E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167crlmhakxqla2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C167CR C167SR 16-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.

Table 3	Pir	Definit	ons and Functions P-BGA-176-2					
Symbol	Pin Num.	Input Outp.	Function					
P5		1	Port 5 is a 16-bit input-only port with Schmitt-Trigger					
			characteristic.					
			The pins of Port 5 also serve as analog input channels for the					
	۸ <i>Б</i>		A/D converter, or they serve as timer inputs:					
P5.0	A5							
P5.1 P5.2	D5 A4		AN1 AN2					
P5.2 P5.3	C5		AN3					
P5.4	B4		AN4					
P5.5	A3		AN5					
P5.6	C4		ANG					
P5.7	D4	li –	AN7					
P5.8	B3	I	AN8					
P5.9	C3	1	AN9					
P5.10	D3	1	AN10, T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.					
P5.11	C1	1	AN11, T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.					
P5.12	D1	1	AN12, T6IN GPT2 Timer T6 Count Inp.					
P5.13	D2	1	AN13, T5IN GPT2 Timer T5 Count Inp.					
P5.14	E3	1	AN14, T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.					
P5.15	E2	1	AN15, T2EUD GPT1 Timer T5 Ext. Up/Down Ctrl. Inp.					
P7		IO	Port 7 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 7 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 7 is selectable (TTL or special).					
			The following Port 7 pins also serve for alternate functions:					
P7.0	D7	0	POUT0 PWM Channel 0 Output					
P7.1	C7	0	POUT1 PWM Channel 1 Output					
P7.2	B7	0	POUT2 PWM Channel 2 Output					
P7.3	A7	0	POUT3 PWM Channel 3 Output					
P7.4	D6	I/O	CC28IO CAPCOM2: CC28 Capture Inp./Compare Outp.					
P7.5	C6	I/O	CC29IO CAPCOM2: CC29 Capture Inp./Compare Outp.					
P7.6	B6	I/O	CC30IO CAPCOM2: CC30 Capture Inp./Compare Outp.					
P7.7	A6	I/O	CC31IO CAPCOM2: CC31 Capture Inp./Compare Outp.					

Table 3	Pin Definitions and Functions P-BGA-176-2 (cont'd)					
Symbol	Pin Num.	Input Outp.	Function			
P8		IO	Port 8 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 8 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 8 is selectable (TTL or special). The following Port 8 pins also serve for alternate functions:			
P8.0	B10	I/O	CC16IO CAPCOM2: CC16 Capture Inp./Compare Outp.			
P8.1	A10	1/0	CC17IO CAPCOM2: CC17 Capture Inp./Compare Outp.			
P8.2	D9	1/0	CC18IO CAPCOM2: CC18 Capture Inp./Compare Outp.			
P8.3 P8.4	C9 B9	1/O 1/O	CC19IO CAPCOM2: CC19 Capture Inp./Compare Outp. CC20IO CAPCOM2: CC20 Capture Inp./Compare Outp.			
P8.5	A9	1/0	CC21IO CAPCOM2: CC21 Capture Inp./Compare Outp.			
P8.6	D8	1/0	CC22IO CAPCOM2: CC22 Capture Inp./Compare Outp.			
P8.7	C8	I/O	CC23IO CAPCOM2: CC23 Capture Inp./Compare Outp.			
P6.0 P6.1 P6.2 P6.3 P6.4 P6.5	A13 B12 D10 C11 A12 B11		Port 6 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 6 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 6 is selectable (TTL or special).The Port 6 pins also serve for alternate functions:CS0Chip Select 0 OutputCS2Chip Select 1 OutputCS3Chip Select 3 OutputCS4Chip Select 4 OutputHOLDExternal Master Hold Request Input			
P6.6	C10	I/O	HLDA Hold Acknowledge Output (master mode) or			
			Input (slave mode)			
P6.7	A11	0	BREQ Bus Request Output			
<u>NMI</u>	C14	1	Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. When the PWRDN (power down) instruction is executed, the NMI pin must be low in order to force the C167CR to go into power down mode. If NMI is high, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin NMI should be pulled high externally.			

