

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, Microwire, SPI, SSI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	42
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.6V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc11a12fbd48-101

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- ◆ Up to 16 pins are configurable with a digital input glitch filter for removing glitches with widths of 10 ns or less and two pins are configurable for 50 ns glitch filters.
- ♦ GPIO pins can be used as edge and level sensitive interrupt sources.
- ♦ High-current source output driver (20 mA) on one pin (PIO0_21).
- ♦ High-current sink driver (20 mA) on true open-drain pins (PIO0_2 and PIO0_3).
- Four general purpose counter/timers with a total of up to 16 capture inputs and 14 match outputs.
- Programmable Windowed WatchDog Timer (WWDT) with a dedicated, internal low-power WatchDog Oscillator (WDOsc).
- Analog peripherals:
 - ◆ 10-bit ADC with input multiplexing among 8 pins.
 - ◆ 10-bit DAC with flexible conversion triggering.
 - ◆ Highly flexible analog comparator with a programmable voltage reference.
 - Integrated temperature sensor.
 - ◆ Internal voltage reference.
 - ◆ UnderVoltage Lockout (UVLO) protection against power-supply droop below 2.4 V.
- Serial interfaces:
 - USART with fractional baud rate generation, internal FIFO, support for RS-485/9-bit mode and synchronous mode.
 - Two SSP controllers with FIFO and multi-protocol capabilities. Support data rates of up to 25 Mbit/s.
 - ♦ I²C-bus interface supporting the full I²C-bus specification and Fast-mode Plus with a data rate of 1 Mbit/s with multiple address recognition and monitor mode.
- Clock generation:
 - Crystal Oscillator (SysOsc) with an operating range of 1 MHz to 25 MHz.
 - 12 MHz internal RC Oscillator (IRC) trimmed to 1% accuracy that can optionally be used as a system clock.
 - Internal low-power, Low-Frequency Oscillator (LFOsc) with programmable frequency output.
 - Clock input for external system clock (25 MHz typical).
 - PLL allows CPU operation up to the maximum CPU rate with the IRC, the external clock, or the SysOsc as clock sources.
 - Clock output function with divider that can reflect the SysOsc, the IRC, the main clock, or the LFOsc.
- Power control:
 - Supports one reduced power mode: The ARM Sleep mode.
 - Power profiles residing in boot ROM allowing to optimize performance and minimize power consumption for any given application through one simple function call.
 - Processor wake-up from reduced power mode using any interrupt.
 - Power-On Reset (POR).
 - Brown-Out Detect (BOD) with two programmable thresholds for interrupt and one hardware controlled reset trip point.
 - POR and BOD are always enabled for rapid UVLO protection against power supply voltage droop below 2.4 V.
- Unique device serial number for identification.

32-bit ARM Cortex-M0 microcontroller

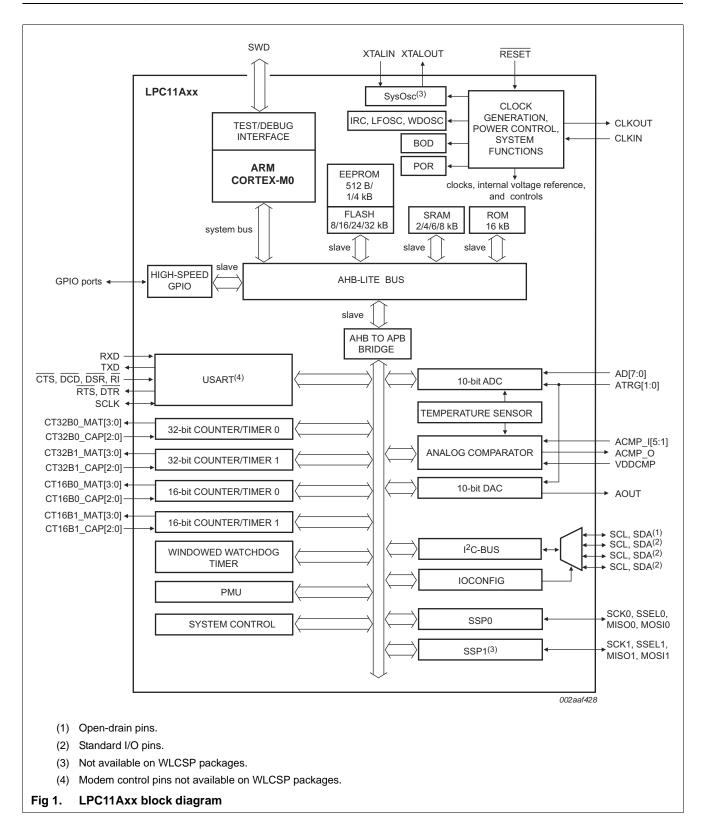
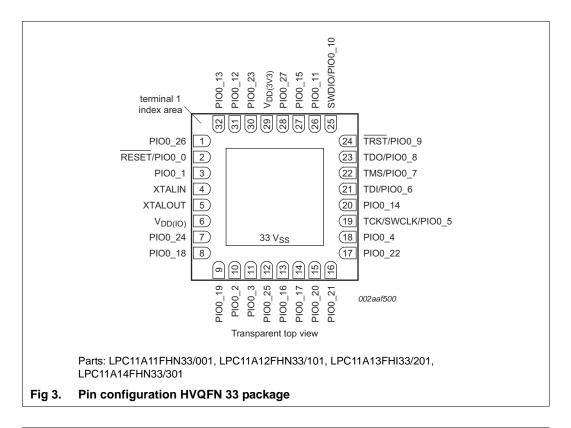
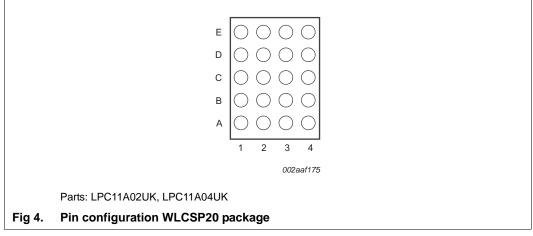

