

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	P-MQFP-144-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sab-c167cr-16rm-ha

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C167CR, C167SR

Revision H	listory:	2005-02	V3.3				
Previous V	ersion:	V3.2, 2001-07 V3.1, 2000-04 V3.0, 2000-02 1999-10 (Introduction of clock-related timing) 1999-06 1999-03 (Summarizes and replaces all older docs 1998-03 (C167SR/CR, 25 MHz Addendum) 07.97 / 12.96 (C167CR-4RM) 12.96 (C167CR-16RM) 06.95 (C167CR, C167SR) 06.94 / 05.93 (C167))				
Page	Subjects (major changes since last revision)						
all	The layout of several graphics and text structures has been adapted to company documentation rules, obvious typographical errors have been corrected.						
all	The contents of this document have been re-arranged into numbered sections and a table of contents has been added.						
6	BGA-type added to product list						
8	Pin designation corrected (pin 78)						
9	Input threshold control added to Port 6						
17 25	Pin diagram and pin description for BGA package added						
45	Port 6 added to input-threshold controlled ports						
85	Mechanical	Mechanical package drawing corrected (P-MQFP-144-8)					
86	Mechanical	package drawing added (P-BGA-176-2)					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Table 2	Pin	Definit	tions and Functions P-MQFP-144-8 (cont'd)				
Symbol	Pin No.	Input Outp.	Function				
P7		IO	Port 7 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 7 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 7 is selectable (TTL or special). The following Port 7 pins also serve for alternate functions:				
P7.0	19	0	POUT0 PWM Channel 0 Output				
P7.1	20	0	POUT1 PWM Channel 1 Output				
P7.2	21	0	POUT2 PWM Channel 2 Output				
P7.3	22	0	POUT3 PWM Channel 3 Output				
P7.4	23	I/O	CC28IO CAPCOM2: CC28 Capture Inp./Compare Outp.				
P7.5	24	I/O	CC29IO CAPCOM2: CC29 Capture Inp./Compare Outp.				
P7.6	25	I/O	CC30IO CAPCOM2: CC30 Capture Inp./Compare Outp.				
P7.7	26	I/O	CC31IO CAPCOM2: CC31 Capture Inp./Compare Outp.				
P5		1	Port 5 is a 16-bit input-only port with Schmitt-Trigger characteristic. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs:				
P5.0	27	1	AND converter, or they serve as timer inputs.				
P5.1	28		AN1				
P5.2	29		AN2				
P5.3	30		AN3				
P5.4	31	1	AN4				
P5.5	32	1	AN5				
P5.6	33	1	AN6				
P5.7	34	1	AN7				
P5.8	35	1	AN8				
P5.9	36	1	AN9				
P5.10	39	1	AN10, T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.				
P5.11	40	1	AN11, T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.				
P5.12	41	1	AN12, T6IN GPT2 Timer T6 Count Inp.				
P5.13	42	1	AN13, T5IN GPT2 Timer T5 Count Inp.				
P5.14	43	1	AN14, T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.				
P5.15	44	1	AN15, T2EUD GPT1 Timer T5 Ext. Up/Down Ctrl. Inp.				

Table 2	Pir	Defini	tions and F	ons and Functions P-MQFP-144-8 (cont'd)				
Symbol	Pin	Input	Function	Function				
	No.	Outp.						
P3		IO	Port 3 is a 15-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 3 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 3 is selectable (TTL or special). The following Port 3 pins also serve for alternate functions:					
P3.0	65	1	TOIN	CAPCOM1 Timer T0 Count Input				
P3.1	66	0	T6OUT	GPT2 Timer T6 Toggle Latch Output				
P3.2	67	1	CAPIN	GPT2 Register CAPREL Capture Input				
P3.3	68	0	T3OUT	GPT1 Timer T3 Toggle Latch Output				
P3.4	69	1	T3EUD	GPT1 Timer T3 External Up/Down Control Input				
P3.5	70	1	T4IN	GPT1 Timer T4 Count/Gate/Reload/Capture Inp.				
P3.6	73	1	T3IN	GPT1 Timer T3 Count/Gate Input				
P3.7	74	1	T2IN	GPT1 Timer T2 Count/Gate/Reload/Capture Inp.				
P3.8	75	I/O	MRST	SSC Master-Receive/Slave-Transmit Inp./Outp.				
P3.9	76	I/O	MTSR	SSC Master-Transmit/Slave-Receive Outp./Inp.				
P3.10	77	0	TxD0	ASC0 Clock/Data Output (Async./Sync.)				
P3.11	78	I/O	RxD0	ASC0 Data Input (Async.) or Inp./Outp. (Sync.)				
P3.12	79	0	BHE	External Memory High Byte Enable Signal,				
		0	WRH	External Memory High Byte Write Strobe				
P3.13	80	I/O	SCLK	SSC Master Clock Output / Slave Clock Input.				
P3.15	81	0	CLKOUT	System Clock Output (= CPU Clock)				
OWE (V _{PP})	84	1	watchdog v purposes. / nothing is c For normal connected.	operation pin OWE should be high or not				

