

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, Microwire, SPI, SSI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	28
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.6V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VQFN Exposed Pad
Supplier Device Package	32-HVQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc11a11fhn33-001

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.	Pin multiplexing
----------	------------------

Function	Туре			LQFP48	HVQFN33	WCSP20
		Port	Glitch filter	Pin	Pin	Ball
V _{DD(3V3)}	Supply	-	-	44	29	E2
V _{SS}	Ground	-	-	42	33	E3
V _{SS(IO)}	Ground	-	-	5	33	E3

[1] Always on.

[2] Programmable on/off. By default, the glitch filter is disabled.

Table 4 shows all pins in order of their port number. The default function after reset is listed first. All port pins PIO0_0 to PIO1_9 have internal pull-up resistors enabled after reset with the exception of the true open-drain pins PIO0_2 and PIO0_3.

Pull-up/pull-down configuration, repeater, and open-drain modes can be programmed through the IOCON registers for each of the port pins.

Table 4. LPC11Axx pin description table

Symbol			Type Re sta [1]		Description							
	LQFP48	HVQFN33	WLCSP20									
RESET/PIO0_0	3	2	C1	[2]	1	I; PU	RESET — External reset input with fixed 20 ns glitch filter: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states and processor execution to begin at address 0.					
					I/O	-	PIO0_0 — General purpose digital input/output pin.					
PIO0_1/RXD/CLKOUT/ CT32B0_MAT2/SSEL0/	4	3	B2	[3]	I/O	I; PU	PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler.					
CLKIN					I	-	RXD — Receiver data input for USART.					
					0	-	CLKOUT — Clock output.					
					0	-	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.					
					I/O	-	SSEL0 — Slave Select for SSP0.					
					I	-	CLKIN — External clock input.					
PIO0_2/SCL/ACMP_O/ TCK/SWCLK/ CT16B0_CAP0	15	10	A1	[4][5]	I/O	I; IA	PIO0_2 — General purpose digital input/output pin. High-current sink (20 mA) or standard-current sink (4 mA) programmable; true open-drain for all pin functions. Input glitch filter (50 ns) capable.					
					I/O	-	$SCL - l^2C$ -bus clock (true open-drain) input/output. Input glitch filter (50 ns) capable.					
					0	-	ACMP_O — Analog comparator output.					
						 TCK/SWCLK — Serial Wire Debug Clock (secon LQFP and HVQFN packages). Input glitch filter (5 capable. For the WLCSP20 package only, this pir configured to the SWCLK function by the boot loa reset. 						
					I	 CT16B0_CAP0 — Capture input 0 for 16-bit timer 0 glitch filter (50 ns) capable. 						
LPC11AXX				All in	formation pr	ovided in this de	cument is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.					
					-							