4.1 Ordering options

Table 2.Ordering options


Type number	Flash	SRAM	EEPROM	10-bit ADC channels	10-bit DAC	Temperature sensor	Analog comparator	USART	IdS/dSS	1 ² C	GPIO	Package
LPC11A02UK	16 kB	4 kB	2 kB	8	1	1	1	1	1	1	18	WLCSP20
LPC11A04UK	32 kB	8 kB	4 kB	8	1	1	1	1	1	1	18	WLCSP20
LPC11A11FHN33/001	8 kB	2 kB	512 B	8	1	1	1	1	2	1	28	HVQFN33
LPC11A12FHN33/101	16 kB	4 kB	1 kB	8	1	1	1	1	2	1	28	HVQFN33
LPC11A12FBD48/101	16 kB	4 kB	1 kB	8	1	1	1	1	2	1	42	LQFP48
LPC11A13FHI33/201	24 kB	6 kB	2 kB	8	1	1	1	1	2	1	28	HVQFN33
LPC11A14FHN33/301	32 kB	8 kB	4 kB	8	1	1	1	1	2	1	28	HVQFN33
LPC11A14FBD48/301	32 kB	8 kB	4 kB	8	1	1	1	1	2	1	42	LQFP48


32-bit ARM Cortex-M0 microcontroller

5. Block diagram

32-bit ARM Cortex-M0 microcontroller

6.2 Pin description

All functional pins on the LPC11Axx are mapped to GPIO port 0 and port 1 (see <u>Table 4</u>). The port pins are multiplexed to accommodate more than one function (see <u>Table 3</u>).

The pin function is controlled by the pin's IOCON register (see the *LPC11Axx user manual*). The standard I/O pad configuration is illustrated in Figure 31 and a detailed pin description is given in Table 4.

32-bit ARM Cortex-M0 microcontroller

Function	Туре			LQFP48	HVQFN33	WCSP20
		Port	Glitch filter	Pin	Pin	Ball
RI	I	PIO0_30	no	40	-	-
		PIO0_31	no	24	-	-
		PIO1_3	no	48	-	-
16-bit counte	r/timer CT [·]	16B0			I	
CT16B0_CAP	0	PIO0_2	50 ns ^[2]	15	10	A1
		PIO0_18	no	10	8	-
		PIO0_30	no	40	-	-
CT16B0_CAP	1	PIO0_16	10 ns ^[2]	18	13	A2
		PIO1_4	no	19	-	-
CT16B0_CAP	2	PIO0_17	10 ns ^[2]	21	14	A3
		PIO1_5	no	20	-	-
CT16B0_MAT	0 O	PIO0_7	no	33	22	C4
		PIO0_17	no	21	14	A3
		PIO1_6	no	11	-	-
CT16B0_MAT	1 0	PIO0_4	no	28	18	A4
		PIO0_9	no	35	24	D4
		PIO1_0	no	31	-	-
CT16B0_MAT	20	PIO0_5	no	29	19	B3
		PIO0_10	no	38	25	D3
		PIO1_7	no	25	-	-
16-bit counte	r/timer CT [·]	16B1			L	
CT16B1_CAP	0	PIO0_3	50 ns ^[2]	16	11	B1
		PIO0_24	no	9	7	-
		PIO1_3	no	48	-	-
CT16B1_CAP	1	PIO0_18	no	10	8	-
		PIO0_26	no	1	1	-
		PIO0_31	no	24	-	-
CT16B1_CAP	2	PIO0_27	10 ns ^[2]	43	28	-
		PIO1_7	no	25	-	-
CT16B1_MAT	0 O	PIO0_19	no	14	9	-
		PIO0_25	no	17	12	-
		PIO1_1	no	36	-	-
CT16B1_MAT	1 0	PIO0_14	no	30	20	B4
		PIO1_2	no	37	-	-
		PIO1_8	no	26	-	-
CT16B1_MAT	2 0	PIO0_20	no	22	15	-
		PIO1_2	no	37	-	-
		PIO1_9	no	12	-	-