Table 2	Pir	n Defini	tions and Functions P-MQFP-144-8 (cont'd)
Symbol	Pin No.	Input Outp.	Function
P4		IO	Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 4 can be used to output the segment address lines and for serial bus interfaces:
P4.0	85	0	A16 Least Significant Segment Address Line
P4.1	86	0	A17 Segment Address Line
P4.2	87	0	A18 Segment Address Line
P4.3	88	0	A19 Segment Address Line
P4.4	89	0	A20 Segment Address Line
P4.5	90	0	A21 Segment Address Line,
		1	CAN1_RxD CAN 1 Receive Data Input
P4.6	91	0	A22 Segment Address Line,
		0	CAN1_TxD CAN 1 Transmit Data Output
P4.7	92	0	A23 Most Significant Segment Address Line
RD	95	0	External Memory Read Strobe. \overline{RD} is activated for every external instruction or data read access.
WR/ WRL	96	0	External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in register SYSCON for mode selection.
READY	97	I	Ready Input. When the Ready function is enabled, a high level at this pin during an external memory access will force the insertion of memory cycle time waitstates until the pin returns to a low level. An internal pull-up device will hold this pin high when nothing is driving it.
ALE	98	0	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.
ĒĀ	99	I	External Access Enable pin. A low level at this pin during and after Reset forces the C167CR to begin instruction execution out of external memory. A high level forces execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'.

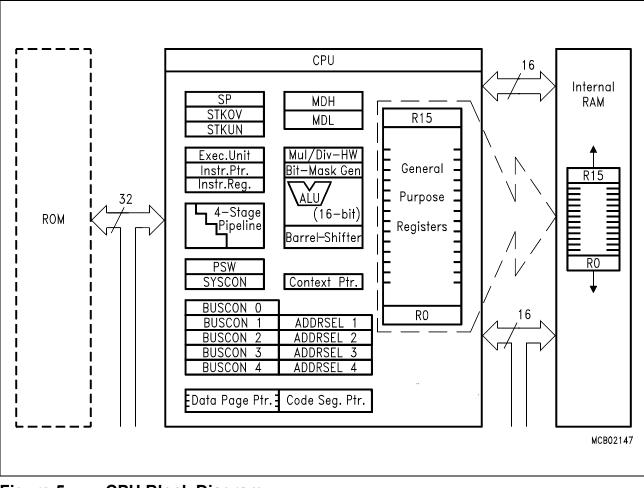
Table 3Pin Definitions and Functions P-BGA-176-2 (cont'd)

D13		
C13	O I	 XTAL2: Output of the oscillator amplifier circuit. XTAL1: Input to the oscillator amplifier and input to the internal clock generator. To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed.
D12	0	Internal Reset Indication Output. This pin is set to a low level when the part is executing either a hardware-, a software- or a watchdog timer reset. RSTOUT remains low until the EINIT (end of initialization) instruction is executed.
Ξ11	I/O	Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the C167CR. An internal pull-up resistor permits power-on reset using only a capacitor connected to V_{SS} . A spike filter suppresses input pulses < 10 ns. Input pulses > 100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. In bidirectional reset mode (enabled by setting bit BDRSTEN in register SYSCON) the RSTIN line is internally pulled low for the duration of the internal reset sequence upon any reset (HW, SW, WDT). See note below this table. <i>Note: To let the reset configuration of PORT0 settle and to let the PLL lock a reset duration of ca. 1 ms is</i>

3.3 Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C167CR's instructions can be executed in just one machine cycle which requires 60 ns at 33 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.



