

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c167srlmhabxuma2

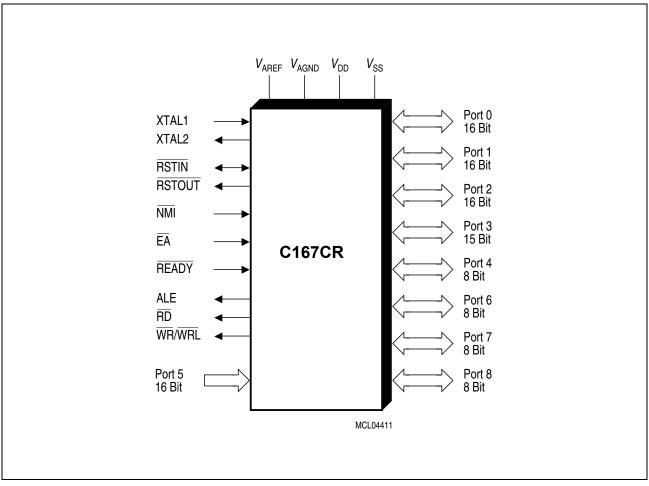
Email: info@E-XFL.COM

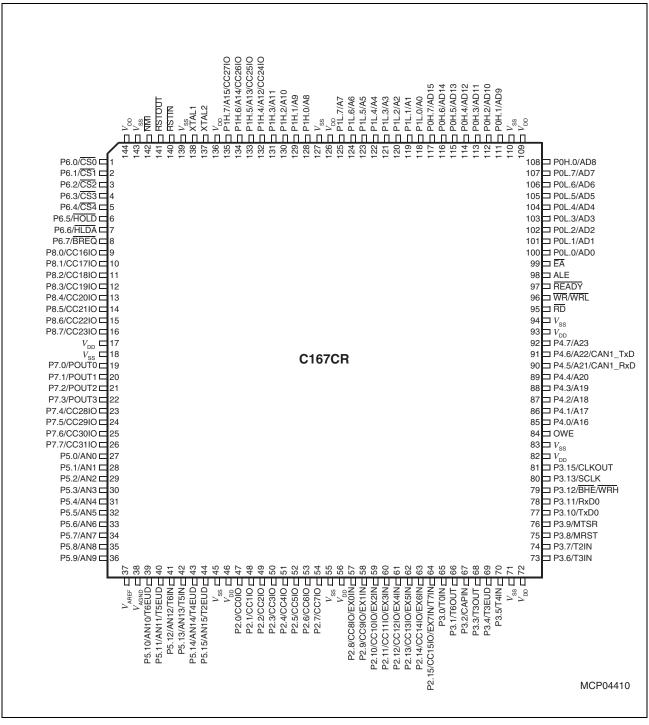
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 General Device Information

2.1 Introduction

The C167CR derivatives are high performance derivatives of the Infineon C166 Family of full featured single-chip CMOS microcontrollers. They combine high CPU performance (up to 16.5 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program ROM, internal RAM, and extension RAM.




Figure 1 Logic Symbol

2.2 Pin Configuration and Definition for P-MQFP-144-8

The pins of the C167CR are described in detail in **Table 2**, including all their alternate functions. **Figure 2** summarizes all pins in a condensed way, showing their location on the 4 sides of the package.

Note: The P-BGA-176-2 is described in Table 3 and Figure 3.

Figure 2 Pin Configuration P-MQFP-144-8 (top view)

Table 2	Pin	Definit	tions and Functions P-MQFP-144-8					
Symbol	Pin	Input	Function					
	No.	Outp.						
P6		IO	Port 6 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 6 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 6 is selectable (TTL or special). The Port 6 pins also serve for alternate functions:					
P6.0	1	0	CS0 Chip Select 0 Output					
P6.1	2	0	CS1 Chip Select 1 Output					
P6.2	3	0	CS2 Chip Select 2 Output					
P6.3	4	0	CS3 Chip Select 3 Output					
P6.4	5	0	CS4 Chip Select 4 Output					
P6.5	6	I	HOLD External Master Hold Request Input					
P6.6	7	I/O	HLDA Hold Acknowledge Output (master mode) or					
			Input (slave mode)					
P6.7	8	0	BREQ Bus Request Output					
P8		IO	Port 8 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 8 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 8 is selectable (TTL or special). The following Port 8 pins also serve for alternate functions:					
P8.0	9	I/O	CC16IO CAPCOM2: CC16 Capture Inp./Compare Outp.					
P8.1	10	1/O	CC17IO CAPCOM2: CC17 Capture Inp./Compare Outp.					
P8.2	11	1/O	CC18IO CAPCOM2: CC18 Capture Inp./Compare Outp.					
P8.3	12	1/0	CC19IO CAPCOM2: CC19 Capture Inp./Compare Outp.					
P8.4	13	1/0	CC20IO CAPCOM2: CC20 Capture Inp./Compare Outp.					
P8.5	14	1/0	CC21IO CAPCOM2: CC21 Capture Inp./Compare Outp.					
P8.6 P8.7	15 16	I/O I/O	CC22IOCAPCOM2: CC22 Capture Inp./Compare Outp.CC23IOCAPCOM2: CC23 Capture Inp./Compare Outp.					