32-bit ARM Cortex-M0 microcontroller

Table 4. LPC11Axx pin description table

Symbol	Pin	/Ball			Туре	Reset Description state [1]					
	LQFP48	HVQFN33	WLCSP20								
PIO0_3/SDA/ACMP_O/ SWDIO/CT16B1_CAP0	16	11	B1	<u>[4][6]</u>	I/O	I; IA	PIO0_3 — General purpose digital input/output pin. High-current sink (20 mA) or standard-current sink (4 mA) programmable; true open-drain for all pin functions. Input glitch filter (50 ns) capable.				
					I/O	-	SDA — I ² C-bus data (true open-drain) input/output. Input glitch filter (50 ns) capable.				
					0	-	ACMP_O — Analog comparator output.				
					I/O	-	SWDIO — Serial Wire Debug I/O (secondary for LQFP and HVQFN packages). Input glitch filter (50 ns) capable. For the WLCSP20 package only, this pin is configured to the SWDIO function by the boot loader after reset.				
					I	-	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1. Input glitch filter (50 ns) capable.				
PIO0_4/R/AOUT/ CT16B0_MAT1/MOSI0	28	18	A4	[7]	I/O	I; PU	PIO0_4 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.				
					-	-	R — Reserved.				
					0	-	AOUT — D/A converter output.				
					0	-	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.				
					I/O	-	MOSI0 — Master Out Slave In for SSP0. Input glitch filter (10 ns) capable.				
TCK/SWCLK/PIO0_5/ R/CT16B0_MAT2/ SCK0	29	19	-	[9]	I	I; PU	TCK/SWCLK — Test clock TCK for JTAG interface and primary (default) Serial Wire Debug Clock. Input glitch filter (10 ns) capable.				
					I/O	-	PIO0_5 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.				
					-	-	R — Reserved.				
					0	-	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.				
					I/O	-	SCK0 — Serial clock for SSP0. Input glitch filter (10 ns) capable.				
TCK/SWCLK/PIO0_5/ VDDCMP/ CT16B0_MAT2/ SCK0	-	-	B3	[7][8]	I	I; PU	TCK/SWCLK — Test clock TCK for JTAG interface and secondary Serial Wire Debug ClocK. Use PIO0_2 for the default TCK/SWCLK function. Input glitch filter (10 ns) capable.				
					I/O	-	PIO0_5 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.				
					1	-	VDDCMP — Analog comparator alternate reference voltage.				
					0	-	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.				
					I/O	-	SCK0 — Serial clock for SSP0. Input glitch filter (10 ns) capable.				

32-bit ARM Cortex-M0 microcontroller

Table 4. LPC11Axx pin description table

Symbol	Pin/Ball Type Reset Description state [1]						
	LQFP48	HVQFN33	WLCSP20				
PIO0_23/RTS/	45	30	-	[3]	I/O	I; PU	PIO0_23 — General purpose digital input/output pin.
ACMP_O/ CT32B0_CAP0/SCLK					0	-	RTS — Request To Send output for USART.
010200_0/1 0/00ER					0	-	ACMP_O — Analog comparator output.
					1	-	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
					I/O	-	SCLK — Serial clock for USART.
PIO0_24/SCL/CLKIN/	9	7	-	[3]	I/O	I; PU	PIO0_24 — General purpose digital input/output pin.
CT16B1_CAP0					I/O	-	SCL — I ² C-bus clock input/output. This is not an I ² C-bus open-drain pin ^[10] .
					I	-	CLKIN — External clock input.
					I	-	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
PIO0_25/SDA/SSEL1/	17	12	-	[3]	I/O	I; PU	PIO0_25 — General purpose digital input/output pin.
CT16B1_MAT0					I/O	-	SDA — I^2 C-bus data input/output. This is not an I^2 C-bus open-drain pin ^[10] .
					I/O	-	SSEL1 — Slave Select for SSP1.
					0	-	CT16B1_MAT0 — Match output 0 for 16-bit timer 1.
PIO0_26/TXD/MISO1/	1	1	-	[3]	I/O	I; PU	PIO0_26 — General purpose digital input/output pin.
CT16B1_CAP1/					0	-	TXD — Transmitter data output for USART.
013200_0A12					I/O	-	MISO1 — Master In Slave Out for SSP1.
					I	-	CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.
					Ι	-	CT32B0_CAP2 — Capture input 2 for 32-bit timer 0.
PIO0_27/MOSI1/ ACMP_I1/	43	28	-	[9]	I/O	I; PU	PIO0_27 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
CT32B1_MAT1/ CT16B1_CAP2					I/O	-	MOSI1 — Master Out Slave In for SSP1. Input glitch filter (10 ns) capable.
					Ι	-	ACMP_I1 — Analog comparator input 1.
					0	-	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
					I	-	CT16B1_CAP2 — Capture input 2 for 16-bit timer 1. Input glitch filter (10 ns) capable.
PIO0_28/DTR/SSEL1/	2	-	-	[3]	I/O	I; PU	PIO0_28 — General purpose digital input/output pin.
CT32B0_CAP0					0	-	DTR — Data Terminal Ready output for USART.
					I/O	-	SSEL1 — Slave Select for SSP1.
					I	-	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
PIO0_29/DSR/SCK1/	13	-	-	[3]	I/O	I; PU	PIO0_29 — General purpose digital input/output pin.
CT32B0_CAP1					I	-	DSR — Data Set Ready input for USART.
					I/O	-	SCK1 — Serial clock for SSP1.
					I	-	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.