Table 3. Pin multiplexing

32-bit ARM Cortex-M0 microcontroller

Table 4. LPC11Axx pin description table

Symbol	Pin/Ball			Туре	Reset state [1]	Description		
	LQFP48	HVQFN33	WLCSP20					
TDI/PIO0_6/AD0/ CT32B0_MAT3/MISO0	32	21	C3	[9]	1	I; PU	TDI — Test Data In for JTAG interface. Input glitch filter (10 ns) capable.	
					I/O	-	PIO0_6 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.	
					I	-	AD0 — A/D converter input 0.	
					0	-	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.	
					I/O	-	MISO0 — Master In Slave Out for SSP0. Input glitch filter (10 ns) capable.	
TMS/PIO0_7/AD1/ CT32B1_CAP0/	33	22	3 22	C4	[9]	I	I; PU	TMS — Test Mode Select for JTAG interface. Input glitch filter (10 ns) capable.
CT16B0_MAT0					I/O	-	PIO0_7 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.	
					I	-	AD1 — A/D converter input 1.	
					I	-	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. Input glitch filter (10 ns) capable.	
					0	-	CT16B0_MAT0 — Match output 2 for 16-bit timer 0.	
TDO/PIO0_8/AD2/	34	23	C2	[9]	0	I; PU	TDO — Test Data Out for JTAG interface.	
CT32B1_MAT0/SCK1					I/O	-	PIO0_8 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.	
					I	-	AD2 — A/D converter input 2.	
					0	-	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.	
					I/O	-	SCK1 — Serial clock for SSP1. Input glitch filter (10 ns) capable.	
TRST/PIO0_9/AD3/ CT32B1_MAT1/	35	24	D4	[9]	I	I; PU	TRST — Test Reset for JTAG interface. Input glitch filter (10 ns) capable.	
CT16B0_MAT1/CTS					I/O	-	PIO0_9 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.	
					I	-	AD3 — A/D converter, input 3.	
					0	-	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.	
					0	-	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.	
					Ι	-	CTS — Clear To Send input for USART. Input glitch filter (10 ns) capable.	

32-bit ARM Cortex-M0 microcontroller

Table 4. LPC11Axx pin description table

Symbol	Pin/Ball				Туре		Description
	LQFP48	HVQFN33	WLCSP20				
PIO0_14/MISO1/AD6/ CT32B0_CAP1/	30	20	-	[7]	I/O	I; PU	PIO0_14 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
CT16B1_MAT1/ VDDCMP					I/O	-	MISO1 — Master In Slave Out for SSP1. Input glitch filter (10 ns) capable.
					Ι	-	AD6 — A/D converter, input 6.
					I	-	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0. Input glitch filter (10 ns) capable.
					0	-	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
					I	-	VDDCMP — Analog comparator alternate reference voltage.
PIO0_14/MISO1/AD6/ CT32B0_CAP1/	-	-	B4	[9]	I/O	I; PU	PIO0_14 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
CT16B1_MAT1					I/O	-	MISO1 — Master In Slave Out for SSP1. Input glitch filter (10 ns) capable.
					Ι	-	AD6 — A/D converter, input 6.
					I	-	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0. Input glitch filter (10 ns) capable.
					0	-	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
PIO0_15/TXD/AD7/ CT32B0_CAP2/SDA	41	27	E4	[9]	I/O	I; PU	PIO0_15 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					0	-	TXD — Transmitter data output for USART.
					Ι	-	AD7 — A/D converter, input 7.
					Ι	-	CT32B0_CAP2 — Capture input 2 for 32-bit timer 0. Input glitch filter (10 ns) capable.
					I/O	-	SDA — I^2C -bus data input/output. This is not an I^2C -bus open-drain pin ^[10] . Input glitch filter (10 ns) capable.
PIO0_16/ ATRG0/ACMP_I3/	18	13	A2	[9]	I/O	I; PU	PIO0_16 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
CT16B0_CAP1/SCL					Ι	-	ATRG0 — Conversion trigger 0 for ADC or DAC. Input glitch filter (10 ns) capable.
					I	-	ACMP_I3 — Analog comparator input 3.
					I	-	CT16B0_CAP1 — Capture input 1 for 16-bit timer 0. Input glitch filter (10 ns) capable.
					I/O	-	SCL — I^2 C-bus clock input/output. This is not an I^2 C-bus open-drain pin ^[10] . Input glitch filter (10 ns) capable.