Table 3 Pin Definitions and Functions P-BGA-176-2 (cont'd) Symbol Pin **Function** Input Num. Outp. OWE N6 L Oscillator Watchdog Enable. This input enables the oscillator watchdog when high or disables it when low e.g. for testing (V_{PP}) purposes. An internal pull-up device holds this input high if nothing is driving it. For normal operation pin OWE should be high or not connected. In order to drive pin OWE low draw a current of at least 200 μA. **P3** Port 3 is a 15-bit bidirectional I/O port. It is bit-wise IO programmable for input or output via direction bits. For a pin configured as input, the output driver is put into highimpedance state. Port 3 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 3 is selectable (TTL or special). The following Port 3 pins also serve for alternate functions: P3.0 M1 TOIN CAPCOM1 Timer T0 Count Input L K3 T6OUT GPT2 Timer T6 Toggle Latch Output P3.1 0 P3.2 L2 CAPIN GPT2 Register CAPREL Capture Input L 0 P3.3 M2 T3OUT GPT1 Timer T3 Toggle Latch Output P3.4 N1 L T3EUD GPT1 Timer T3 External Up/Down Control Input P3.5 P2 T4IN GPT1 Timer T4 Count/Gate/Reload/Capture Inp. I P3.6 I T3IN GPT1 Timer T3 Count/Gate Input M3 P3.7 T2IN GPT1 Timer T2 Count/Gate/Reload/Capture Inp. N2 I I/O SSC Master-Receive/Slave-Transmit Inp./Outp. P3.8 N3 MRST P3.9 P3 MTSR SSC Master-Transmit/Slave-Receive Outp./Inp. I/O P3.10 TxD0 N4 ASC0 Clock/Data Output (Async./Sync.) Ο P3.11 M4 I/O RxD0 ASC0 Data Input (Async.) or Inp./Outp. (Sync.) BHE P3.12 L4 0 External Memory High Byte Enable Signal, WRH 0 External Memory High Byte Write Strobe P4 P3.13 I/O SCLK SSC Master Clock Output / Slave Clock Input.

P3.15

N5

0

System Clock Output (= CPU Clock)

CLKOUT

Table 3	Pir	n Defini	ions and Functions P-BGA-176-2 (cont'd)						
Symbol	Pin Num.	Input Outp.	Function						
P2		IO	Port 2 is a 16-bit bidirectional I/O port. It is bit-wise						
			programm	able for input or output via direction bits. For a pin					
			-	as input, the output driver is put into high-					
			-	e state. Port 2 outputs can be configured as					
				or open drain drivers. The input threshold of Port 2 ble (TTL or special).					
			The follow	ring Port 2 pins also serve for alternate functions:					
P2.0	F3	I/O	CC0IO	CAPCOM1: CC0 Capture Inp./Compare Output					
P2.1	F2	I/O	CC1IO	CAPCOM1: CC1 Capture Inp./Compare Output					
P2.2	F4	I/O	CC2IO	CAPCOM1: CC2 Capture Inp./Compare Output					
P2.3	G4	I/O	CC3IO	CAPCOM1: CC3 Capture Inp./Compare Output					
P2.4	G3	I/O	CC4IO	CAPCOM1: CC4 Capture Inp./Compare Output					
P2.5	G2	I/O	CC5IO	CAPCOM1: CC5 Capture Inp./Compare Output					
P2.6	G1	I/O	CC6IO	CAPCOM1: CC6 Capture Inp./Compare Output					
P2.7	H1	I/O	CC7IO	CAPCOM1: CC7 Capture Inp./Compare Output					
P2.8	H4	I/O	CC8IO	CAPCOM1: CC8 Capture Inp./Compare Output,					
		I	EX0IN	Fast External Interrupt 0 Input					
P2.9	J1	I/O	CC9IO	CAPCOM1: CC9 Capture Inp./Compare Output,					
		I	EX1IN	Fast External Interrupt 1 Input					
P2.10	J2	I/O	CC10IO	CAPCOM1: CC10 Capture Inp./Compare Outp.,					
		I	EX2IN	Fast External Interrupt 2 Input					
P2.11	J4	I/O	CC11IO	CAPCOM1: CC11 Capture Inp./Compare Outp.,					
		1	EX3IN	Fast External Interrupt 3 Input					
P2.12	J3	I/O	CC12IO	CAPCOM1: CC12 Capture Inp./Compare Outp.,					
		I	EX4IN	Fast External Interrupt 4 Input					
P2.13	K1	I/O	CC13IO	CAPCOM1: CC13 Capture Inp./Compare Outp.,					
		I	EX5IN	Fast External Interrupt 5 Input					
P2.14	K2	I/O	CC14IO	CAPCOM1: CC14 Capture Inp./Compare Outp.,					
		1	EX6IN	Fast External Interrupt 6 Input					
P2.15	L1	I/O	CC15IO	CAPCOM1: CC15 Capture Inp./Compare Outp.,					
		I	EX7IN	Fast External Interrupt 7 Input,					
		I	T7IN	CAPCOM2: Timer T7 Count Input					
V_{AREF}	B2	-	Reference	e voltage for the A/D converter.					
V_{AGND}	C2	-	Reference	e ground for the A/D converter.					

