

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167srlmhabxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C167CR, C167SR

Revision History:		2005-02	V3.3			
Previous V	/ersion:	V3.2, 2001-07 V3.1, 2000-04 V3.0, 2000-02 1999-10 (Introduction of clock-related timing) 1999-06 1999-03 (Summarizes and replaces all older docs) 1998-03 (C167SR/CR, 25 MHz Addendum) 07.97 / 12.96 (C167CR-4RM) 12.96 (C167CR-16RM) 06.95 (C167CR, C167SR) 06.94 / 05.93 (C167)				
Page	Subjects (major changes since last revision)					
all	The layout of several graphics and text structures has been adapted to company documentation rules, obvious typographical errors have bee corrected.					
all	The conter sections ar	its of this document have been re-arranged into nund a table of contents has been added.	mbered			
6	BGA-type a	added to product list				
8	Pin designa	ation corrected (pin 78)				
9	Input thres	hold control added to Port 6				
17 25	Pin diagrar	n and pin description for BGA package added				
45	Port 6 adde	ed to input-threshold controlled ports				
85	Mechanica	I package drawing corrected (P-MQFP-144-8)				
86	Mechanica	I package drawing added (P-BGA-176-2)				

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

General Device Information

Table 2Pin Definitions and Functions P-MQFP-144-8								
Symbol	Pin No.	Input Outp.	Function					
P6		IO	Port 6 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 6 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 6					
P6.0	1	0	is selectable (TTL or special). <u>The Port 6 pins also serve for alternate functions:</u> <u>CS0</u> Chip Select 0 Output					
P6.1 P6.2 P6.3	2 3 4	0 0	CS1Chip Select 1 OutputCS2Chip Select 2 OutputCS3Chip Select 3 Output					
P6.4 P6.5	5	0	CS3 Chip Select 3 Output CS4 Chip Select 4 Output HOLD External Master Hold Request Input					
P6.6 P6.7	7 8	0	HLDA Hold Acknowledge Output (master mode) or Input (slave mode) BREQ Bus Request Output					
P8		IO	Port 8 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 8 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 8 is selectable (TTL or special). The following Port 8 pins also serve for alternate functions:					
P8.0 P8.1 P8.2 P8.3 P8.4 P8.5 P8.6	9 10 11 12 13 14 15	I/O I/O I/O I/O I/O	CC16IOCAPCOM2: CC16 Capture Inp./Compare Outp.CC17IOCAPCOM2: CC17 Capture Inp./Compare Outp.CC18IOCAPCOM2: CC18 Capture Inp./Compare Outp.CC19IOCAPCOM2: CC19 Capture Inp./Compare Outp.CC20IOCAPCOM2: CC20 Capture Inp./Compare Outp.CC21IOCAPCOM2: CC21 Capture Inp./Compare Outp.CC22IOCAPCOM2: CC22 Capture Inp./Compare Outp.CC22IOCAPCOM2: CC22 Capture Inp./Compare Outp.					
P8.7	16	1/O	CC23IO CAPCOM2: CC23 Capture Inp./Compare Outp.					

General Device Information

Table 3Pin Definitions and Functions P-BGA-176-2 (cont'd)

Symbol	Pin Num.	Input Outp.	Function
V _{DD}	B8, C12, D14, F1, H3, H14, K4, M5, M12, P8	-	Digital Supply Voltage: + 5 V during normal operation and idle mode. ≥ 2.5 V during power down mode.
V _{SS}	A8, D11, E1, E12, G12, H2, L3, L5, L11, M8	-	Digital Ground.

Note: The following behavioural differences must be observed when the bidirectional reset is active:

- Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically after a reset.
- The reset indication flags always indicate a long hardware reset.
- The PORT0 configuration is treated as if it were a hardware reset. In particular, the bootstrap loader may be activated when P0L.4 is low.
- Pin RSTIN may only be connected to external reset devices with an open drain output driver.
- A short hardware reset is extended to the duration of the internal reset sequence.