- Four programmable interrupt priority levels with hardware priority level masking.
- Software interrupt generation.

7.7.2 Interrupt sources

Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags. Individual interrupt flags may also represent more than one interrupt source.

Up to eight GPIO pins, regardless of the selected function, can be programmed to generate an interrupt on a level, or rising edge or falling edge, or both. The interrupt generating GPIOs can be selected from the GPIO pins with a configurable input glitch filter.

7.8 IOCON block

The IOCON block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on-chip peripherals.

Peripherals should be connected to the appropriate pins prior to being activated and prior to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to a related pin should be considered undefined.

Up to 16 pins can be configured with a digital input glitch filter for removing voltage glitches with widths of 10 ns or less (see <u>Table 3</u> and <u>Table 4</u>), two pins (PIO0_2 and PIO0_3) can be configured with a 50 ns digital input glitch filter.

7.9 Fast general purpose parallel I/O

Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs can be set or cleared in one write operation.

LPC11Axx use accelerated GPIO functions:

- GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing can be achieved.
- An entire port value can be written in one instruction.

Additionally, any GPIO pin (total of up to 42 pins) providing a digital function can be programmed to generate an interrupt on a level, a rising or falling edge, or both.

7.9.1 Features

- Bit level port registers allow a single instruction to set and clear any number of bits in one write operation.
- Direction control of individual bits.
- All I/O default to inputs with internal pull-up resistors enabled after reset except for the I²C-bus true open-drain pins PIO0_2 and PIO0_3.
- Pull-up/pull-down configuration, repeater, and open-drain modes can be programmed through the IOCON block for each GPIO pin (see <u>Figure 31</u> and <u>Figure 32</u> for functional diagrams).

32-bit ARM Cortex-M0 microcontroller

8. Limiting values

Table 5. Limiting values

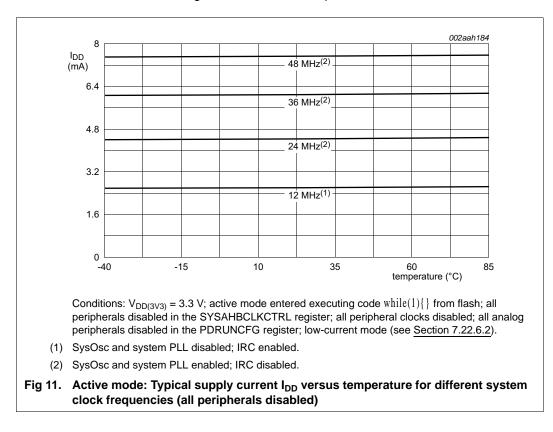
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD(3V3)}	supply voltage (3.3 V)		[2] -0.5	4.6	V
V _{DD(IO)}	input/output supply voltage		<u>[2]</u> –0.5	4.6	V
Vı	input voltage	5 V tolerant I/O pins; only valid when the V _{DD(IO)} supply voltage is present	<u>[3][4]</u> –0.5	+5.5	V
		on pins PIO0_2 and PIO0_3	<u>[5]</u> –0.5	+5.5	V
		3 V tolerant I/O pins without over-voltage protection	<u>[6]</u> –0.5	+3.6	V
V _{IA}	analog input voltage		[7][8] [9] –0.5 V	4.6	V
V _{i(xtal)}	crystal input voltage		<u>[2]</u> –0.5	+2.5	V
I _{DD}	supply current	per supply pin	-	100	mA
I _{SS}	ground current	per ground pin	-	100	mA
I _{latch}	I/O latch-up current	−(0.5V _{DD(IO)}) < V _I < (1.5V _{DD(IO)}); T _i < 125 °C	-	100	mA
T _{stg}	storage temperature		<u>[10]</u> –65	+150	°C
T _{j(max)}	maximum junction temperature		-	150	°C
P _{tot(pack)}	total power dissipation (per package)	based on package heat transfer, not device power consumption	-	1.5	W
V _{esd}	electrostatic discharge voltage	human body model; all pins	<u>[11]</u> –6.5	+6.5	kV
V _{trig}	trigger voltage	for LVTSCR based ESD pin protection;	<u>[12]</u> 8.2	-	V
		1 ns to 10 ns rise time			
		> 10 ns rise time	> 8.5	-	V