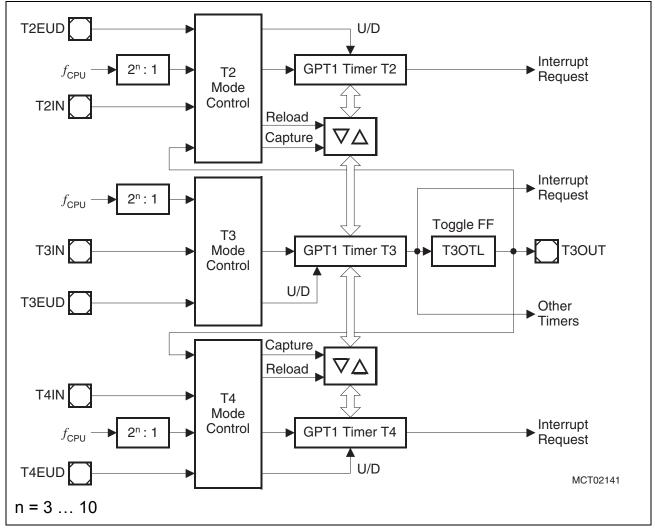

Figure 5 CPU Block Diagram

Table 4 C167CR Interrupt Nodes

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
CAPCOM Register 0	CC0IR	CC0IE	CC0INT	00'0040 _H	10 _H
CAPCOM Register 1	CC1IR	CC1IE	CC1INT	00'0044 _H	11 _H
CAPCOM Register 2	CC2IR	CC2IE	CC2INT	00'0048 _H	12 _H
CAPCOM Register 3	CC3IR	CC3IE	CC3INT	00'004C _H	13 _H
CAPCOM Register 4	CC4IR	CC4IE	CC4INT	00'0050 _H	14 _H
CAPCOM Register 5	CC5IR	CC5IE	CC5INT	00'0054 _H	15 _H
CAPCOM Register 6	CC6IR	CC6IE	CC6INT	00'0058 _H	16 _H
CAPCOM Register 7	CC7IR	CC7IE	CC7INT	00'005C _H	17 _H
CAPCOM Register 8	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
CAPCOM Register 9	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
CAPCOM Register 10	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
CAPCOM Register 11	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
CAPCOM Register 12	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
CAPCOM Register 13	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
CAPCOM Register 14	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
CAPCOM Register 15	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
CAPCOM Register 16	CC16IR	CC16IE	CC16INT	00'00C0 _H	30 _H
CAPCOM Register 17	CC17IR	CC17IE	CC17INT	00'00C4 _H	31 _H
CAPCOM Register 18	CC18IR	CC18IE	CC18INT	00'00C8 _H	32 _H
CAPCOM Register 19	CC19IR	CC19IE	CC19INT	00'00CC _H	33 _H
CAPCOM Register 20	CC20IR	CC20IE	CC20INT	00'00D0 _H	34 _H
CAPCOM Register 21	CC21IR	CC21IE	CC21INT	00'00D4 _H	35 _H
CAPCOM Register 22	CC22IR	CC22IE	CC22INT	00'00D8 _H	36 _H
CAPCOM Register 23	CC23IR	CC23IE	CC23INT	00'00DC _H	37 _H
CAPCOM Register 24	CC24IR	CC24IE	CC24INT	00'00E0 _H	38 _H
CAPCOM Register 25	CC25IR	CC25IE	CC25INT	00'00E4 _H	39 _H
CAPCOM Register 26	CC26IR	CC26IE	CC26INT	00'00E8 _H	3A _H
CAPCOM Register 27	CC27IR	CC27IE	CC27INT	00'00EC _H	3B _H
CAPCOM Register 28	CC28IR	CC28IE	CC28INT	00'00E0 _H	3C _H
CAPCOM Register 29	CC29IR	CC29IE	CC29INT	00'0110 _H	44 _H

Figure 7 Block Diagram of GPT1

With its maximum resolution of 8 TCL, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the CAPCOM timers T0 or T1, and to cause a reload from the CAPREL register. The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows the C167CR to measure absolute time differences or to perform pulse multiplication without software overhead.