32-bit ARM Cortex-M0 microcontroller

7. Functional description

7.1 ARM Cortex-M0 processor

The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high performance and very low power consumption.

7.2 On-chip flash program memory

The LPC11Axx contain up to 32 kB of on-chip flash program memory.

7.3 On-chip EEPROM data memory

The LPC11Axx contain up to 4 kB of on-chip EEPROM data memory.

Remark: The top 64 bytes of the 4 kB EEPROM memory are reserved and cannot be written to. The entire EEPROM is writable for smaller EEPROM sizes.

7.4 On-chip SRAM

The LPC11Axx contain a total of 8 kB, 4 kB, or 2 kB on-chip static RAM data memory.

7.5 On-chip ROM

The on-chip ROM contains the boot loader and the following Application Programming Interfaces (API):

- In-System Programming (ISP) and In-Application Programming (IAP) support for flash programming
- Power profiles for configuring power consumption and PLL settings
- 32-bit integer division routines
- I²C-bus driver routines

7.6 Memory map

The LPC11Axx incorporates several distinct memory regions, shown in the following figures. <u>Figure 5</u> shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping.

The AHB peripheral area is 2 MB in size, and is divided to allow for up to 128 peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either type is allocated 16 kB of space. This allows simplifying the address decoding for each peripheral.

32-bit ARM Cortex-M0 microcontroller

7.14.1 Features

- 10-bit successive approximation ADC.
- Input multiplexing among 8 pins.
- Power-down mode.
- Measurement range 0 V to V_{DD(3V3)}.
- 10-bit conversion time \ge 2.44 µs (up to 400 kSamples/s).
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition of input pins ATRG0 or ATRG1, timer match signal, or comparator output. (Input signals must be held for a minimum of three system clock periods). Also see <u>Section 12.2</u>.
- Individual result registers for each ADC channel to reduce interrupt overhead.

7.15 Internal voltage reference

The internal voltage reference is an accurate 0.9 V and is the output of a low voltage band gap circuit. A typical value at $T_{amb} = 25 \text{ °C}$ is 0.903 V and varies typically only $\pm 3 \text{ mV}$ over the 0 °C to 85 °C temperature range (see <u>Table 21</u> and <u>Figure 27</u>). The internal voltage reference can be used in the following applications:

32-bit ARM Cortex-M0 microcontroller

7.17.1 Features

- 10-bit DAC.
- Resistor string architecture.
- Buffered output.
- Power-down mode.
- Conversion speed controlled via a programmable bias current.
- Optional output update modes:
 - write operations to the DAC register.
 - a transition of pins ATRG0 or ATRG1. Input signals must be held for a minimum of three system clock periods.
 - a timer match signal.
 - a comparator output signal held for a minimum of two system clock periods.
- Holds output value during Sleep mode if the DAC is not powered down.

7.18 Analog comparator

The analog comparator with selectable hysteresis can compare voltage levels on external pins and internal voltages. See <u>Table 24</u>.

After power-up and after switching the input channels of the comparator, the output of the voltage ladder must be allowed to settle to its stable value before it can be used as a comparator reference input. Settling times are given in <u>Table 25</u>.

32-bit ARM Cortex-M0 microcontroller

7.18.1 Features

- Selectable 0 mV, 10 mV (± 5 mV), and 20 mV (± 10 mV), 40 mV (± 20 mV) input hysteresis.
- Five selectable external voltages; fully configurable on either positive or negative input channel.
- Internal voltage reference from band gap and temperature sensor selectable on either positive or negative input channel.
- 32-stage voltage ladder with the internal reference voltage selectable on either the positive or the negative input channel. See <u>Table 24</u> to <u>Table 26</u>.
- Voltage ladder source voltage is selectable from an external pin or the main 3.3 V supply voltage rail.
- Voltage ladder can be separately powered down for applications only requiring the comparator function.
- Interrupt output is connected to NVIC.
- Comparator level output is connected to output pin ACMP_O.
- Comparator output is internally connected to the ADC and DAC and can be used to trigger a conversion.
- The comparator output is also connected internally to capture channel 3 on each of the 32-bit and 16-bit counter/timers.