Table 3Pin Definitions and Functions P-BGA-176-2 (cont'd)

D13		
C13	O I	 XTAL2: Output of the oscillator amplifier circuit. XTAL1: Input to the oscillator amplifier and input to the internal clock generator. To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed.
D12	0	Internal Reset Indication Output. This pin is set to a low level when the part is executing either a hardware-, a software- or a watchdog timer reset. RSTOUT remains low until the EINIT (end of initialization) instruction is executed.
Ξ11	I/O	Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the C167CR. An internal pull-up resistor permits power-on reset using only a capacitor connected to V_{SS} . A spike filter suppresses input pulses < 10 ns. Input pulses > 100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. In bidirectional reset mode (enabled by setting bit BDRSTEN in register SYSCON) the RSTIN line is internally pulled low for the duration of the internal reset sequence upon any reset (HW, SW, WDT). See note below this table. <i>Note: To let the reset configuration of PORT0 settle and to let the PLL lock a reset duration of ca. 1 ms is</i>

Table 3Pin Definitions and Functions P-BGA-176-2 (cont'd)

Symbol	Pin	Input	Function
	Num.	Outp.	
ĒĀ	M9	I	External Access Enable pin. A low level at this pin during and after Reset forces the C167CR to begin instruction execution out of external memory. A high level forces execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'.
WR/ WRL	N9	0	External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in register SYSCON for mode selection.
READY	P9	1	Ready Input. When the Ready function is enabled, a high level at this pin during an external memory access will force the insertion of memory cycle time waitstates until the pin returns to a low level. An internal pull-up device will hold this pin high when nothing is driving it.
ALE	P10	0	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.
P4		IO	Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 4 can be used to output the segment address lines and for serial bus interfaces:
P4.0	P6	0	A16 Least Significant Segment Address Line
P4.1	M6	0	A17 Segment Address Line
P4.2	L6	0	A18 Segment Address Line
P4.3	N7	0	A19 Segment Address Line
P4.4	P7	0	A20 Segment Address Line
P4.5	M7	0	A21 Segment Address Line,
		I	CAN1_RxD CAN 1 Receive Data Input
P4.6	L7	0	A22 Segment Address Line,
		0	CAN1_TxD CAN 1 Transmit Data Output
P4.7	N8	0	A23 Most Significant Segment Address Line