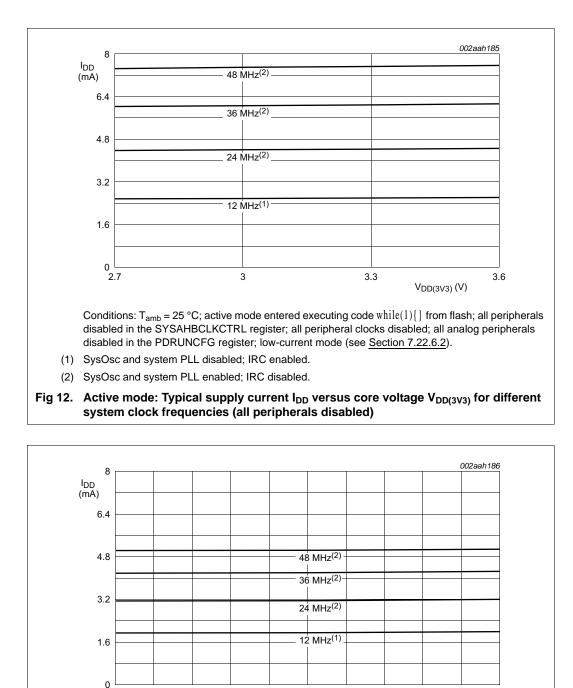
[1] The following applies to the limiting values:

a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.


[2] Maximum/minimum voltage above the maximum operating voltage (see <u>Table 6</u>) and below ground that can be applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.

[3] Applies to all 5 V tolerant I/O pins except true open-drain pins PIO0_2 and PIO0_3 and except the 3 V tolerant pins PIO0_4 and PIO0_14 (LQFP and HVQFN packages) or PIO0_5 (WLCSP package).


9.1 Power consumption

Power measurements in Active and Sleep modes were performed under the following conditions (see *LPC11Axx user manual*):

- Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.
- Configure GPIO pins as outputs using the GPIOnDIR registers.
- Write 0 to all GPIO DIR registers to drive the outputs LOW.

32-bit ARM Cortex-M0 microcontroller

60 temperature (°C) Conditions: $V_{DD(3V3)} = 3.3 V$; sleep mode entered from flash; all peripherals disabled in the SYSAHBCLKCTRL register and PDRUNCFG register; all peripheral clocks disabled; BOD disabled; low-current mode (see Section 7.22.6.2).

35

10

(1) SysOsc and system PLL disabled; IRC enabled.

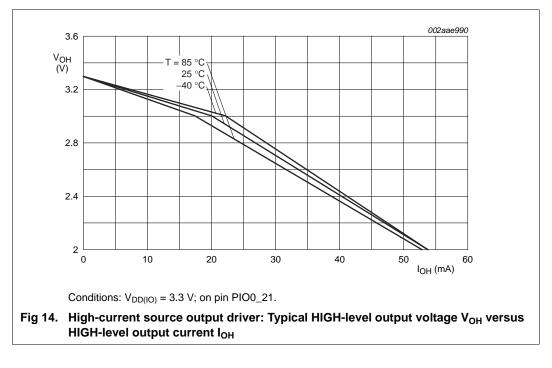
-15

-40

- (2) SysOsc and system PLL enabled; IRC disabled.
- Fig 13. Sleep mode: Typical supply current I_{DD}versus temperature for different system clock frequencies (all peripherals disabled)

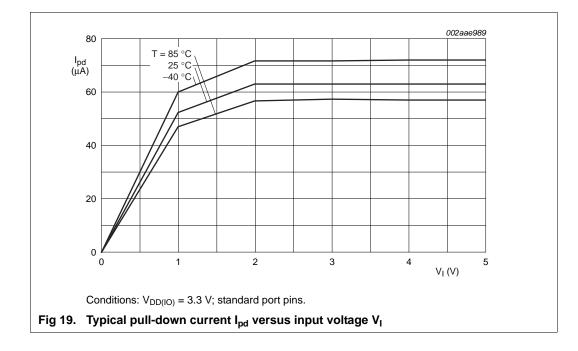
85

9.2 Peripheral power consumption


The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code is executed. Measured on a typical sample at $T_{amb} = 25$ °C.