Table 7Instruction Set Summary (cont'd)						
Mnemonic	Description	Bytes				
DISWDT	Disable Watchdog Timer	4				
EINIT	Signify End-of-Initialization on RSTOUT-pin	4				
ATOMIC	Begin ATOMIC sequence	2				
EXTR	Begin EXTended Register sequence	2				
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4				
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4				
NOP	Null operation	2				

Table 8C167CR Registers, Ordered by Name (cont'd)

Name			Physical 8-Bit Address Addr		Description	Reset Value	
CC4		FE88 _H		44 _H	CAPCOM Register 4	0000 _H	
CC4IC	b	FF80 _H		C0 _H	CAPCOM Reg. 4 Interrupt Ctrl. Reg.	0000 _H	
CC5		FE8A _H		45 _H	CAPCOM Register 5	0000 _H	
CC5IC	b	FF82 _H		C1 _H	CAPCOM Register 5 Interrupt Ctrl. Reg.	0000 _H	
CC6		FE8C _H		46 _H	CAPCOM Register 6	0000 _H	
CC6IC	b	FF84 _H		C2 _H	CAPCOM Reg. 6 Interrupt Ctrl. Reg.	0000 _H	
CC7		FE8E _H		47 _H	CAPCOM Register 7	0000 _H	
CC7IC	b	FF86 _H		C3 _H	CAPCOM Reg. 7 Interrupt Ctrl. Reg.	0000 _H	
CC8		FE90 _H		48 _H	CAPCOM Register 8	0000 _H	
CC8IC	b	FF88 _H		C4 _H	CAPCOM Reg. 8 Interrupt Ctrl. Reg.	0000 _H	
CC9		FE92 _H		49 _H	CAPCOM Register 9	0000 _H	
CC9IC	b	FF8A _H		C5 _H	CAPCOM Reg. 9 Interrupt Ctrl. Reg.	0000 _H	
ССМО	b	FF52 _H		A9 _H	CAPCOM Mode Control Register 0	0000 _H	
CCM1	b	FF54 _H			CAPCOM Mode Control Register 1	0000 _H	
CCM2	b	FF56 _H			CAPCOM Mode Control Register 2	0000 _H	
ССМЗ	b	FF58 _H		AC _H	CAPCOM Mode Control Register 3	0000 _H	
CCM4	b	FF22 _H	F22 _H 91 _H CAPCOM Mode Control Register 4		0000 _H		
CCM5	b	FF24 _H		92 _H	CAPCOM Mode Control Register 5	0000 _H	
CCM6	b	FF26 _H		93 _H	CAPCOM Mode Control Register 6	0000 _H	
CCM7	b	FF28 _H		94 _H	CAPCOM Mode Control Register 7	0000 _H	
СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H	
CRIC	b	FF6A _H		В5 _Н	GPT2 CAPREL Interrupt Ctrl. Register	0000 _H	
CSP		FE08 _H		04 _H	CPU Code Segment Pointer Register (read only)		
DP0L	b	F100 _H	Е	80 _H	P0L Direction Control Register		
DP0H	b	F102 _H	Е	81 _H	P0H Direction Control Register		
DP1L	b	F104 _H	Е	82 _H	P1L Direction Control Register		
DP1H	b	F106 _H	Е	83 _H	P1H Direction Control Register		
DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H	
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H	

Name		Physical Address	8-Bit Addr.	Description	Reset Value
DP4	b FFCA _H			Port 4 Direction Control Register	00 _H
DP6	b	FFCE _H	Е5 _н Е7 _н	Port 6 Direction Control Register	00 _H
DP7	b	FFD2 _H	E9 _H	Port 7 Direction Control Register	00 _H
DP8	b	FFD6 _H	EB _H	Port 8 Direction Control Register	00 _H
DPP0		FE00 _H	00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H
DPP1		FE02 _H	01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
DPP2		FE04 _H	02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
DPP3		FE06 _H	03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
EXICON	b	F1C0 _H E		External Interrupt Control Register	0000 _H
MDC	b	FF0E _H	87 _H	CPU Multiply Divide Control Register	0000 _H
MDH		FE0C _H	06 _H	CPU Multiply Divide Reg. – High Word	0000 _H
MDL		FE0E _H	07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H
ODP2	b	F1C2 _H E	E1 _H	Port 2 Open Drain Control Register	0000 _H
ODP3	b	F1C6 _H E	E3 _H	Port 3 Open Drain Control Register	0000 _H
ODP6	b	F1CE _H E	E7 _H	Port 6 Open Drain Control Register	00 _H
ODP7	b	F1D2 _H E	E9 _H	Port 7 Open Drain Control Register	00 _H
ODP8	b	F1D6 _H E	EB _H	Port 8 Open Drain Control Register	00 _H
ONES		FF1E _H	8F _H	Constant Value 1's Register (read only)	FFFF _H
P0H	b	FF02 _H	81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H
P0L	b	FF00 _H	80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P1H	b	FF06 _H	83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H	82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H
P2	b	FFC0 _H	E0 _H	Port 2 Register	0000 _H
P3	b	FFC4 _H	E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H	E4 _H	Port 4 Register (8 bits)	00 _H
P5	b	FFA2 _H	D1 _H	Port 5 Register (read only)	XXXX _H
P5DIDIS	b	FFA4 _H	D2 _H	Port 5 Digital Input Disable Register	0000 _H
P6	b	FFCC _H	E6 _H	Port 6 Register (8 bits)	00 _H
P7	b	FFD0 _H	E8 _H	Port 7 Register (8 bits)	00 _H
P8	b	FFD4 _H	EA _H	Port 8 Register (8 bits)	00 _H