3.4 Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C167CR is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C167CR supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C167CR has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

 Table 4 shows all of the possible C167CR interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

Table 4 C167CR Interrupt Nodes

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
CAPCOM Register 0	CC0IR	CC0IE	CC0INT	00'0040 _H	10 _H
CAPCOM Register 1	CC1IR	CC1IE	CC1INT	00'0044 _H	11 _H
CAPCOM Register 2	CC2IR	CC2IE	CC2INT	00'0048 _H	12 _H
CAPCOM Register 3	CC3IR	CC3IE	CC3INT	00'004C _H	13 _H
CAPCOM Register 4	CC4IR	CC4IE	CC4INT	00'0050 _H	14 _H
CAPCOM Register 5	CC5IR	CC5IE	CC5INT	00'0054 _H	15 _H
CAPCOM Register 6	CC6IR	CC6IE	CC6INT	00'0058 _H	16 _H
CAPCOM Register 7	CC7IR	CC7IE	CC7INT	00'005C _H	17 _H
CAPCOM Register 8	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
CAPCOM Register 9	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
CAPCOM Register 10	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
CAPCOM Register 11	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
CAPCOM Register 12	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
CAPCOM Register 13	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
CAPCOM Register 14	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
CAPCOM Register 15	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
CAPCOM Register 16	CC16IR	CC16IE	CC16INT	00'00C0 _H	30 _H
CAPCOM Register 17	CC17IR	CC17IE	CC17INT	00'00C4 _H	31 _H
CAPCOM Register 18	CC18IR	CC18IE	CC18INT	00'00C8 _H	32 _H
CAPCOM Register 19	CC19IR	CC19IE	CC19INT	00'00CC _H	33 _H
CAPCOM Register 20	CC20IR	CC20IE	CC20INT	00'00D0 _H	34 _H
CAPCOM Register 21	CC21IR	CC21IE	CC21INT	00'00D4 _H	35 _H
CAPCOM Register 22	CC22IR	CC22IE	CC22INT	00'00D8 _H	36 _H
CAPCOM Register 23	CC23IR	CC23IE	CC23INT	00'00DC _H	37 _H
CAPCOM Register 24	CC24IR	CC24IE	CC24INT	00'00E0 _H	38 _H
CAPCOM Register 25	CC25IR	CC25IE	CC25INT	00'00E4 _H	39 _H
CAPCOM Register 26	CC26IR	CC26IE	CC26INT	00'00E8 _H	3A _H
CAPCOM Register 27	CC27IR	CC27IE	CC27INT	00'00EC _H	3B _H
CAPCOM Register 28	CC28IR	CC28IE	CC28INT	00'00E0 _H	3C _H
CAPCOM Register 29	CC29IR	CC29IE	CC29INT	00'0110 _H	44 _H