32-bit ARM Cortex-M0 microcontroller

Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
I _{OHS}	HIGH-level short-circuit output current	V _{OH} = 0 V	<u>[9]</u>	-	-	-160	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD(IO)}$	[9]	-	-	50	mA
I _{pd}	pull-down current	V _I = 5 V		10	50	150	μA
l _{pu}	pull-up current	$\begin{array}{l} V_{\text{I}} = 0 \ \text{V} \\ 2.6 \ \text{V} \leq V_{\text{DD}(\text{IO})} \ \leq 3.6 \ \text{V} \end{array}$		-15	-50	-85	μΑ
		$V_{DD(IO)} < V_I < 5 V$		0	0	0	μA
I ² C-bus pins	s (PIO0_2 and PIO0_3)						
V _{IH}	HIGH-level input voltage			$0.7V_{DD(IO)}$	-	-	V
V _{IL}	LOW-level input voltage			-	-	0.3V _{DD(IO)}	V
V _{hys}	hysteresis voltage			-	0.05V _{DD(IO)}	-	V
I _{OL}	LOW-level output current	V_{OL} = 0.4 V; I ² C-bus pins configured as standard mode pins		4	-	-	mA
		$2.6~V \leq V_{DD(IO)}~\leq 3.6~V$					
I _{OL}	LOW-level output current	$V_{OL} = 0.4 \text{ V}$; I ² C-bus pins configured as high-current sink pins		20	-	-	mA
		$2.6~V \leq V_{DD(IO)}~\leq 3.6~V$					
ILI	input leakage current	$V_{I} = V_{DD(IO)}$	[11]	-	2	4	μA
		V _I = 5 V		-	10	22	μA
Oscillator p	bins						
V _{i(xtal)}	crystal input voltage			-0.5	1.8	1.95	V
V _{o(xtal)}	crystal output voltage			-0.5	1.8	1.95	V

Table 6. Static characteristics ... continued

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

[2] T_{amb} = 25 °C.

I_{DD} measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled. [3]

IRC enabled; SysOsc disabled; system PLL disabled. [4]

All digital peripherals disabled in the SYSCLKCTRL register except ROM, RAM, and flash. Peripheral clocks to USART and SSP0/1 [5] disabled in system configuration block. Analog peripherals disabled in the PDRUNCFG register except flash memory.

[6] IRC disabled; SysOsc enabled; system PLL enabled.

[7] Including voltage on outputs in 3-state mode.

[8] All supply voltages must be present.

[9] Allowed as long as the current limit does not exceed the maximum current allowed by the device.

[10] Does not apply to 3 V tolerant pins PIO0_4 and PIO0_14 (LQFP and HVQFN packages) or PIO0_5 (HVQFN package).

[11] To V_{SS}.

9.2 Peripheral power consumption

The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code is executed. Measured on a typical sample at $T_{amb} = 25$ °C.

Peripheral	Typical supply current in mA	
	12 MHz ^[1]	Average μA/MHz
Analog peripherals		
BOD	0.05	-
BOD, comparator	0.14	-
BOD, comparator, ADC, DAC, temperature sensor	0.40	-
DAC	0.26	-
ADC	0.01	-
Temperature sensor, ADC	0.01	-
Digital peripherals		
USART	0.15	12
12C	0.02	2
16-bit counter/timer 0/1	0.02	2
32-bit counter/timer 0/1	0.02	2
WWDT	0.02	2

 Table 7.
 Power consumption for individual analog and digital blocks

[1] IRC on; PLL off.