The C167CR also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 5 shows all of the possible exceptions or error conditions that can arise during runtime:

E>	cception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Priority
Re • •	eset Functions: Hardware Reset Software Reset W-dog Timer Overflow	-	RESET RESET RESET	00,0000 ^H 00,0000 ^H	00 _H 00 _H 00 _H	
CI • •	ass A Hardware Traps: Non-Maskable Interrupt Stack Overflow Stack Underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008 _H 00'0010 _H 00'0018 _H	02 _H 04 _H 06 _H	
CI • •	ass B Hardware Traps: Undefined Opcode Protected Instruction Fault Illegal Word Operand Access Illegal Instruction Access Illegal External Bus Access	UNDOPC PRTFLT ILLOPA ILLINA ILLBUS	BTRAP BTRAP BTRAP BTRAP BTRAP	00'0028 _H 00'0028 _H 00'0028 _H 00'0028 _H 00'0028 _H	0A _H 0A _H 0A _H 0A _H	
Reserved Software Traps • TRAP Instruction		_	_		[0B _H - 0F _H] Any [00 _H - 7F _H]	– Current CPU Priority

Table 5 Hardware Trap Summary

Compare Modes	Function
Mode 0	Interrupt-only compare mode; several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; several compare events per timer period are possible
Mode 2	Interrupt-only compare mode; only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare time overflow; only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; pin toggles on each compare match; several compare events per timer period are possible.

Table 6 Compare Modes (CAPCOM)

3.7 General Purpose Timer (GPT) Unit

The GPT unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 16 TCL.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate e.g. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

3.15 Special Function Registers Overview

The following table lists all SFRs which are implemented in the C167CR in alphabetical order.

Bit-addressable SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Note: Registers within device specific interface modules (CAN) are only present in the corresponding device, of course.

Name		Physica Address	ıl s	8-Bit Addr.	Description	Reset Value
ADCIC	b	b FF98 _H		CC _H	A/D Converter End of Conversion Interrupt Control Register	0000 _H
ADCON	b	FFA0 _H		D0 _H	A/D Converter Control Register	0000 _H
ADDAT		FEA0 _H		50 _H	A/D Converter Result Register	0000 _H
ADDAT2		F0A0 _H	Ε	50 _H	A/D Converter 2 Result Register	0000 _H
ADDRSEL1		FE18 _H		0C _H	Address Select Register 1	0000 _H
ADDRSEL2		FE1A _H		0D _H	Address Select Register 2	0000 _H
ADDRSEL3		FE1C _H		0E _H	Address Select Register 3	0000 _H
ADDRSEL4		FE1E _H		0F _H	Address Select Register 4	0000 _H
ADEIC	b	FF9A _H		CD _H	A/D Converter Overrun Error Interrupt Control Register	0000 _H
BUSCON0	b	FF0C _H		86 _H	Bus Configuration Register 0	0XX0 _H
BUSCON1	b	FF14 _H		8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H		8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H		8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H		8D _H	Bus Configuration Register 4	0000 _H
C1BTR		EF04 _H	Χ	_	CAN1 Bit Timing Register	UUUU _H
C1CSR		EF00 _H	Χ	_	CAN1 Control / Status Register	XX01 _H
C1GMS		EF06 _H	Χ	_	CAN1 Global Mask Short	UFUU _H

 Table 8
 C167CR Registers, Ordered by Name

Table 8C167CR Registers, Ordered by Name (cont'd)