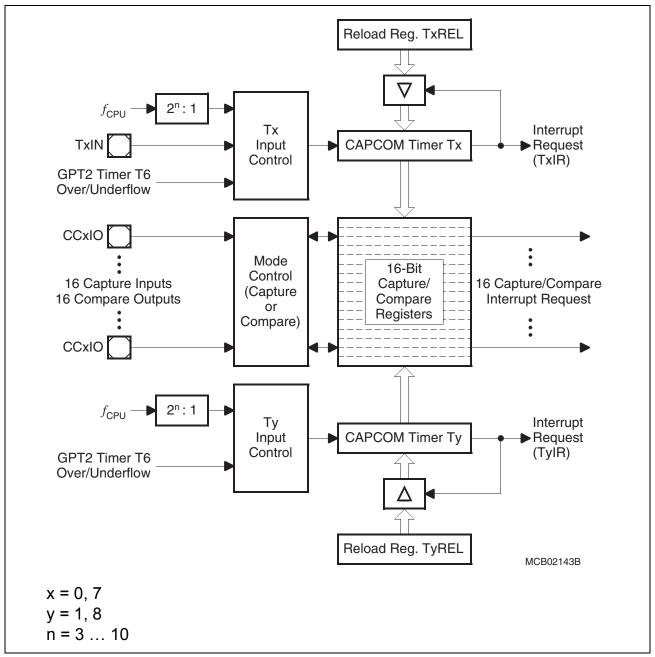


Figure 6 CAPCOM Unit Block Diagram

3.6 **PWM Module**

The Pulse Width Modulation Module can generate up to four PWM output signals using edge-aligned or center-aligned PWM. In addition the PWM module can generate PWM burst signals and single shot outputs. The frequency range of the PWM signals covers 4 Hz to 16.5 MHz (referred to a CPU clock of 33 MHz), depending on the resolution of the PWM output signal. The level of the output signals is selectable and the PWM module can generate interrupt requests.

3.8 A/D Converter

For analog signal measurement, a 10-bit A/D converter with 16 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 16 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C167CR supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted in a converted. In addition, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via register P5DIDIS (Port 5 Digital Input Disable).

Table 7 Ins	struction Set Summary (cont'd)	
Mnemonic	Description	Bytes
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand. with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
J(N)B	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutine	2
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2
RETI	Return from interrupt service subroutine	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4

Table 8C167CR Registers, Ordered by Name (cont'd)

Table 8	C	167CR F	keg	isters,	Ordered by Name (cont'd)	
Name		Physica Addres		8-Bit Addr.	Description	Reset Value
CC19IC	b	F166 _H	Ε	B3 _H	CAPCOM Reg. 19 Interrupt Ctrl. Reg.	0000 _H
CC1IC	b	FF7A _H		BD _H	CAPCOM Reg. 1 Interrupt Ctrl. Reg.	0000 _H
CC2		FE84 _H		42 _H	CAPCOM Register 2	0000 _H
CC20		FE68 _H		34 _H	CAPCOM Register 20	0000 _H
CC20IC	b	F168 _H	Ε	B4 _H	CAPCOM Reg. 20 Interrupt Ctrl. Reg.	0000 _H
CC21		FE6A _H		35 _H	CAPCOM Register 21	0000 _H
CC21IC	b	F16A _H	Ε	B5 _H	CAPCOM Reg. 21 Interrupt Ctrl. Reg.	0000 _H
CC22		FE6C _H		36 _H	CAPCOM Register 22	0000 _H
CC22IC	b	F16C _H	Ε	B6 _H	CAPCOM Reg. 22 Interrupt Ctrl. Reg.	0000 _H
CC23		FE6E _H		37 _H	CAPCOM Register 23	0000 _H
CC23IC	b	F16E _H	Ε	B7 _H	CAPCOM Reg. 23 Interrupt Ctrl. Reg.	0000 _H
CC24		FE70 _H		38 _H	CAPCOM Register 24	0000 _H
CC24IC	b	F170 _H	Ε	B8 _H	CAPCOM Reg. 24 Interrupt Ctrl. Reg.	0000 _H
CC25		FE72 _H		39 _H	CAPCOM Register 25	0000 _H
CC25IC	b	F172 _H	Ε	B9 _H	CAPCOM Reg. 25 Interrupt Ctrl. Reg.	0000 _H
CC26		FE74 _H		3A _H	CAPCOM Register 26	0000 _H
CC26IC	b	F174 _H	Ε	BA _H	CAPCOM Reg. 26 Interrupt Ctrl. Reg.	0000 _H
CC27		FE76 _H		3B _H	CAPCOM Register 27	0000 _H
CC27IC	b	F176 _H	Ε	BB _H	CAPCOM Reg. 27 Interrupt Ctrl. Reg.	0000 _H
CC28		FE78 _H		3C _H	CAPCOM Register 28	0000 _H
CC28IC	b	F178 _H	Ε	BC _H	CAPCOM Reg. 28 Interrupt Ctrl. Reg.	0000 _H
CC29		FE7A _H		3D _H	CAPCOM Register 29	0000 _H
CC29IC	b	F184 _H	Ε	C2 _H	CAPCOM Reg. 29 Interrupt Ctrl. Reg.	0000 _H
CC2IC	b	FF7C _H		BE _H	CAPCOM Reg. 2 Interrupt Ctrl. Reg.	0000 _H
CC3		FE86 _H		43 _H	CAPCOM Register 3	0000 _H
CC30		FE7C _H		3E _H	CAPCOM Register 30	0000 _H
CC30IC	b	F18C _H	Ε	C6 _H	CAPCOM Reg. 30 Interrupt Ctrl. Reg.	0000 _H
CC31		FE7E _H		3F _н	CAPCOM Register 31	0000 _H
CC31IC	b	F194 _H	Ε	CA _H	CAPCOM Reg. 31 Interrupt Ctrl. Reg.	0000 _H
CC3IC	b	FF7E _H		BF _H	CAPCOM Reg. 3 Interrupt Ctrl. Reg.	0000 _H

