle Duration	Unit	25/33 MHz, 0 Waitstates
Demultiplexed bus cycle with normal ALE	4 + 2 × (15 - <mctc>) + 2 × (1 - <mttc>)</mttc></mctc>	TCL	80 ns/60.6 ns
Demultiplexed bus cycle with extended ALE	6 + 2 × (15 - <mctc>) + 2 × (1 - <mttc>)</mttc></mctc>	TCL	120 ns/90.9 ns
Multiplexed bus cycle with normal ALE	6 + 2 × (15 - <mctc>) + 2 × (1 - <mttc>)</mttc></mctc>	TCL	120 ns/90.9 ns
Multiplexed bus cycle with extended ALE	8 + 2 × (15 - <mctc>) + 2 × (1 - <mttc>)</mttc></mctc>	TCL	160 ns/121.2 ns

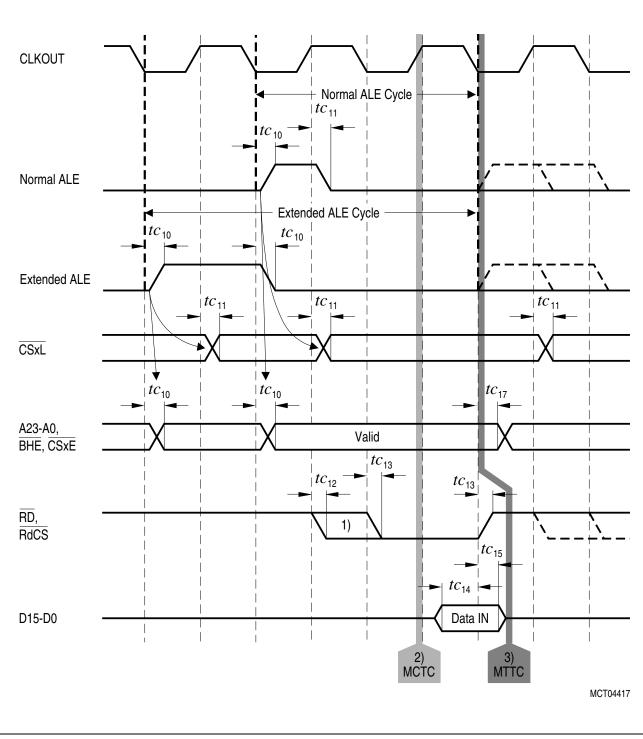


Figure 17 Demultiplexed Bus, Read Access

Bus Cycle Control via READY Input

The duration of an external bus cycle can be controlled by the external circuitry via the READY input signal.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

Asynchronous READY puts no timing constraints on the input signal but incurs one waitstate minimum due to the additional synchronization stage.

Table 20	READT LIMING	(Operating Conditions apply)

Parameter	Symbol	Lir	Unit	
		Min.	Max.	
Input setup time to CLKOUT rising edge Valid for: READY input	<i>tc</i> ₂₅ CC	12	-	ns
Input hold time after CLKOUT rising edge Valid for: READY input	<i>tc</i> ₂₆ CC	0	-	ns
Asynchronous READY input low time ⁶⁾	<i>tc</i> ₂₇ CC	$tc_5 + tc_{25}$	-	ns

Notes (Valid also for Figure 20)

- 4. Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).
- 5. READY sampled HIGH at this sampling point generates a READY controlled waitstate, READY sampled LOW at this sampling point terminates the currently running bus cycle.
- 6. These timings are given for test purposes only, in order to assure recognition at a specific clock edge. If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT, it must fulfill tc₂₇ in order to be safely synchronized. Proper deactivation of READY is guaranteed if READY is deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).
- 7. Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may be inserted here. For a multiplexed bus **with** MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus **without** MTTC waitstate this delay is zero.
- 8. If the next following bus cycle is READY controlled, an active READY signal must be disabled before the first valid sample point for the next bus cycle. This sample point depends on the MTTC waitstate of the current cycle, and on the MCTC waitstates and the ALE mode of the next following cycle. If the current cycle uses a multiplexed bus the intrinsic MUX waitstate adds another CLKOUT cycle to the READY deactivation time.

External Bus Arbitration

Table 21 Bus Arbitration Timing (Operating Conditions apply)

Parameter		Symbol		Limits	
			Min.	Max.	
HOLD input setup time to CLKOUT falling edge	<i>tc</i> ₂₈	SR	18	_	ns
CLKOUT to BREQ delay	<i>tc</i> ₂₉	CC	-4	6	ns
CLKOUT to HLDA delay	<i>tc</i> ₃₀	CC	-4	6	ns
CSx release ¹⁾	<i>tc</i> ₃₁	CC	0	10	ns
CSx drive	<i>tc</i> ₃₂	CC	-2	6	ns
Other signals release ¹⁾	<i>tc</i> ₃₃	CC	0	10	ns
Other signals drive ¹⁾	<i>tc</i> ₃₄	CC	0	6	ns
			I	I	

1) Not subject to production test - verified by design/characterization.