Table 8 C167CR Registers, Ordered by Name (cont'd) 8-Bit Reset Name Physical Description Address Addr. Value PECC0 FEC0_H 60_н PEC Channel 0 Control Register 0000_н 61_н PECC1 FEC2_H PEC Channel 1 Control Register 0000_H FEC4_H PECC2 PEC Channel 2 Control Register 62_н 0000_н PECC3 FEC6_H 63_н PEC Channel 3 Control Register 0000_H PECC4 FEC8_H PEC Channel 4 Control Register 0000_н 64_н 65_H PECC5 **FECA_H** 0000_H PEC Channel 5 Control Register 0000_H PECC6 PEC Channel 6 Control Register **FECC**_H 66_H PECC7 FECE_H 67_н PEC Channel 7 Control Register 0000_н PICON F1C4_H E2_H Ε Port Input Threshold Control Register 0000_н b PDCR F0AA_H Ε 55_н Pin Driver Control Register 0000_н PP0 F038_H E 1C_H PWM Module Period Register 0 0000_H PP1 F03A_H Ε **PWM Module Period Register 1** 0000_H 1D_н $F03C_{H}$ PP2 Ε PWM Module Period Register 2 1E_н 0000_н PP3 F03E_H E 0000_H 1F_н PWM Module Period Register 3 **PSW** FF10_H b 88_H **CPU Program Status Word** 0000_H 18_H PT0 F030_H Ε PWM Module Up/Down Counter 0 0000_н F032_H PT1 0000_H PWM Module Up/Down Counter 1 Ε 19_н PT2 Ε PWM Module Up/Down Counter 2 0000_H F034_н 1A_н **PT3** F036_н Ε PWM Module Up/Down Counter 3 0000_H 1B_н FE30_H 18_H **PW0** PWM Module Pulse Width Register 0 0000_H 19_H **PW1** FE32_н PWM Module Pulse Width Register 1 0000_H 0000_H **PW2** FE34_H PWM Module Pulse Width Register 2 1А_н $1B_{H}$ 0000_H PW3 FE36_н PWM Module Pulse Width Register 3 98_H PWMCON0 b FF30_H PWM Module Control Register 0 0000_H PWMCON1 FF32_H 99_H PWM Module Control Register 1 b 0000_н F17E_н **PWMIC** b E BF_{H} PWM Module Interrupt Control Register 0000_H F108_H XX_H RP0H b E System Start-up Config. Reg. (Rd. only) 84_H