Table 8C167CR Registers, Ordered by Name (cont'd)

Table 8	С С	16/CR Reg	isters,	Ordered by Name (cont'd)	
Name		Physical Address	8-Bit Addr.	Description	Reset Value
SOEIC	b	FF70 _H	B8 _H	Serial Chan. 0 Error Interrupt Ctrl. Reg.	0000 _H
SORBUF		FEB2 _H	59 _H	Serial Channel 0 Receive Buffer Reg. (read only)	XX _H
SORIC	b	FF6E _H	В7 _Н	Serial Channel 0 Receive Interrupt Control Register	0000 _H
SOTBIC	b	F19C _H E	CE _H	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H
SOTBUF		FEB0 _H	58 _H	Serial Channel 0 Transmit Buffer Reg. (write only)	00 _H
SOTIC	b	FF6C _H	B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H
SP		FE12 _H	09 _H	CPU System Stack Pointer Register	FC00 _H
SSCBR		F0B4 _H E	5A _H	SSC Baudrate Register	0000 _H
SSCCON	b	FFB2 _H	D9 _H	SSC Control Register	0000 _H
SSCEIC	b	FF76 _H	BB _H	SSC Error Interrupt Control Register	0000 _H
SSCRB		F0B2 _H E	59 _H	SSC Receive Buffer	XXXX _H
SSCRIC	b	FF74 _H	BA_H	SSC Receive Interrupt Control Register	0000 _H
SSCTB		F0B0 _H E	58 _H	SSC Transmit Buffer	0000 _H
SSCTIC	b	FF72 _H	B9 _H	SSC Transmit Interrupt Control Register	0000 _H
STKOV		FE14 _H	0A _H	CPU Stack Overflow Pointer Register	FA00 _H
STKUN		FE16 _H	0B _H	CPU Stack Underflow Pointer Register	FC00 _H
SYSCON	b	FF12 _H	89 _H	CPU System Configuration Register	¹⁾ 0xx0 _H
Т0		FE50 _H	28 _H	CAPCOM Timer 0 Register	0000 _H
T01CON	b	FF50 _H	A8 _H	CAPCOM Timer 0 and Timer 1 Ctrl. Reg.	0000 _H
TOIC	b	FF9C _H	CE _H	CAPCOM Timer 0 Interrupt Ctrl. Reg.	0000 _H
TOREL		FE54 _H	2A _H	CAPCOM Timer 0 Reload Register	0000 _H
T1		FE52 _H	29 _H	CAPCOM Timer 1 Register	0000 _H
T1IC	b	FF9E _H	CF _H	CAPCOM Timer 1 Interrupt Ctrl. Reg.	0000 _H
T1REL		FE56 _H	2B _H	CAPCOM Timer 1 Reload Register	0000 _H
Т2		FE40 _H	20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H	A0 _H	GPT1 Timer 2 Control Register	0000 _H