Peripheral	Typical supply current in mA	
	12 MHz ^[1]	Average μ A/MHz
Analog peripherals		
BOD	0.05	-
BOD, comparator	0.14	-
BOD, comparator, ADC, DAC, temperature sensor	0.40	-
DAC	0.26	-
ADC	0.01	-
Temperature sensor, ADC	0.01	-
Digital peripherals		
USART	0.15	12
12C	0.02	2
16-bit counter/timer 0/1	0.02	2
32-bit counter/timer 0/1	0.02	2
WWDT	0.02	2

 Table 7.
 Power consumption for individual analog and digital blocks


[1] IRC on; PLL off.

9.3 Electrical pin characteristics

All information provided in this document is subject to legal disclaimers

32-bit ARM Cortex-M0 microcontroller

Product data sheet

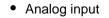
32-bit ARM Cortex-M0 microcontroller

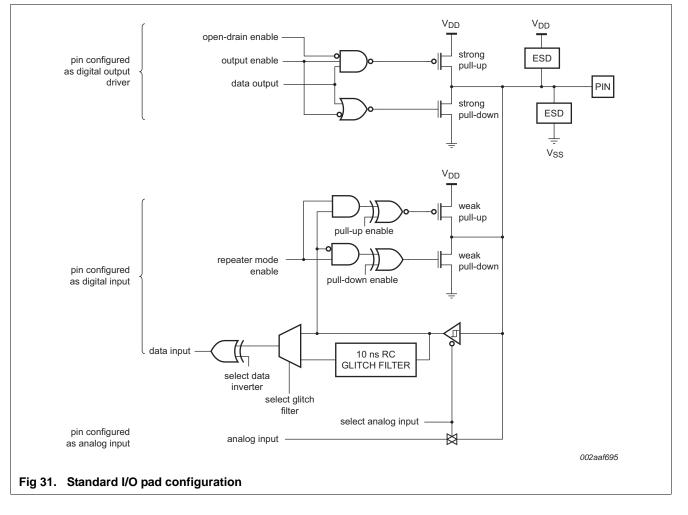
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Static cha	aracteristics						
I _{DD}	supply current			-	55	-	μΑ
V _{IC}	common-mode input voltage			0	-	V _{DD(3V3)}	V
DVo	output voltage variation			0	-	V _{DD(3V3)}	V
V _{offset}	offset voltage	V _{IC} = 0.1 V		-	-4 to +4.2	-	mV
		V _{IC} = 1.5 V		-	±2	-	mV
		V _{IC} = 2.8 V		-	±2.5		mV
Dynamic	characteristics						
t _{startup}	start-up time	nominal process		-	4	-	μS
t _{PD} propagation delay	propagation delay	HIGH to LOW; $V_{DD(3V3)} = 3.0 V$;		-			
		V _{IC} = 0.1 V; 50 mV overdrive input	[1]		129	140	ns
		V _{IC} = 0.1 V; rail-to-rail input	[1]	-	210	250	ns
		V _{IC} = 1.5 V; 50 mV overdrive input	[1]	-	112	130	ns
		V _{IC} = 1.5 V; rail-to-rail input	[1]	-	127	160	ns
		V _{IC} = 2.9 V; 50 mV overdrive input	[1]	-	151	170	ns
		V _{IC} = 2.9 V; rail-to-rail input	[1]	-	57	70	ns
t _{PD}	propagation delay	LOW to HIGH; $V_{DD(3V3)} = 3.0 V$;		-			
		V _{IC} = 0.1 V; 50 mV overdrive input	<u>[1]</u>		232	240	ns
		V _{IC} = 0.1 V; rail-to-rail input	<u>[1]</u>	-	58	60	ns
		V _{IC} = 1.5 V; 50 mV overdrive input	<u>[1]</u>	-	210	230	ns
		V _{IC} = 1.5 V; rail-to-rail input	<u>[1]</u>	-	178	200	ns
		V _{IC} = 2.9 V; 50 mV overdrive input	[1]	-	166	190	ns
		V _{IC} = 2.9 V; rail-to-rail input	[1]	-	333	550	ns
V _{hys}	hysteresis voltage	positive hysteresis; $V_{DD(3V3)} = 3.0 \text{ V};$ $V_{IC} = 1.5 \text{ V}$	[2]	-	5, 10, 20	-	mV
V _{hys}	hysteresis voltage	negative hysteresis; $V_{DD(3V3)} = 3.0 \text{ V};$ $V_{IC} = 1.5 \text{ V}$	[2]	-	5, 10, 20	-	mV
R _{lad}	ladder resistance	-		-	1.034	-	MΩ