Name	Physica Addres	al s	8-Bit Addr.	Description	Reset Value
CC4	FE88 _H		44 _H	CAPCOM Register 4	0000 _H
CC4IC I	b FF80 _H		C0 _H	CAPCOM Reg. 4 Interrupt Ctrl. Reg.	0000 _H
CC5	FE8A _H		45 _H	CAPCOM Register 5	0000 _H
CC5IC I	b FF82 _H		C1 _H	CAPCOM Register 5 Interrupt Ctrl. Reg.	0000 _H
CC6	FE8C _H		46 _H	CAPCOM Register 6	0000 _H
CC6IC I	b FF84 _H		C2 _H	CAPCOM Reg. 6 Interrupt Ctrl. Reg.	0000 _H
CC7	FE8E _H 47_{H} CAPCOM Register 7			0000 _H	
CC7IC I	b FF86 _H		C3 _H	CAPCOM Reg. 7 Interrupt Ctrl. Reg.	0000 _H
CC8	FE90 _H		48 _H	CAPCOM Register 8	0000 _H
CC8IC	b FF88 _H		C4 _H	CAPCOM Reg. 8 Interrupt Ctrl. Reg.	0000 _H
CC9	FE92 _H		49 _H	CAPCOM Register 9	0000 _H
CC9IC I	b FF8A _H		C5 _H	CAPCOM Reg. 9 Interrupt Ctrl. Reg.	0000 _H
ССМО І	b FF52 _H		A9 _H	CAPCOM Mode Control Register 0	0000 _H
CCM1 I	b FF54 _H		AA _H	CAPCOM Mode Control Register 1	0000 _H
CCM2	р FF56 _н		AB _H	CAPCOM Mode Control Register 2	0000 _H
ССМЗ І	b FF58 _H		AC _H	CAPCOM Mode Control Register 3	0000 _H
CCM4	b FF22 _H		91 _H	CAPCOM Mode Control Register 4	0000 _H
CCM5	b FF24 _H		92 _H	CAPCOM Mode Control Register 5	0000 _H
CCM6	b FF26 _H		93 _H	CAPCOM Mode Control Register 6	0000 _H
CCM7	b FF28 _H		94 _H	CAPCOM Mode Control Register 7	0000 _H
СР	FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H
CRIC	b FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Register	0000 _H
CSP	FE08 _H		04 _H	CPU Code Segment Pointer Register (read only)	0000 _H
DP0L I	b F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H
DP0H I	b F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H
DP1L I	b F104 _H	Ε	82 _H	P1L Direction Control Register	
DP1H I	b F106 _H	Ε	83 _H	P1H Direction Control Register	
DP2	b FFC2 _H		E1 _H	Port 2 Direction Control Register 00	
DP3 I	b FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H

Table 8C167CR Registers, Ordered by Name (cont'd)						
Name		Physical Address	8-Bit Addr.	Description	Reset Value	
DP4	b	FFCA _H	E5 _H	Port 4 Direction Control Register	00 _H	
DP6	b	FFCE _H	E7 _H	Port 6 Direction Control Register	00 _H	
DP7	b	FFD2 _H	E9 _H	Port 7 Direction Control Register	00 _H	
DP8	b	FFD6 _H	EB _H	Port 8 Direction Control Register	00 _H	
DPP0		FE00 _H	00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H	
DPP1		FE02 _H	01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H	
DPP2		FE04 _H	02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H	
DPP3		FE06 _H	03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H	
EXICON	b	F1C0 _H E	E0 _H	External Interrupt Control Register	0000 _H	
MDC	b	FF0E _H	87 _H	CPU Multiply Divide Control Register	0000 _H	
MDH		FE0C _H	06 _H	CPU Multiply Divide Reg. – High Word	0000 _H	
MDL		FE0E _H	07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H	
ODP2	b	F1C2 _H E	E1 _H	Port 2 Open Drain Control Register	0000 _H	
ODP3	b	F1C6 _H E	E3 _H	Port 3 Open Drain Control Register	0000 _H	
ODP6	b	F1CE _H E	E7 _H	Port 6 Open Drain Control Register	00 _H	
ODP7	b	F1D2 _H E	E9 _H	Port 7 Open Drain Control Register	00 _H	
ODP8	b	F1D6 _H E	EB _H	Port 8 Open Drain Control Register	00 _H	
ONES		FF1E _H	8F _H	Constant Value 1's Register (read only)	FFFF _H	
P0H	b	FF02 _H	81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H	
P0L	b	FF00 _H	80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H	
P1H	b	FF06 _H	83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H	
P1L	b	FF04 _H	82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H	
P2	b	FFC0 _H	E0 _H	Port 2 Register	0000 _H	
P3	b	FFC4 _H	E2 _H	Port 3 Register	0000 _H	
P4	b	FFC8 _H	E4 _H	Port 4 Register (8 bits)	00 _H	
P5	b	FFA2 _H	D1 _H	Port 5 Register (read only)	XXXX _H	
P5DIDIS	b	FFA4 _H	D2 _H	Port 5 Digital Input Disable Register	0000 _H	
P6	b	FFCC _H	E6 _H	Port 6 Register (8 bits)		
P7	b	FFD0 _H	E8 _H	Port 7 Register (8 bits)	00 _H	
P8	b	FFD4 _H	EA _H	Port 8 Register (8 bits)	00 _H	

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C167CR and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C167CR will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C167CR.