S0BG

S0CON

FEB4_H

FFB0_H

b

5A_H

D8_H

0000_н

0000_H

Reload Register

Serial Channel 0 Baudrate Generator

Serial Channel 0 Control Register

Reset

Value

0000_н

0000_н

0000_н

0000_H

0000_H

0000_H

0000_H

0000_н

0000_н

0000_н

0000_н

0000_H

0000_н

0000_H

0000_H

0000_н

0000_H

0000_H

0000_H

0000_H

0000_H

0000_H

0000_H

0000_н

0000_H

0000_H

0000_H

Functional Description

C167CR Registers, Ordered by Name (cont'd) Table 8 8-Bit Name Physical Description **Address** Addr. T2IC b FF60_H B0_H GPT1 Timer 2 Interrupt Control Register FE42_H 21_H **T**3 **GPT1** Timer 3 Register A1_H T3CON FF42_H **GPT1** Timer 3 Control Register b T3IC b FF62_H B1_н **GPT1** Timer 3 Interrupt Control Register Τ4 FE44_H 22_н **GPT1** Timer 4 Register T4CON FF44_H **GPT1** Timer 4 Control Register b А2_н FF64_H T4IC **GPT1** Timer 4 Interrupt Control Register b B2_H **T5** FE46_H 23_H GPT2 Timer 5 Register T5CON FF46_H A3_H **GPT2** Timer 5 Control Register b T5IC b FF66_µ B3_H GPT2 Timer 5 Interrupt Control Register **T6** FE48_H 24_H **GPT2** Timer 6 Register A4_H **T6CON** FF48_H **GPT2** Timer 6 Control Register b $B4_{H}$ T6IC **b** | FF68_H **GPT2** Timer 6 Interrupt Control Register **E** | 28_H T7 F050_н CAPCOM Timer 7 Register **T78CON** b FF20_H 90_H CAPCOM Timer 7 and 8 Ctrl. Reg. T7IC **b** | F17А_н E BE_H CAPCOM Timer 7 Interrupt Ctrl. Reg. F054_H T7REL CAPCOM Timer 7 Reload Register E 2A_н F052_H **T8** Ε **CAPCOM Timer 8 Register** 29_н F17C_H T8IC CAPCOM Timer 8 Interrupt Ctrl. Reg. b Ε BF_H F056_H $2B_{H}$ T8REL Ε CAPCOM Timer 8 Reload Register FFAC_H TFR Trap Flag Register b D6_н WDT FEAE_H Watchdog Timer Register (read only) 57_H ²⁾00XX_H

FFAE_H

F186_H

F18E_H

F196_н

b | F19E_н

b | FF1C_H

b

b

b

D7_H

C3_H

С7_н

CB_H

8E_н

E | CF_H

E

E

E

2) The reset value depends on the indicated reset source.

WDTCON

XP0IC

XP1IC

XP2IC

XP3IC

ZEROS

Watchdog Timer Control Register

CAN1 Module Interrupt Control Register

Unassigned Interrupt Control Register

Unassigned Interrupt Control Register

Constant Value 0's Register (read only)

PLL/OWD Interrupt Control Register

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C167CR. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
Digital supply voltage	V _{DD}	4.5	5.5	V	Active mode, f_{CPUmax} = 33 MHz
		2.5 ¹⁾	5.5	V	Power Down mode
Digital ground voltage	V _{SS}		0	V	Reference voltage
Overload current	I _{OV}	_	±5	mA	Per pin ²⁾³⁾
Absolute sum of overload currents	$\Sigma I_{OV} $	-	50	mA	3)
External Load Capacitance	CL	-	50	pF	Pin drivers in fast edge mode (PDCR.BIPEC = '0')
		-	30	pF	Pin drivers in reduced edge mode (PDCR.BIPEC = '1') ³⁾
		-	100	рF	Pin drivers in fast edge mode, f_{CPUmax} = 25 MHz ⁴⁾
Ambient temperature	T _A	0	70	°C	SAB-C167CR
		-40	85	°C	SAF-C167CR
		-40	125	°C	SAK-C167CR

Table 10Operating Condition Parameters

1) Output voltages and output currents will be reduced when $V_{\rm DD}$ leaves the range defined for active mode.

2) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. $V_{OV} > V_{DD} + 0.5 \text{ V}$ or $V_{OV} < V_{SS} - 0.5 \text{ V}$). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins like XTAL1, $\overline{\text{RD}}$, $\overline{\text{WR}}$, etc.

3) Not subject to production test - verified by design/characterization.

4) The increased capacitive load is valid for the 25 MHz-derivatives up to a CPU clock frequency of 25 MHz. Under these circumstances the timing parameters as specified in the "C167CR Data Sheet 1999-06" are valid.

4.3 Analog/Digital Converter Parameters

Table 13	A/D Converter Characteristics (Operating Conditions apply)
----------	--