Table 24. Comparator characteristics

[1] $C_L = 10 \text{ pF}$; results from measurements on silicon samples over process corners and over the full temperature range $T_{amb} = -40 \text{ °C}$ to +85 °C.

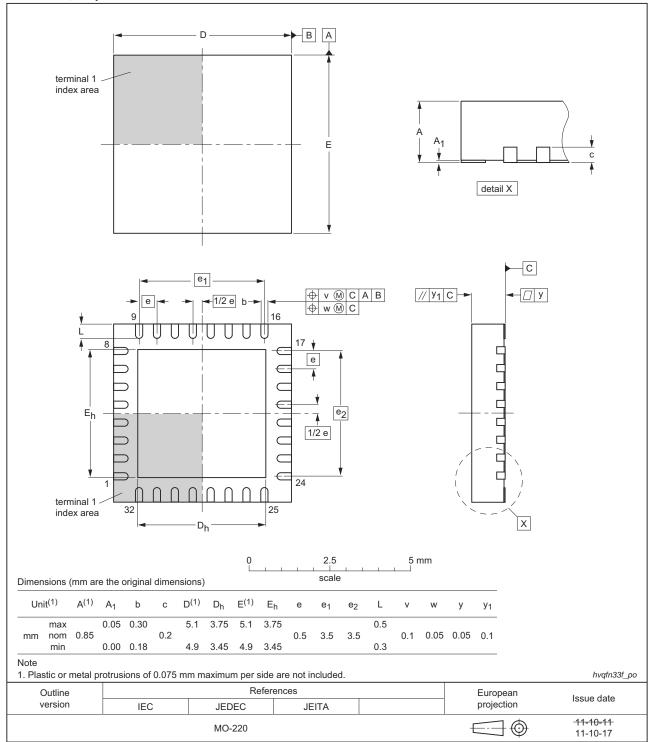
[2] Input hysteresis is relative to the reference input channel and is software programmable.


12.4 XTAL Printed Circuit Board (PCB) layout guidelines


The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{x1} , C_{x2} , and C_{x3} in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Values of C_{x1} and C_{x2} should be chosen smaller accordingly to the increase in parasitics of the PCB layout.

12.5 Standard I/O pad configuration

Figure 31 shows the possible pin modes for standard I/O pins with analog input function:


- Digital output driver with configurable open-drain output
- Digital input: Weak pull-up resistor (PMOS device) enabled/disabled
- Digital input: Weak pull-down resistor (NMOS device) enabled/disabled
- Digital input: Repeater mode enabled/disabled
- Digital input: Input glitch filter selectable on 17 pins.

All information provided in this document is subject to legal disclaimers

32-bit ARM Cortex-M0 microcontroller

HVQFN33: plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 5 x 5 x 0.85 mm

Fig 36. Package outline HVQFN33 (5x5)