9.3 Electrical pin characteristics

All information provided in this document is subject to legal disclaimers

32-bit ARM Cortex-M0 microcontroller

32-bit ARM Cortex-M0 microcontroller

10.7 SSP interfaces

Table 16. Dynamic characteristics of SSP pins in SPI mode $2.6 V = V_{OD}(a) = V_{OD}(a) = 3.6 V$

2.6 V <= V	$V_{DD(3V3)} = V_{DD(10)} <= 3.6$	V.					
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
SPI maste	er (in SPI mode)						
T _{cy(clk)}	clock cycle time	full-duplex mode	[1]	50	-	-	ns
		when only transmitting	[1][1]	40			ns
t _{DS}	data set-up time	in SPI mode	[1][2]	15	-	-	ns
t _{DH}	data hold time	in SPI mode	[1][2]	0	-	-	ns
t _{v(Q)}	data output valid time	in SPI mode	[1][2]	-	-	10	ns
t _{h(Q)}	data output hold time	in SPI mode	[1][2]	0	-	-	ns
SPI slave	(in SPI mode)						
T _{cy(PCLK)}	PCLK cycle time			20	-	-	ns
t _{DS}	data set-up time	in SPI mode	[3][4]	0	-	-	ns
t _{DH}	data hold time	in SPI mode	[3][4]	$3\times T_{\text{cy}(\text{PCLK})} + 4$	-	-	ns
t _{v(Q)}	data output valid time	in SPI mode	[3][4]	-	-	$3 \times T_{cy(PCLK)}$ + 11	ns
t _{h(Q)}	data output hold time	in SPI mode	[3][4]	-	-	$2 \times T_{cy(PCLK)}$ + 5	ns

[1] T_{cy(clk)} = (SSPCLKDIV × (1 + SCR) × CPSDVSR) / f_{main}. The clock cycle time derived from the SPI bit rate T_{cy(clk)} is a function of the main clock frequency f_{main}, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register), and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).

[2] $T_{amb} = -40 \degree C$ to 85 $\degree C$.

 $[3] \quad T_{cy(clk)} = 12 \times T_{cy(PCLK)}.$

[4] $T_{amb} = 25 \text{ °C}$; for normal voltage supply range: $V_{DD(io) = vdd(3v3)} = 3.3 \text{ V}$.

32-bit ARM Cortex-M0 microcontroller

<i>DD</i> (010)						
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
DT _{sen}	sensor temperature accuracy	$T_{amb} = -40 \text{ °C to } +85 \text{ °C}$	<u>[1]</u> -	-	±3	°C
EL	linearity error	$T_{amb} = -40 \ ^{\circ}C \ to +85 \ ^{\circ}C$	-	-	±1.1	°C
t _{s(pu)}	power-up settling time	to 99% of temperature sensor output value	[2] _	81	85	μS
t _{s(sw)}	switching settling time	to 99% of temperature sensor output value	[2][3] _	1.5	2	μS

Table 22. Temperature sensor static and dynamic characteristics $V_{DD(2)(2)} = 2.6 V to 3.6 V$

[1] Absolute temperature accuracy.

[2] Typical values are derived from nominal simulation (V_{DD(3V3)} = 3.3 V; T_{amb} = 27 °C; nominal process models). Maximum values are derived from worst case simulation (V_{DD(3V3)} = 2.6 V; T_{amb} = 85 °C; slow process models).

[3] Settling time applies to switching between comparator and ADC channels.