Table 3	Pir	Pin Definitions and Functions P-BGA-176-2 (cont'd)							
Symbol	Pin Num.	Input Outp.	Function						
P2		IO	Port 2 is a	16-bit bidirectional I/O port. It is bit-wise					
			programm	able for input or output via direction bits. For a pin					
			-	as input, the output driver is put into high-					
			-	e state. Port 2 outputs can be configured as					
				or open drain drivers. The input threshold of Port 2 ble (TTL or special).					
			The follow	ring Port 2 pins also serve for alternate functions:					
P2.0	F3	I/O	CC0IO	CAPCOM1: CC0 Capture Inp./Compare Output					
P2.1	F2	I/O	CC1IO	CAPCOM1: CC1 Capture Inp./Compare Output					
P2.2	F4	I/O	CC2IO	CAPCOM1: CC2 Capture Inp./Compare Output					
P2.3	G4	I/O	CC3IO	CAPCOM1: CC3 Capture Inp./Compare Output					
P2.4	G3	I/O	CC4IO	CAPCOM1: CC4 Capture Inp./Compare Output					
P2.5	G2	I/O	CC5IO	CAPCOM1: CC5 Capture Inp./Compare Output					
P2.6	G1	I/O	CC6IO	CAPCOM1: CC6 Capture Inp./Compare Output					
P2.7	H1	I/O	CC7IO	CAPCOM1: CC7 Capture Inp./Compare Output					
P2.8	H4	I/O	CC8IO CAPCOM1: CC8 Capture Inp./Compare Output,						
		I	EX0IN	Fast External Interrupt 0 Input					
P2.9	J1	I/O	CC9IO	CAPCOM1: CC9 Capture Inp./Compare Output,					
		I	EX1IN	Fast External Interrupt 1 Input					
P2.10	J2	I/O	CC10IO	CAPCOM1: CC10 Capture Inp./Compare Outp.,					
		I	EX2IN	Fast External Interrupt 2 Input					
P2.11	J4	I/O	CC11IO	CAPCOM1: CC11 Capture Inp./Compare Outp.,					
		1	EX3IN	Fast External Interrupt 3 Input					
P2.12	J3	I/O	CC12IO	CAPCOM1: CC12 Capture Inp./Compare Outp.,					
		1	EX4IN	Fast External Interrupt 4 Input					
P2.13	K1	I/O	CC13IO	CAPCOM1: CC13 Capture Inp./Compare Outp.,					
		1	EX5IN	Fast External Interrupt 5 Input					
P2.14	K2	I/O	CC14IO	CAPCOM1: CC14 Capture Inp./Compare Outp.,					
		1	EX6IN	Fast External Interrupt 6 Input					
P2.15	L1	I/O	CC15IO	CAPCOM1: CC15 Capture Inp./Compare Outp.,					
		1	EX7IN	Fast External Interrupt 7 Input,					
		I	T7IN	CAPCOM2: Timer T7 Count Input					
V_{AREF}	B2	-	Reference	e voltage for the A/D converter.					
V_{AGND}	C2	-	Reference	e ground for the A/D converter.					

3.2 External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx / BUSCONx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0.

Up to 5 external $\overline{\text{CS}}$ signals (4 windows plus default) can be generated in order to save external glue logic. The C167CR offers the possibility to switch the $\overline{\text{CS}}$ outputs to an unlatched mode. In this mode the internal filter logic is switched off and the $\overline{\text{CS}}$ signals are directly generated from the address. The unlatched $\overline{\text{CS}}$ mode is enabled by setting CSCFG (SYSCON.6).

Access to very slow memories or memories with varying access times is supported via a particular 'Ready' function.

A HOLD/HLDA protocol is available for bus arbitration and allows to share external resources with other bus masters. The bus arbitration is enabled by setting bit HLDEN in register PSW. After setting HLDEN once, pins P6.7 ... P6.5 (BREQ, HLDA, HOLD) are automatically controlled by the EBC. In Master Mode (default after reset) the HLDA pin is an output. By setting bit DP6.7 to '1' the Slave Mode is selected where pin HLDA is switched to input. This allows to directly connect the slave controller to another master controller without glue logic.

For applications which require less than 16 Mbytes of external memory space, this address space can be restricted to 1 Mbyte, 256 Kbyte, or to 64 Kbyte. In this case Port 4 outputs four, two, or no address lines at all. It outputs all 8 address lines, if an address space of 16 Mbytes is used.

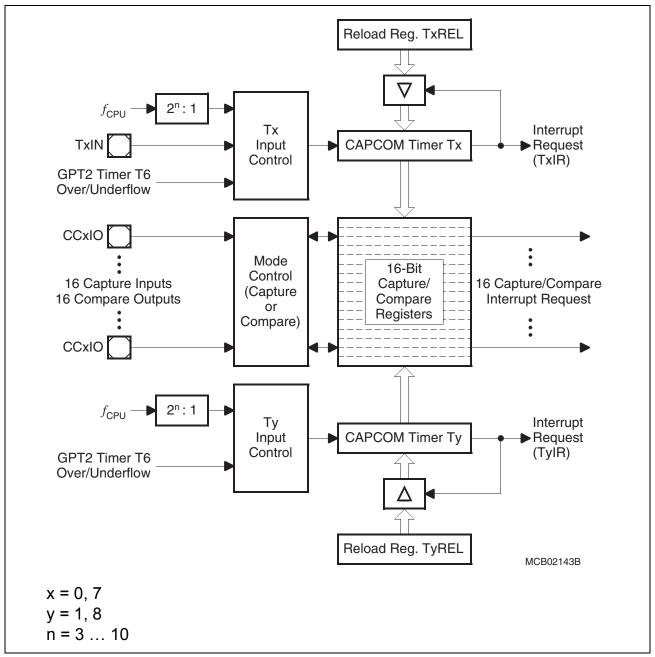


Figure 6 CAPCOM Unit Block Diagram

3.6 **PWM Module**

The Pulse Width Modulation Module can generate up to four PWM output signals using edge-aligned or center-aligned PWM. In addition the PWM module can generate PWM burst signals and single shot outputs. The frequency range of the PWM signals covers 4 Hz to 16.5 MHz (referred to a CPU clock of 33 MHz), depending on the resolution of the PWM output signal. The level of the output signals is selectable and the PWM module can generate interrupt requests.