4.2 DC Parameters

Paramotor	Symbol		Limit		Unit	Tost Condition
Farameter	Synn	001			Unit	rest condition
			Min.	Max.		
Input low voltage (TTL, all except XTAL1)	V_{IL}	SR	-0.5	0.2 V _{DD} - 0.1	V	_
Input low voltage XTAL1	$V_{\rm IL2}$	SR	-0.5	0.3 V _{DD}	V	-
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	2.0	V	_
Input high voltage (TTL, all except RSTIN and XTAL1)	V _{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	_
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	_
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	_
Input Hysteresis (Special Threshold)	HYS		400	-	mV	Series resistance = 0 Ω
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT, RSTIN ²⁾)	V _{OL}	CC	_	0.45	V	I _{OL} = 2.4 mA
Output low voltage (all other outputs)	V _{OL1}	CC	_	0.45	V	I _{OL} = 1.6 mA

Table 11 DC Characteristics (Operating Conditions apply)¹⁾

- 9) This specification is valid during Reset and during Adapt-mode.
- 10) Not subject to production test verified by design/characterization.

Table 12Power Consumption C167CR (Operating Conditions apply)

	-		-		
Parameter	Symbol	Limit V	alues	Unit	Test Condition
		Min.	Max.		
Power supply current (active) with all peripherals active	I _{DD}	-	15 + 2.5 × <i>f</i> _{СРU}	mA	$\frac{\text{RSTIN}}{f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}}$
Idle mode supply current	I _{ID}	-	10 + 1.0 × <i>f</i> _{СРU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$
Power-down mode supply current	I _{PD}	_	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{2)}$

1) The supply current is a function of the operating frequency. This dependency is illustrated in Figure 9. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH} .

2) This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} - 0.1 V to V_{DD} , all outputs (including pins configured as outputs) disconnected.

4.4 AC Parameters

4.4.1 Definition of Internal Timing

The internal operation of the C167CR is controlled by the internal CPU clock f_{CPU} . Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations.

The specification of the external timing (AC Characteristics) therefore depends on the time between two consecutive edges of the CPU clock, called "TCL" (see **Figure 10**).

Figure 10 Generation Mechanisms for the CPU Clock

The CPU clock signal $f_{\rm CPU}$ can be generated from the oscillator clock signal $f_{\rm OSC}$ via different mechanisms. The duration of TCLs and their variation (and also the derived external timing) depends on the used mechanism to generate $f_{\rm CPU}$. This influence must be regarded when calculating the timings for the C167CR.

Note: The example for PLL operation shown in the fig. above refers to a PLL factor of 4.

The used mechanism to generate the basic CPU clock is selected by bitfield CLKCFG in register RP0H.7-5.

Upon a long hardware reset register RP0H is loaded with the logic levels present on the

upper half of PORT0 (P0H), i.e. bitfield CLKCFG represents the logic levels on pins P0.15-13 (P0H.7-5).

 Table 15 associates the combinations of these three bits with the respective clock generation mode.

CLKCFG (P0H.7-5)	CPU Frequency $f_{CPU} = f_{OSC} \times F$	External Clock Input Range ¹⁾	Notes
111	$f_{\rm OSC} \times 4$	2.5 to 8.25 MHz	Default configuration
110	$f_{\rm OSC} \times 3$	3.33 to 11 MHz	-
101	$f_{\rm OSC} \times 2$	5 to 16.5 MHz	-
100	$f_{\rm OSC} imes 5$	2 to 6.6 MHz	-
011	$f_{\rm OSC} imes 1$	1 to 33 MHz	Direct drive ²⁾
010	$f_{\rm OSC} imes 1.5$	6.66 to 22 MHz	-
001	<i>f</i> _{OSC} / 2	2 to 66 MHz	CPU clock via prescaler
000	$f_{\rm OSC} imes 2.5$	4 to 13.2 MHz	-

 Table 15
 C167CR Clock Generation Modes

1) The external clock input range refers to a CPU clock range of 10 ... 33 MHz (PLL operation).