Parameter	Symbol	Limit	Values	Unit	Test	
		Min.	Max.		Condition	
Analog reference supply	$V_{AREF} SR$	4.0	V _{DD} + 0.1	V	1)	
Analog reference ground	$V_{\rm AGND} SR$	V _{SS} - 0.1	V _{SS} + 0.2	V	-	
Analog input voltage range	$V_{\rm AIN}$ SR	V _{AGND}	V _{AREF}	V	2)	
Basic clock frequency	$f_{\rm BC}$	0.5	6.25	MHz	3)	
Conversion time	t _C CC	-	40 $t_{\rm BC}$ + $t_{\rm S}$ + 2 $t_{\rm CPU}$	-	$t_{\rm CPU} = 1/f_{\rm CPU}$	
Calibration time after reset	t _{CAL} CC	-	3328 t _{BC}	_	5)	
Total unadjusted error	TUE CC	-	±2	LSB	1)	
Internal resistance of reference voltage source	$R_{AREF}SR$	-	t _{BC} / 60 - 0.25	kΩ	<i>t</i> _{BC} in [ns] ⁶⁾⁷⁾	
Internal resistance of analog source	$R_{\rm ASRC} SR$	-	t _S / 450 - 0.25	kΩ	<i>t</i> _S in [ns] ⁷⁾⁸⁾	
ADC input capacitance	C_{AIN} CC	-	33	pF	7)	

1) TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DD} = 4.9 V. It is guaranteed by design for all other voltages within the defined voltage range.

If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V $\,$

(i.e. $V_{AREF} = V_{DD} + 0.2 \text{ V}$) the maximum TUE is increased to ±3 LSB. This range is not 100% tested.

The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see I_{OV} specification) does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be \pm 4 LSB.

- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- 3) The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- 4) This parameter includes the sample time t_S, the time for determining the digital result and the time to load the result register with the conversion result.
 Values for the basic clock t_{BC} depend on programming and can be taken from Table 14.
 This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.
- This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.
- 5) During the reset calibration conversions can be executed (with the current accuracy). The time required for these conversions is added to the total reset calibration time.
- 6) During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within each conversion step. The maximum internal resistance results from the programmed conversion timing.
- 7) Not subject to production test verified by design/characterization.