Reset

Value

0000_н

0000_н

0000_н

0000_H

0000_H

0000_H

0000_H

0000_н

0000_н

0000_н

0000_н

0000_H

0000_н

0000_H

0000_H

0000_н

0000_H

0000_H

0000_H

0000_H

0000_H

0000_H

0000_H

0000_н

0000_H

0000_H

0000_H

Functional Description

C167CR Registers, Ordered by Name (cont'd) Table 8 8-Bit Name Physical Description **Address** Addr. T2IC b FF60_H B0_H GPT1 Timer 2 Interrupt Control Register FE42_H 21_H **T**3 **GPT1** Timer 3 Register A1_H T3CON FF42_H **GPT1** Timer 3 Control Register b T3IC b FF62_H B1_н **GPT1** Timer 3 Interrupt Control Register Τ4 FE44_H 22_н **GPT1** Timer 4 Register T4CON FF44_H **GPT1** Timer 4 Control Register b А2_н FF64_H T4IC **GPT1** Timer 4 Interrupt Control Register b B2_H **T5** FE46_H 23_H GPT2 Timer 5 Register T5CON FF46_H A3_H **GPT2** Timer 5 Control Register b T5IC b FF66_µ B3_H GPT2 Timer 5 Interrupt Control Register **T6** FE48_H 24_H **GPT2** Timer 6 Register A4_H **T6CON** FF48_H **GPT2** Timer 6 Control Register b $B4_{H}$ T6IC **b** | FF68_H **GPT2** Timer 6 Interrupt Control Register **E** | 28_H T7 F050_н CAPCOM Timer 7 Register **T78CON** b FF20_H 90_H CAPCOM Timer 7 and 8 Ctrl. Reg. T7IC **b** | F17А_н E BE_H CAPCOM Timer 7 Interrupt Ctrl. Reg. F054_H T7REL CAPCOM Timer 7 Reload Register E 2A_н F052_H **T8** Ε **CAPCOM Timer 8 Register** 29_н F17C_H T8IC CAPCOM Timer 8 Interrupt Ctrl. Reg. b Ε BF_H F056_H $2B_{H}$ T8REL Ε CAPCOM Timer 8 Reload Register FFAC_H TFR Trap Flag Register b D6_н WDT FEAE_H Watchdog Timer Register (read only) 57_H ²⁾00XX_H

FFAE_H

F186_H

F18E_H

F196_н

b | F19E_н

b | FF1C_H

b

b

b

D7_H

C3_H

С7_н

CB_H

8E_н

E | CF_H

E

E

E

2) The reset value depends on the indicated reset source.

WDTCON

XP0IC

XP1IC

XP2IC

XP3IC

ZEROS

Watchdog Timer Control Register

CAN1 Module Interrupt Control Register

Unassigned Interrupt Control Register

Unassigned Interrupt Control Register

Constant Value 0's Register (read only)

PLL/OWD Interrupt Control Register

Electrical Parameters

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C167CR and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C167CR will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C167CR.

4.2 DC Parameters

Parameter	Sym	bol	Limit V	Values	Unit	Test Condition	
			Min.	Max.			
Input low voltage (TTL, all except XTAL1)	V _{IL}	SR	-0.5	0.2 V _{DD} - 0.1	V	-	
Input low voltage XTAL1	$V_{\rm IL2}$	SR	-0.5	0.3 V _{DD}	V	-	
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	2.0	V	-	
Input high voltage (TTL, all except RSTIN and XTAL1)	V _{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	-	
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	-	
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	-	
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	-	
Input Hysteresis (Special Threshold)	HYS		400	_	mV	Series resistance = 0 Ω	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT, RSTIN ²⁾)	V _{OL}	CC	-	0.45	V	I _{OL} = 2.4 mA	
Output low voltage (all other outputs)	V _{OL1}	CC	-	0.45	V	I _{OL} = 1.6 mA	

Table 11 DC Characteristics (Operating Conditions apply)¹⁾

Electrical Parameters

Table 11	DC Characteristics (Operating Conditions apply) ¹⁾ (cont'd)
----------	---