2) The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = 001_B) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of $f_{\rm OSC}$ for any TCL.

Phase Locked Loop

When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is enabled and provides the CPU clock (see table above). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} \times \mathbf{F}$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of $f_{\rm CPU}$ is constantly adjusted so it is locked to $f_{\rm OSC}$. The slight variation causes a jitter of $f_{\rm CPU}$ which also effects the duration of individual TCLs.

4.4.2 External Clock Drive XTAL1

									11 37	
Parameter	Symbol		Direct Drive 1:1		Prescaler 2:1		PLL 1:N		Unit	
			Min.	Max.	Min.	Max.	Min.	Max.	1	
Oscillator period	<i>t</i> _{OSC}	SR	30	_	15	_	45 ¹⁾	500 ¹⁾	ns	
High time ²⁾	<i>t</i> ₁	SR	15 ³⁾	_	5	_	10	_	ns	
Low time ²⁾	<i>t</i> ₂	SR	15 ³⁾	_	5	_	10	_	ns	
Rise time ²⁾	t ₃	SR	-	8	-	5	-	10	ns	
Fall time ²⁾	<i>t</i> ₄	SR	-	8	-	5	-	10	ns	

Table 16 External Clock Drive Characteristics (Operating Conditions apply)

1) The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

- 2) The clock input signal must reach the defined levels $V_{\rm IL2}$ and $V_{\rm IH2}$.
- 3) The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

Figure 12 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

Figure 18 Multiplexed Bus, Write Access

Bus Cycle Control via READY Input

The duration of an external bus cycle can be controlled by the external circuitry via the READY input signal.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

Asynchronous READY puts no timing constraints on the input signal but incurs one waitstate minimum due to the additional synchronization stage.

Table 20	READY Timing	(Operating	Conditions	apply)

Parameter	Symbol	Limits		Unit
		Min.	Max.	
Input setup time to CLKOUT rising edge Valid for: READY input	<i>tc</i> ₂₅ CC	12	-	ns
Input hold time after CLKOUT rising edge Valid for: READY input	tc_{26} CC	0	-	ns
Asynchronous READY input low time ⁶⁾	<i>tc</i> ₂₇ CC	$tc_5 + tc_{25}$	-	ns

Notes (Valid also for Figure 20)

- 4. Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).
- 5. READY sampled HIGH at this sampling point generates a READY controlled waitstate, READY sampled LOW at this sampling point terminates the currently running bus cycle.
- 6. These timings are given for test purposes only, in order to assure recognition at a specific clock edge. If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT, it must fulfill tc₂₇ in order to be safely synchronized. Proper deactivation of READY is guaranteed if READY is deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).
- 7. Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may be inserted here. For a multiplexed bus **with** MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus **without** MTTC waitstate this delay is zero.
- 8. If the next following bus cycle is READY controlled, an active READY signal must be disabled before the first valid sample point for the next bus cycle. This sample point depends on the MTTC waitstate of the current cycle, and on the MCTC waitstates and the ALE mode of the next following cycle. If the current cycle uses a multiplexed bus the intrinsic MUX waitstate adds another CLKOUT cycle to the READY deactivation time.

C167CR C167SR

Electrical Parameters

C167CR C167SR

Electrical Parameters

Figure 21 External Bus Arbitration, Releasing the Bus

Notes

- 1. The C167CR will complete the currently running bus cycle before granting bus access.
- 2. This is the first possibility for \overline{BREQ} to get active.
- 3. The \overline{CS} outputs will be resistive high (pull-up) after t_{33} . Latched \overline{CS} outputs are driven high for 1 TCL before the output drivers are switched off.

C167CR C167SR

Package Outlines

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Dimensions in mm

www.infineon.com