Table 23. Temperature sensor Linear-Least-Square (LLS) fit parameters $V_{DD(3V3)} = 2.6 V \text{ to } 3.6 V$

Fit parameter	Range	Min	Тур	Max	Unit
LLS slope	$T_{amb} = 0 \ ^{\circ}C \ to \ 85 \ ^{\circ}C$	-	-2.36	-	mV/°C
	T_{amb} = -40 °C to +85 °C	-	-2.36	-	mV/°C
LLS intercept	T _{amb} = 0 °C to 85 °C	-	577	-	mV
	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$	-	576	-	mV

		, ,					
Symbol	Parameter	Conditions	N	Min	Тур	Мах	Unit
t _{s(pu)}	power-up settling time	to 99% of voltage ladder output value	<u>[1]</u> -		-	30	μs
t _{s(sw)}	switching settling time	to 99% of voltage ladder output value	[1] - [2]		-	15	μS

Table 25. Comparator voltage ladder dynamic characteristics

[1] Maximum values are derived from worst case simulation ($V_{DD(3V3)} = 2.6$ V; $T_{amb} = 85$ °C; slow process models).

[2] Settling time applies to switching between comparator and ADC channels.

Table 26.	Comparator voltage ladder reference static characteristics
$V_{DD(3V3)} =$	3.3 V; $T_{amb} = -40 \ ^{\circ}C \ to + 85 \ ^{\circ}C.$

Symbol	Parameter	Conditions		Min	Тур	Max ^[1]	Unit
E _{V(O)}	output voltage error	Internal $V_{DD(3V3)}$ supply					
		decimal code = 00	[2]	-	0	0	%
		decimal code = 08		-	0	±0.4	%
		decimal code = 16		-	-0.2	±0.2	%
		decimal code = 24		-	-0.2	±0.2	%
		decimal code = 30		-	-0.1	±0.1	%
		decimal code = 31		-	-0.1	±0.1	%
E _{V(O)}	output voltage error	External VDDCMP supply					
		decimal code = 00		-	0	0	%
		decimal code = 08		-	-0.1	±0.5	%
		decimal code = 16		-	-0.2	±0.4	%
		decimal code = 24		-	-0.2	±0.3	%
		decimal code = 30		-	-0.2	±0.2	%
		decimal code = 31		-	-0.1	±0.1	%

[1] Measured over a polyresistor matrix lot with a 2 kHz input signal and overdrive < 100 μ V.

[2] All peripherals except comparator, temperature sensor, and IRC turned off.

NXP Semiconductors

12. Application information

12.1 ADC usage notes

The following guidelines show how to increase the performance of the ADC in a noisy environment beyond the ADC specifications listed in <u>Table 18</u>:

- The ADC input trace must be short and as close as possible to the LPC11Axx chip.
- The ADC input traces must be shielded from fast switching digital signals and noisy power supply lines.
- Because the ADC and the digital core share the same power supply, the power supply line must be adequately filtered.
- To improve the ADC performance in a very noisy environment, put the device in Sleep mode during the ADC conversion.

12.2 Use of ADC input trigger signals

For applications that use trigger signals to start conversions and require a precise sample frequency, ensure that the period of the trigger signal is an integral multiple of the period of the ADC clock.

12.3 XTAL input

The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with $C_i = 100 \text{ pF}$. To limit the input voltage to the specified range, choose an additional capacitor to ground C_g which attenuates the input voltage by a factor $C_i/(C_i + C_g)$. In slave mode, a minimum of 200 mV(RMS) is needed.

In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF (<u>Figure 29</u>), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V. The XTALOUT pin in this configuration can be left unconnected.

External components and models used in oscillation mode are shown in Figure 30 and in Table 27 and Table 28. Since the feedback resistance is integrated on chip, only a crystal and the capacitances C_{X1} and C_{X2} need to be connected externally in case of fundamental mode oscillation (the fundamental frequency is represented by L, C_L and

32-bit ARM Cortex-M0 microcontroller

12.6 Reset pad configuration

12.7 UVLO protection and reset timer circuit

12.8 Guidelines for selecting a power supply filter for UVLO protection

For the UVLO circuits to hold the part in reset during shallow and deep brown-out conditions, you must filter the power supply line to allow for the BOD and POR circuits to settle when short voltage drops occur (see <u>Section 10.1 "Power supply fluctuations</u>").