Parameter	Sym	ool	Limit	Values	Unit	Test Condition
			Min.	Max.		
Output high voltage ³⁾	V _{OH}	CC	2.4	_	V	I _{OH} = -2.4 mA
(PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT)			0.9 V _{DD}	_	V	I _{OH} = -0.5 mA
Output high voltage ³⁾	V _{OH1}	CC	2.4	_	V	I _{он} = -1.6 mА
(all other outputs)			0.9 V _{DD}	_	V	I _{OH} = -0.5 mA
Input leakage current (Port 5)	I _{OZ1}	CC	_	±200	nA	$0 \lor < V_{\rm IN} < V_{\rm DD}$
Input leakage current (all other) ⁴⁾	I _{OZ2}	СС	_	±500	nA	0.45 V < V _{IN} < V _{DD}
RSTIN inactive current ⁵⁾	I _{RSTH}	6)	_	-10	μA	$V_{\rm IN} = V_{\rm IH1}$
RSTIN active current ⁵⁾	$I_{\rm RSTL}^7$	7)	-100	_	μA	$V_{\rm IN} = V_{\rm IL}$
READY/RD/WR inact. current ⁸⁾	$I_{\rm RWH}^{6}$	i)	_	-40	μA	$V_{\rm OUT}$ = 2.4 V
READY/RD/WR active current ⁸⁾	$I_{\rm RWL}^{7}$		-500	_	μA	$V_{\rm OUT}$ = $V_{\rm OLmax}$
ALE inactive current ⁸⁾	I _{ALEL} ⁶		_	40	μA	$V_{\rm OUT}$ = $V_{\rm OLmax}$
ALE active current ⁸⁾	I _{ALEH} ⁷		500	_	μA	V _{OUT} = 2.4 V
Port 6 inactive current ⁸⁾	I _{P6H} ⁶⁾		_	-40	μA	V _{OUT} = 2.4 V
Port 6 active current ⁸⁾	<i>I</i> _{P6L} ⁷⁾		-500	_	μA	$V_{\rm OUT}$ = $V_{\rm OL1max}$
PORT0 configuration current ⁹⁾	I _{P0H} ⁶⁾		_	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$
	$I_{\rm P0L}^{(7)}$		-100	_	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	$I_{\rm IL}$	CC	_	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ¹⁰⁾ (digital inputs/outputs)	$C_{\rm IO}$	CC	_	10	pF	f = 1 MHz; T _A = 25 °C

1) Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

2) Valid in bidirectional reset mode only.

3) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

- 4) This parameter is not valid for pins READY, ALE, RD, and WR while the respective pull device is on.
- 5) These parameters describe the $\overline{\text{RSTIN}}$ pull-up, which equals a resistance of ca. 50 to 250 k Ω .
- 6) The maximum current may be drawn while the respective signal line remains inactive.
- 7) The minimum current must be drawn in order to drive the respective signal line active.
- 8) This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pull-up is always active, except for Power-down mode.

C167CR C167SR

Electrical Parameters

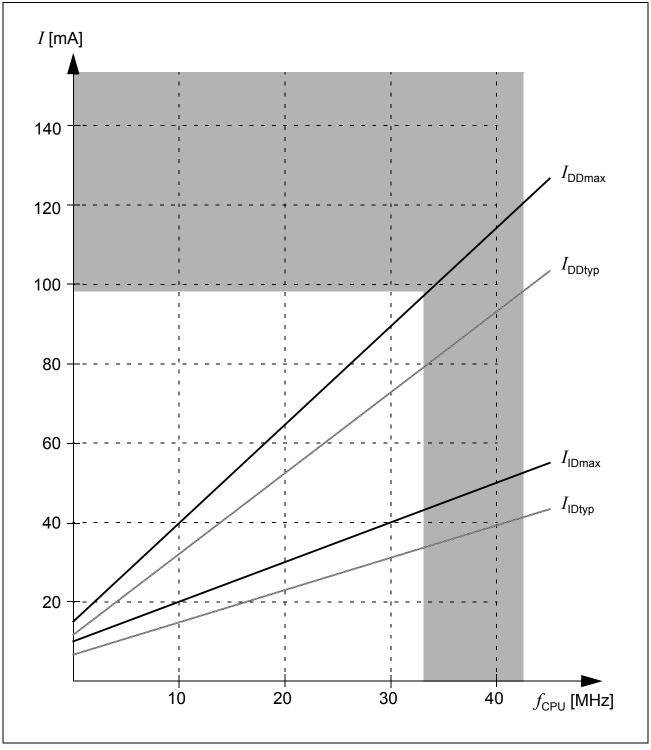


Figure 9

Supply/Idle Current as a Function of Operating Frequency

Electrical Parameters

upper half of PORT0 (P0H), i.e. bitfield CLKCFG represents the logic levels on pins P0.15-13 (P0H.7-5).

 Table 15 associates the combinations of these three bits with the respective clock generation mode.

CLKCFG (P0H.7-5)	CPU Frequency $f_{CPU} = f_{OSC} \times F$	External Clock Input Range ¹⁾	Notes
111	$f_{\rm OSC} \times 4$	2.5 to 8.25 MHz	Default configuration
110	$f_{\rm OSC} \times 3$	3.33 to 11 MHz	-
101	$f_{\rm OSC} \times 2$	5 to 16.5 MHz	-
100	$f_{\rm OSC} imes 5$	2 to 6.6 MHz	-
011	$f_{\rm OSC} imes 1$	1 to 33 MHz	Direct drive ²⁾
010	$f_{\rm OSC} imes$ 1.5	6.66 to 22 MHz	-
001	<i>f</i> _{OSC} / 2	2 to 66 MHz	CPU clock via prescaler
000	$f_{\rm OSC} \times 2.5$	4 to 13.2 MHz	-

 Table 15
 C167CR Clock Generation Modes

1) The external clock input range refers to a CPU clock range of 10 ... 33 MHz (PLL operation).