3.12 Parallel Ports

The C167CR provides up to 111 I/O lines which are organized into eight input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of five I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

The input threshold of Port 2, Port 3, Port 6, Port 7, and Port 8 is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A23/19/17 ... A16 in systems where segmentation is enabled to access more than 64 Kbytes of memory.

Port 2, Port 8 and Port 7 (and parts of PORT1) are associated with the capture inputs or compare outputs of the CAPCOM units and/or with the outputs of the PWM module.

Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select signals.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE/WRH, and the system clock output (CLKOUT).

Port 5 is used for the analog input channels to the A/D converter or timer control signals.

The edge characteristics (transition time) of the C167CR's port drivers can be selected via the Port Driver Control Register (PDCR). Two bits select fast edges ('0') or reduced edges ('1') for bus interface pins and non-bus pins separately.

PDCR.0 = BIPEC controls PORT0, PORT1, Port 4, RD, WR, ALE, CLKOUT, BHE/WRH. PDCR.4 = NBPEC controls Port 3, Port 8, RSTOUT, RSTIN (bidir. reset mode).

Table 7 Ins	struction Set Summary (cont'd)	
Mnemonic	Description	Bytes
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand. with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
J(N)B	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutine	2
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2
RETI	Return from interrupt service subroutine	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4

3.15 Special Function Registers Overview

The following table lists all SFRs which are implemented in the C167CR in alphabetical order.

Bit-addressable SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Note: Registers within device specific interface modules (CAN) are only present in the corresponding device, of course.

Name	_	Physica Addres		8-Bit Addr.	Description	Reset Value
ADCIC	FF98 _H		CC _H	A/D Converter End of Conversion Interrupt Control Register	0000 _H	
ADCON	b	FFA0 _H		D0 _H	A/D Converter Control Register	0000 _H
ADDAT		FEA0 _H		50 _H	A/D Converter Result Register	0000 _H
ADDAT2		F0A0 _H	Ε	50 _H	A/D Converter 2 Result Register	0000 _H
ADDRSEL1		FE18 _H		0C _H	Address Select Register 1	0000 _H
ADDRSEL2		FE1A _H		0D _H	Address Select Register 2	0000 _H
ADDRSEL3		FE1C _H		0E _H	Address Select Register 3	0000 _H
ADDRSEL4		FE1E _H		0F _H	Address Select Register 4	0000 _H
ADEIC	b	FF9A _H		CD _H	A/D Converter Overrun Error Interrupt Control Register	0000 _H
BUSCON0	b	FF0C _H		86 _H	Bus Configuration Register 0	0XX0 _H
BUSCON1	b	FF14 _H		8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H		8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H		8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H		8D _H	Bus Configuration Register 4	0000 _H
C1BTR		EF04 _H	Χ	_	CAN1 Bit Timing Register	UUUU _H
C1CSR		EF00 _H	Χ	_	CAN1 Control / Status Register	XX01 _H
C1GMS		EF06 _H	Χ	_	CAN1 Global Mask Short	UFUU _H

 Table 8
 C167CR Registers, Ordered by Name

Table 8C167CR Registers, Ordered by Name (cont'd)