Select the capacitance of the decoupling/bypass capacitor according to the following guidelines:

 $C >> I_{DD} \times t_{s} / \Delta V_{DD(3V3)}$ with

- $\Delta V_{DD(3V3)} \approx 100 \text{ mV}$ for the voltage drop below the BOD or POR trip points.
- $I_{DD} \approx 3$ mA with the IRC running and PLL/SysOsc off (see Figure 12).

32-bit ARM Cortex-M0 microcontroller

13. Package outline

Fig 34. Package outline LQFP48

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M0 microcontroller

Fig 37. Package outline (WLCSP20)

32-bit ARM Cortex-M0 microcontroller

14. Soldering

Product data sheet

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP B.V. 2012. All rights reserved.

32-bit ARM Cortex-M0 microcontroller

19. Contents

1	General description	1
2	Features and benefits	1
3	Applications	3
4	Ordering information	3
4.1	Ordering options	4
5	Block diagram	5
6	Pinning information	6
6.1	Pinning	6
6.2	Pin description	7
7	Functional description	23
7.1	ARM Cortex-M0 processor	23
7.2	On-chip flash program memory	23
7.3	On-chip EEPROM data memory.	23
7.4	On-chip SRAM	23
7.5	On-chip ROM	23
7.6	Memory map	23
7.7	Nested Vectored Interrupt Controller (NVIC) . 2	24
7.7.1	Features	24
7.7.2	Interrupt sources	25
7.8	IOCON block	25
7.9	Fast general purpose parallel I/O 2	25
7.9.1	Features	25
7.10	USART	26
7.10.1	Features	26
7.11	SSP serial I/O controller	26
7.11.1	Features	26
7.12	I ² C-bus serial I/O controller	26
7.12.1	Features	27
7.13	Configurable analog/mixed-signal	
	subsystems	27
7.14	10-bit ADC	28
7.14.1	Features	29
7.15		29
7.16		30
7.17	10-bit DAC	30
7.17.1		31
7.18		31
7.18.1	Constal purpose external event	32
7.19	General purpose external event	.
7 10 1		33 22
7.19.1	System tick timer	33
1.20 7.01	Windowed WatchDog Timer (M/M/DT)	ວວ ວວ
7 01 1		23 22
7 22	Clocking and power control	34
7 22 1	Crystal and internal oscillators	3 <u>4</u> 3 <u>4</u>
7 22 1 1	Internal RC Oscillator (IRC)	35
1.22.1.1		50

7.22.1.2	Crystal Oscillator (SysOsc)	35
7.22.1.3	Internal Low-Frequency Oscillator (LFOsc)	
	and Watchdog Oscillator (WDOsc)	36
7.22.2	Clock input	36
7.22.3	System PLL	36
7.22.4	Clock output	36
7.22.5	Wake-up process	36
7.22.6	Power control	36
7.22.6.1	Sleep mode	36
7.22.6.2	Power profiles	37
7.23	System control	37
7.23.1	UnderVoltage LockOut (UVLO) protection	37
7.23.2		37
7.23.3		38
7.23.4	Code security (Code Read Protection - CRP)	38
7.23.5		38
7.23.0		38
7.23.1	External interrupt inputs	39
7.24 0		39
8		40
9	Static characteristics	42
9.1	Power consumption	45
9.2	Peripheral power consumption	47
9.3	Electrical pin characteristics	47
10	Dynamic characteristics	51
10.1	Power supply fluctuations	51
10.2	Flash/EEPROM memory	51
10.3	External clock for oscillator in slave mode	52
10.4		53
10.5		54
10.6	I ² C-bus	54
10.7	SSP interfaces	56
11	Characteristics of analog peripherals	58
12	Application information	66
12.1	ADC usage notes	66
12.2	Use of ADC input trigger signals	66
12.3	XTAL input	66
12.4	XTAL Printed Circuit Board (PCB) layout	
	guidelines	68
12.5	Standard I/O pad configuration	68
12.6	Reset pad configuration	69
12.7	UVLO protection and reset timer circuit	69
12.8	Guidelines for selecting a power supply filter	
	for UVLO protection	69
13	Package outline	71
14	Soldering	75

continued >>