2) The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = 001_B) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of $f_{\rm OSC}$ for any TCL.

Phase Locked Loop

When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is enabled and provides the CPU clock (see table above). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} \times \mathbf{F}$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of $f_{\rm CPU}$ is constantly adjusted so it is locked to $f_{\rm OSC}$. The slight variation causes a jitter of $f_{\rm CPU}$ which also effects the duration of individual TCLs.

Electrical Parameters

General Notes for the Following Timing Figures

These standard notes apply to all subsequent timing figures. Additional individual notes are placed at the respective figure.

- 1. The falling edge of signals \overline{RD} and $\overline{WR}/\overline{WRH}/\overline{WRL}/\overline{WrCS}$ is controlled by the Read/Write delay feature (bit BUSCON.RWDCx).
- 2. A bus cycle is extended here, if MCTC waitstates are selected or if the READY input is sampled inactive.
- 3. A bus cycle is extended here, if an MTTC waitstate is selected.

C167CR C167SR

Electrical Parameters

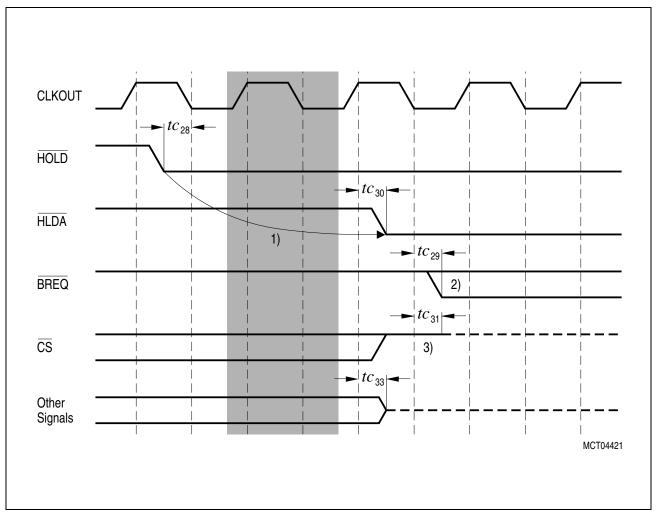


Figure 21 External Bus Arbitration, Releasing the Bus

Notes

- 1. The C167CR will complete the currently running bus cycle before granting bus access.
- 2. This is the first possibility for \overline{BREQ} to get active.
- 3. The \overline{CS} outputs will be resistive high (pull-up) after t_{33} . Latched \overline{CS} outputs are driven high for 1 TCL before the output drivers are switched off.

C167CR C167SR

Package Outlines

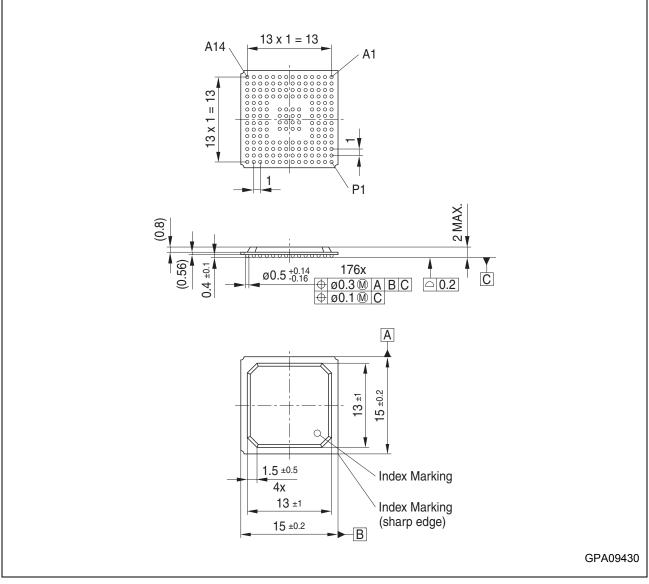


Figure 25 P-BGA-176-2 (Plastic Ball Grid Array Package)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Dimensions in mm