Name		Physical Address		8-Bit Addr.	Description	Reset Value	
C1IR	EF02 _H	Χ	_	CAN1 Interrupt Register	XX _H		
C1LGML		EF0A _H	Χ	_	CAN1 Lower Global Mask Long	UUUU _H	
C1LMLM		EF0E _H	Χ	_	CAN1 Lower Mask of Last Message	UUUU _H	
C1UAR		EFn2 _H X – CAN1 Upper Arbitration Register (message n)				UUUU _H	
C1UGML		EF08 _H	Χ	CAN1 Upper Global Mask Long			
C1UMLM		EF0C _H	Χ	-	CAN1 Upper Mask of Last Message	UUUU _H	
CAPREL		FE4A _H		25 _H	GPT2 Capture/Reload Register	0000 _H	
CC0		FE80 _H		40 _H	CAPCOM Register 0	0000 _H	
CC0IC	b	FF78 _H		BC _H	CAPCOM Register 0 Interrupt Ctrl. Reg.	0000 _H	
CC1		FE82 _H		41 _H	CAPCOM Register 1	0000 _H	
CC10		FE94 _H		4A _H	CAPCOM Register 10	0000 _H	
CC10IC	b	FF8C _H		C6 _H	CAPCOM Reg. 10 Interrupt Ctrl. Reg.	0000 _H	
CC11		FE96 _H		4B _H	CAPCOM Register 11	0000 _H	
CC11IC	b	FF8E _H		C7 _H	CAPCOM Reg. 11 Interrupt Ctrl. Reg.	0000 _H	
CC12		FE98 _H		4C _H	CAPCOM Register 12	0000 _H	
CC12IC	b	FF90 _H		C8 _H	CAPCOM Reg. 12 Interrupt Ctrl. Reg.	0000 _H	
CC13		FE9A _H		4D _H	CAPCOM Register 13	0000 _H	
CC13IC	b	FF92 _H		C9 _H	CAPCOM Reg. 13 Interrupt Ctrl. Reg.	0000 _H	
CC14		FE9C _H		4E _H	CAPCOM Register 14	0000 _H	
CC14IC	b	FF94 _H		CA _H	CAPCOM Reg. 14 Interrupt Ctrl. Reg.	0000 _H	
CC15		FE9E _H		4F _H	CAPCOM Register 15	0000 _H	
CC15IC	b	FF96 _H		CB _H	CAPCOM Reg. 15 Interrupt Ctrl. Reg.	0000 _H	
CC16		FE60 _H		30 _H	CAPCOM Register 16	0000 _H	
CC16IC	b	F160 _H	Ε	B0 _Н	CAPCOM Reg. 16 Interrupt Ctrl. Reg.	0000 _H	
CC17		FE62 _H		31 _H	CAPCOM Register 17	0000 _H	
CC17IC	b	F162 _H	Ε	B1 _H	CAPCOM Reg. 17 Interrupt Ctrl. Reg.	0000 _H	
CC18		FE64 _H		32 _H	CAPCOM Register 18	0000 _H	
CC18IC	b	F164 _H	Ε	B2 _H	CAPCOM Reg. 18 Interrupt Ctrl. Reg.	0000 _H	
CC19				33 _H	CAPCOM Register 19	0000 _H	

Table 8C167CR Registers, Ordered by Name (cont'd)

Table 8	e 8 C167CR Registers, Ordered by Name (cont'd)							
Name		Physical Address		8-Bit Addr.	Description	Reset Value		
CC19IC	b	F166 _H	Ε	B3 _H	CAPCOM Reg. 19 Interrupt Ctrl. Reg.	0000 _H		
CC1IC	b	FF7A _H		BD _H	CAPCOM Reg. 1 Interrupt Ctrl. Reg.	0000 _H		
CC2		FE84 _H		42 _H	CAPCOM Register 2	0000 _H		
CC20		FE68 _H		34 _H	CAPCOM Register 20	0000 _H		
CC20IC	b	F168 _H	Ε	B4 _H	CAPCOM Reg. 20 Interrupt Ctrl. Reg.	0000 _H		
CC21		FE6A _H		35 _H	CAPCOM Register 21	0000 _H		
CC21IC	b	F16A _H	Ε	B5 _H	CAPCOM Reg. 21 Interrupt Ctrl. Reg.	0000 _H		
CC22		FE6C _H		36 _H	CAPCOM Register 22	0000 _H		
CC22IC	b	F16C _H	Ε	B6 _H	CAPCOM Reg. 22 Interrupt Ctrl. Reg.	0000 _H		
CC23		FE6E _H		37 _H	CAPCOM Register 23	0000 _H		
CC23IC	b	F16E _H	Ε	B7 _H	CAPCOM Reg. 23 Interrupt Ctrl. Reg.	0000 _H		
CC24		FE70 _H		38 _H	CAPCOM Register 24	0000 _H		
CC24IC	b	F170 _H	Ε	B8 _H	CAPCOM Reg. 24 Interrupt Ctrl. Reg.	0000 _H		
CC25		FE72 _H		39 _H	CAPCOM Register 25	0000 _H		
CC25IC	b	F172 _H	Ε	B9 _H	CAPCOM Reg. 25 Interrupt Ctrl. Reg.	0000 _H		
CC26		FE74 _H		3A _H	CAPCOM Register 26	0000 _H		
CC26IC	b	F174 _H	Ε	BA _H	CAPCOM Reg. 26 Interrupt Ctrl. Reg.	0000 _H		
CC27		FE76 _H		3B _H	CAPCOM Register 27	0000 _H		
CC27IC	b	F176 _H	Ε	BB _H	CAPCOM Reg. 27 Interrupt Ctrl. Reg.	0000 _H		
CC28		FE78 _H		3C _H	CAPCOM Register 28	0000 _H		
CC28IC	b	F178 _H	Ε	BC _H	CAPCOM Reg. 28 Interrupt Ctrl. Reg.	0000 _H		
CC29		FE7A _H		3D _H	CAPCOM Register 29	0000 _H		
CC29IC	b	F184 _H	Ε	C2 _H	CAPCOM Reg. 29 Interrupt Ctrl. Reg.	0000 _H		
CC2IC	b	FF7C _H		BE _H	CAPCOM Reg. 2 Interrupt Ctrl. Reg.	0000 _H		
CC3		FE86 _H		43 _H	CAPCOM Register 3	0000 _H		
CC30		FE7C _H		3E _H	CAPCOM Register 30	0000 _H		
CC30IC	b	F18C _H	Ε	C6 _H	CAPCOM Reg. 30 Interrupt Ctrl. Reg.	0000 _H		
CC31		FE7E _H		3F _н	CAPCOM Register 31	0000 _H		
CC31IC	b	F194 _H	Ε	CA _H	CAPCOM Reg. 31 Interrupt Ctrl. Reg.	0000 _H		
CC3IC	b	FF7E _H		BF _H	CAPCOM Reg. 3 Interrupt Ctrl. Reg.	0000 _H		