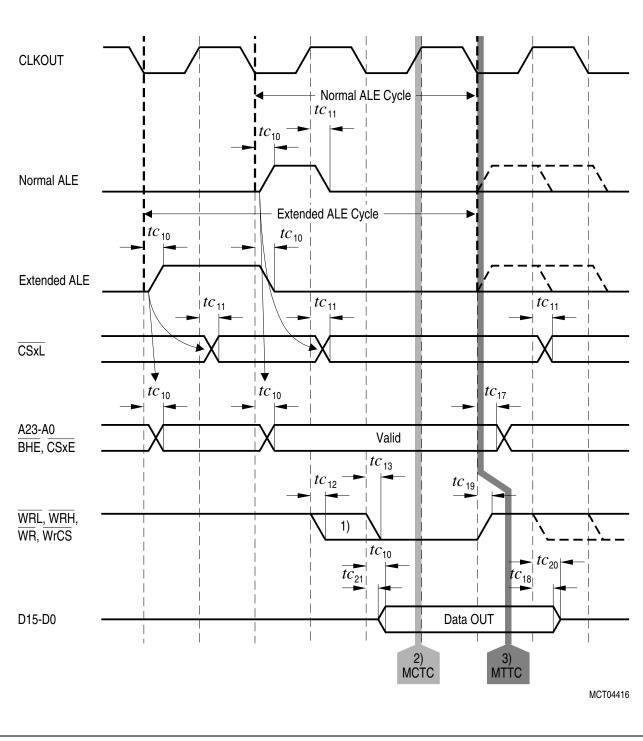


Figure 16 Demultiplexed Bus, Write Access

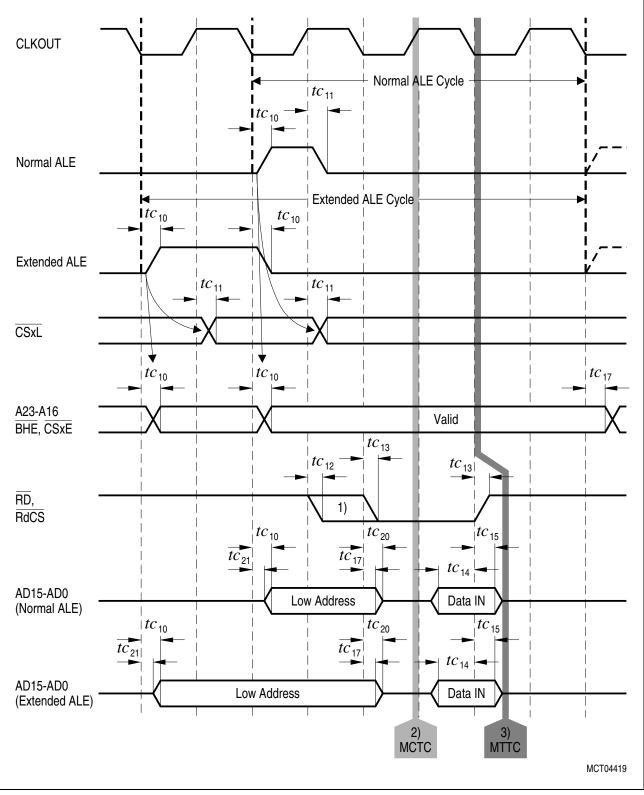


Figure 19 Multiplexed Bus, Read Access

C167CR C167SR

Electrical Parameters

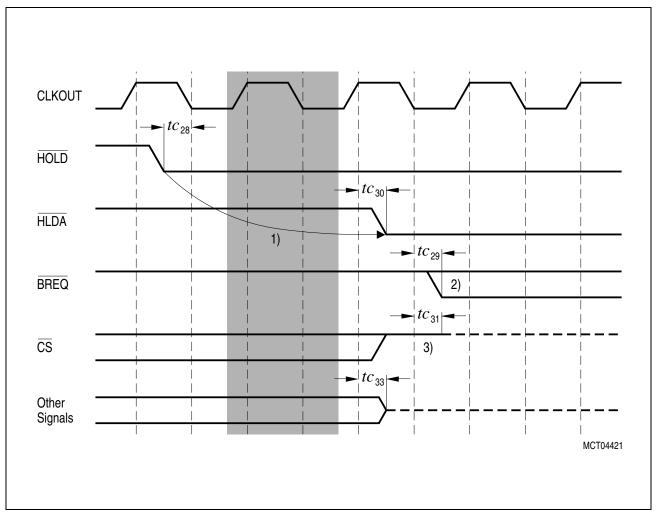


Figure 21 External Bus Arbitration, Releasing the Bus

Notes

- 1. The C167CR will complete the currently running bus cycle before granting bus access.
- 2. This is the first possibility for \overline{BREQ} to get active.
- 3. The \overline{CS} outputs will be resistive high (pull-up) after t_{33} . Latched \overline{CS} outputs are driven high for 1 TCL before the output drivers are switched off.

External XRAM Access

If XPER-Share mode is enabled the on-chip XRAM of the C167CR can be accessed (during hold states) by an external master like an asynchronous SRAM.

Table 22	XRAM Access	Timina	(Operating	Conditions	apply) ¹⁾
		· · · · · · · · · · · · · · · · · · ·	(Oporating)	Contaitionio	appij/

Parameter		Symbol		Limits		Unit
				Min.	Max.	
Address setup time before RD/WR falling edge	e RD/WR falling edge			4	_	ns
Address hold time after RD/WR rising edge	ess hold time after RD/WR rising edge		SR	0	-	ns
Data turn on delay after RD falling edge	q	t ₄₂	CC	1	_	ns
Data output valid delay after address latched	Read	t ₄₃	CC	-	40	ns
Data turn off delay after RD rising edge		t ₄₄	CC	1	14	ns
Write data setup time before WR rising edge		t ₄₅	SR	10	_	ns
Write data hold time after WR rising edge	ite	t ₄₆	SR	2	-	ns
WR pulse width	Write	t ₄₇	SR	20	_	ns
WR signal recovery time		t ₄₈	SR	<i>t</i> ₄₀	-	ns

1) The minimum access cycle time is 60 ns.

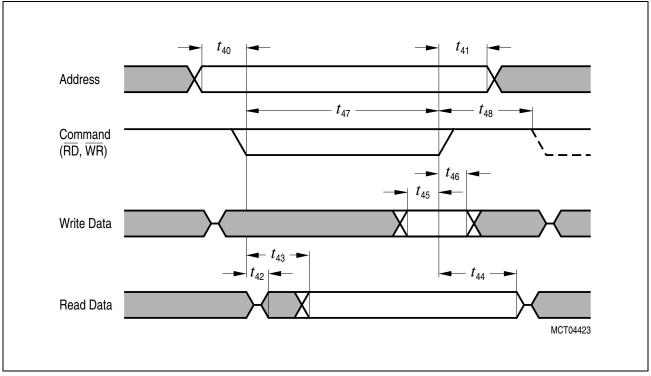


Figure 23 External Access to the XRAM

www.infineon.com