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C167CR. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit	Values	Unit	Notes	
		Min.	Max.			
Digital supply voltage	V _{DD}	4.5	5.5	V	Active mode, f_{CPUmax} = 33 MHz	
		2.5 ¹⁾	5.5	V	Power Down mode	
Digital ground voltage	V _{SS}		0	V	Reference voltage	
Overload current	I _{OV}	_	±5	mA	Per pin ²⁾³⁾	
Absolute sum of overload currents	$\Sigma I_{OV} $	-	50	mA	3)	
External Load Capacitance	CL	-	50	pF	Pin drivers in fast edge mode (PDCR.BIPEC = '0')	
		-	30	pF	Pin drivers in reduced edge mode (PDCR.BIPEC = '1') ³⁾	
		-	100	рF	Pin drivers in fast edge mode, f_{CPUmax} = 25 MHz ⁴⁾	
Ambient temperature	T _A	0	70	°C	SAB-C167CR	
		-40	85	°C	SAF-C167CR	
		-40	125	°C	SAK-C167CR	

Table 10Operating Condition Parameters

1) Output voltages and output currents will be reduced when $V_{\rm DD}$ leaves the range defined for active mode.

2) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. $V_{OV} > V_{DD} + 0.5 \text{ V}$ or $V_{OV} < V_{SS} - 0.5 \text{ V}$). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins like XTAL1, $\overline{\text{RD}}$, $\overline{\text{WR}}$, etc.

3) Not subject to production test - verified by design/characterization.

4) The increased capacitive load is valid for the 25 MHz-derivatives up to a CPU clock frequency of 25 MHz. Under these circumstances the timing parameters as specified in the "C167CR Data Sheet 1999-06" are valid.

Table 11	DC Characteristics (Operating Conditions apply) ¹⁾ (cont'd)
----------	---

Parameter	Sym	ool	Limit	Values	Unit	Test Condition
			Min.	Max.		
Output high voltage ³⁾	V _{OH}	CC	2.4	_	V	I _{OH} = -2.4 mA
(PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT)			0.9 V _{DD}	_	V	I _{OH} = -0.5 mA
Output high voltage ³⁾	V _{OH1}	CC	2.4	_	V	I _{он} = -1.6 mА
(all other outputs)			0.9 V _{DD}	_	V	I _{OH} = -0.5 mA
Input leakage current (Port 5)	I _{OZ1}	CC	_	±200	nA	$0 \lor < V_{\rm IN} < V_{\rm DD}$
Input leakage current (all other) ⁴⁾	I _{OZ2}	СС	_	±500	nA	0.45 V < V _{IN} < V _{DD}
RSTIN inactive current ⁵⁾	I _{RSTH}	6)	_	-10	μA	$V_{\rm IN} = V_{\rm IH1}$
RSTIN active current ⁵⁾	I _{RSTL} ⁷	7)	-100	_	μA	$V_{\rm IN} = V_{\rm IL}$
READY/RD/WR inact. current ⁸⁾	I _{RWH} ⁶	i)	_	-40	μA	$V_{\rm OUT}$ = 2.4 V
READY/RD/WR active current ⁸⁾	$I_{\rm RWL}^{7}$		-500	_	μA	$V_{\rm OUT}$ = $V_{\rm OLmax}$
ALE inactive current ⁸⁾	I _{ALEL} ⁶		_	40	μA	$V_{\rm OUT}$ = $V_{\rm OLmax}$
ALE active current ⁸⁾	I _{ALEH} 7		500	_	μA	V _{OUT} = 2.4 V
Port 6 inactive current ⁸⁾	I _{P6H} ⁶⁾		_	-40	μA	V _{OUT} = 2.4 V
Port 6 active current ⁸⁾	<i>I</i> _{P6L} ⁷⁾		-500	_	μA	$V_{\rm OUT}$ = $V_{\rm OL1max}$
PORT0 configuration current ⁹⁾	I _{P0H} ⁶⁾		_	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$
	$I_{\rm P0L}^{(7)}$		-100	_	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	$I_{\rm IL}$	CC	_	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ¹⁰⁾ (digital inputs/outputs)	$C_{\rm IO}$	СС	_	10	pF	f = 1 MHz; T _A = 25 °C

1) Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

2) Valid in bidirectional reset mode only.

3) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

- 4) This parameter is not valid for pins READY, ALE, RD, and WR while the respective pull device is on.
- 5) These parameters describe the $\overline{\text{RSTIN}}$ pull-up, which equals a resistance of ca. 50 to 250 k Ω .
- 6) The maximum current may be drawn while the respective signal line remains inactive.
- 7) The minimum current must be drawn in order to drive the respective signal line active.
- 8) This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pull-up is always active, except for Power-down mode.

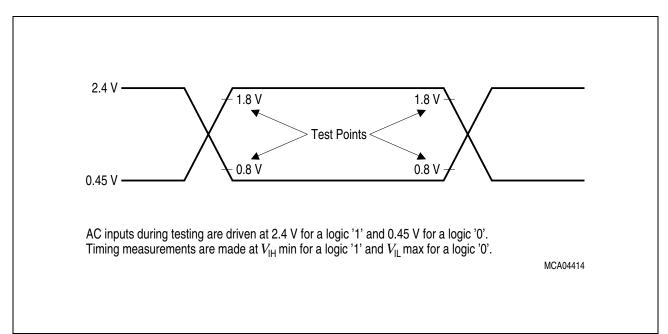


Figure 13 Input Output Waveforms

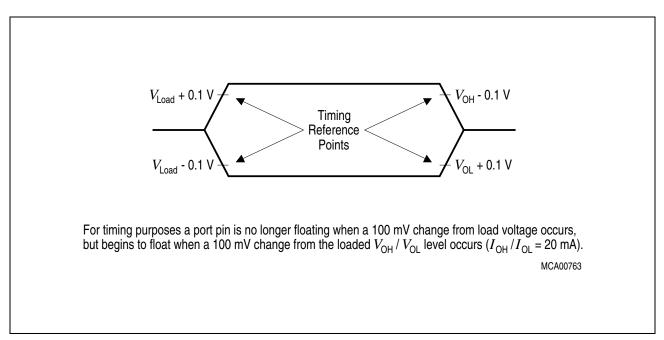


Figure 14 Float Waveforms

4.4.4 External Bus Timing

Table 17CLKOUT Reference Signal

Parameter		Symbol		Limits	
			Min.	Max.	
CLKOUT cycle time	tc_5	CC	3	30 ¹⁾	ns
CLKOUT high time	tc ₆	CC	8	_	ns
CLKOUT low time	tc ₇	CC	6	_	ns
CLKOUT rise time	tc ₈	CC	_	4	ns
CLKOUT fall time	tc ₉	CC	-	4	ns

1) The CLKOUT cycle time is influenced by the PLL jitter.

For a single CLKOUT cycle (2 TCL) the deviation caused by the PLL jitter is below 1 ns (for f_{CPU} > 25 MHz). For longer periods the relative deviation decreases (see PLL deviation formula).

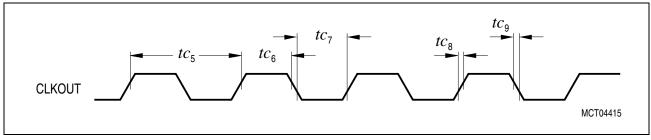


Figure 15 CLKOUT Signal Timing

Variable Memory Cycles

The bus timing shown below is programmable via the BUSCONx registers. The duration of ALE and two types of waitstates can be selected. This table summarizes the possible bus cycle durations.

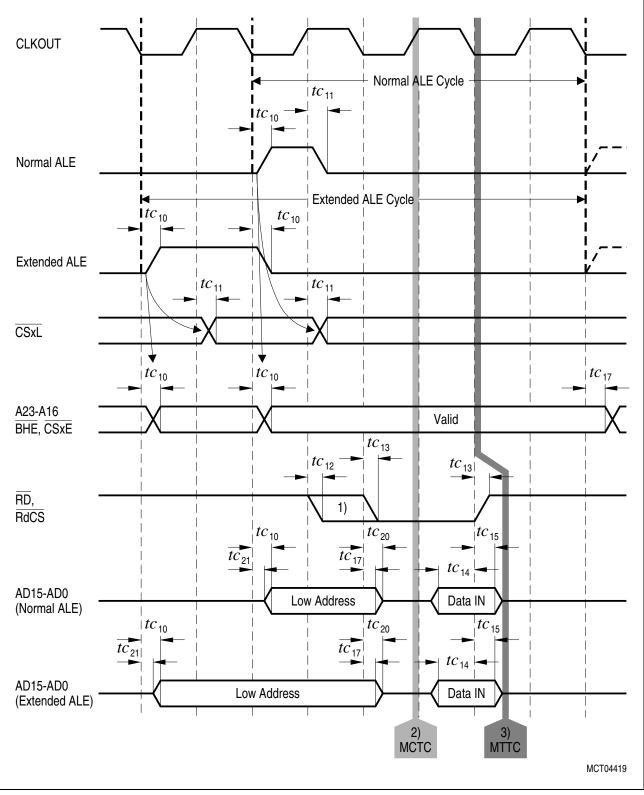
Table 18	Variable M	Memory	Cycles
			Uy CIC3

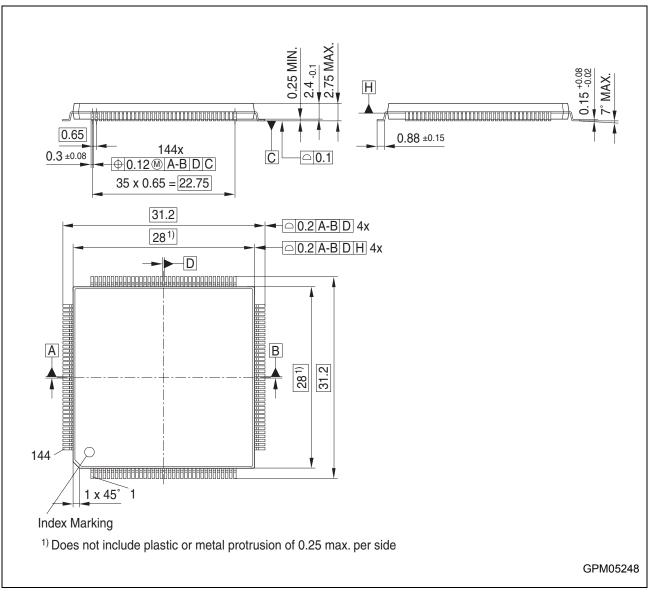
Bus Cycle Type	Bus Cycle Duration	Unit	25/33 MHz, 0 Waitstates
Demultiplexed bus cycle with normal ALE	4 + 2 × (15 - <mctc>) + 2 × (1 - <mttc>)</mttc></mctc>	TCL	80 ns/60.6 ns
Demultiplexed bus cycle with extended ALE	6 + 2 × (15 - <mctc>) + 2 × (1 - <mttc>)</mttc></mctc>	TCL	120 ns/90.9 ns
Multiplexed bus cycle with normal ALE	6 + 2 × (15 - <mctc>) + 2 × (1 - <mttc>)</mttc></mctc>	TCL	120 ns/90.9 ns
Multiplexed bus cycle with extended ALE	8 + 2 × (15 - <mctc>) + 2 × (1 - <mttc>)</mttc></mctc>	TCL	160 ns/121.2 ns

General Notes for the Following Timing Figures

These standard notes apply to all subsequent timing figures. Additional individual notes are placed at the respective figure.

- 1. The falling edge of signals \overline{RD} and $\overline{WR}/\overline{WRH}/\overline{WRL}/\overline{WrCS}$ is controlled by the Read/Write delay feature (bit BUSCON.RWDCx).
- 2. A bus cycle is extended here, if MCTC waitstates are selected or if the READY input is sampled inactive.
- 3. A bus cycle is extended here, if an MTTC waitstate is selected.




Figure 19 Multiplexed Bus, Read Access

C167CR C167SR

Package Outlines

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Dimensions in mm