All information provided in this document is subject to legal disclaimers

32-bit ARM Cortex-M0 microcontroller

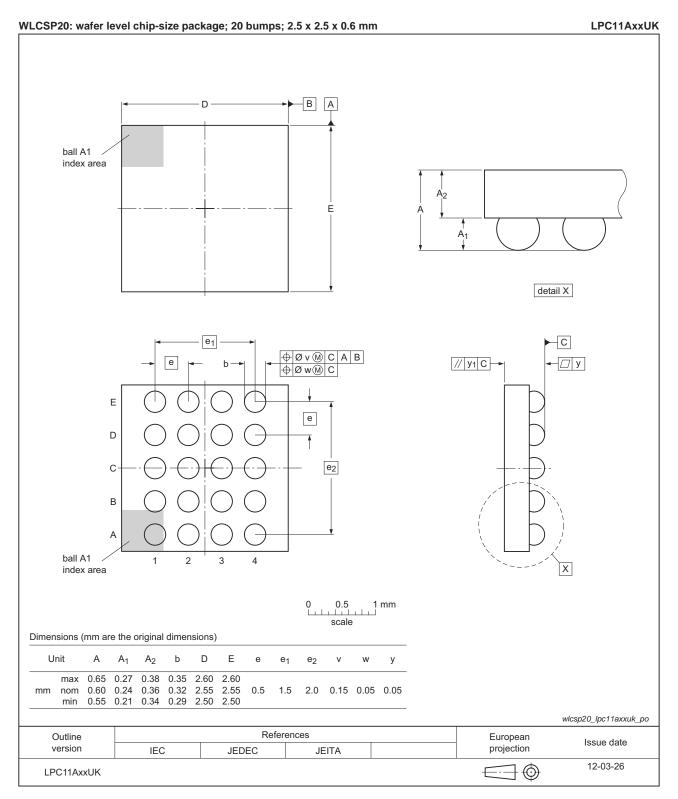
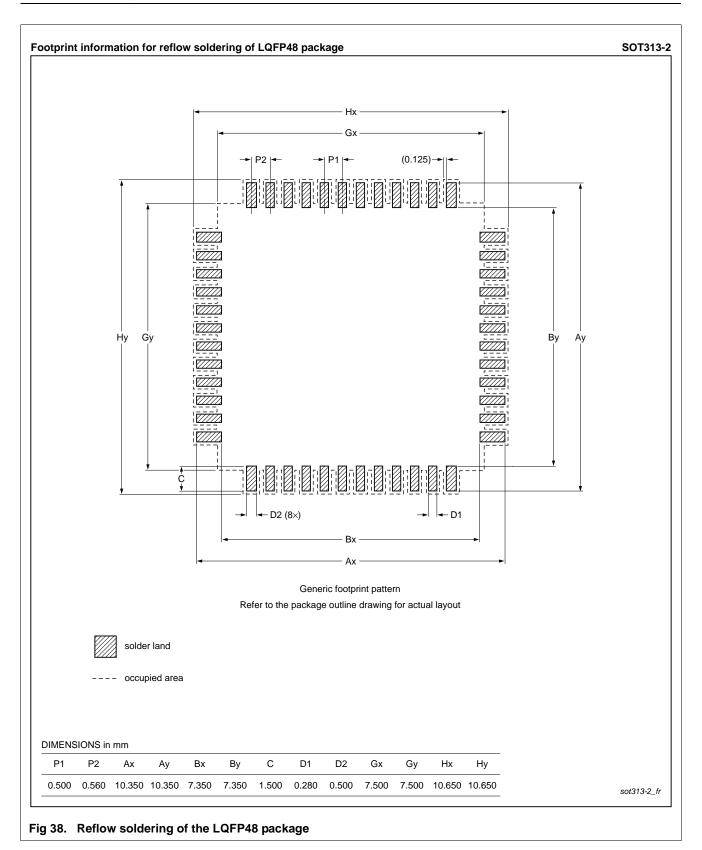



Fig 37. Package outline (WLCSP20)

32-bit ARM Cortex-M0 microcontroller

14. Soldering

Product data sheet

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP B.V. 2012. All rights reserved.

32-bit ARM Cortex-M0 microcontroller

19. Contents

1	General description	1
2	Features and benefits	1
3	Applications	3
4	Ordering information	
4.1	Ordering options	
5	Block diagram	
6	Pinning information	
6.1	Pinning	
6.2	Pin description	
7	Functional description	
7.1	ARM Cortex-M0 processor	
7.2	On-chip flash program memory	
7.3	On-chip EEPROM data memory	
7.4	On-chip SRAM	
7.5	On-chip ROM	
7.6	Memory map	
7.7		24
7.7.1	Features	24
7.7.2	Interrupt sources	25
7.8	IOCON block	25
7.9	Fast general purpose parallel I/O 2	25
7.9.1	Features	25
7.10	USART	26
7.10.1	Features	
7.11	SSP serial I/O controller	26
7.11.1	Features	
7.12	I ² C-bus serial I/O controller	
7.12.1	Features	27
7.13	Configurable analog/mixed-signal	
	subsystems	
7.14	10-bit ADC	
7.14.1	Features	
7.15	Internal voltage reference	
7.16	Temperature sensor	
7.17		30
7.17.1		31
7.18		31
7.18.1	Features	32
7.19	General purpose external event	.
7 10 1		33
7.19.1 7.20		33 33
7.20	5	33 33
7.21.1	e	33
7.21.1		33 34
7.22.1		34 34
7.22.1.1	•	34 35
1.22.1.1		50

7.22.1.2	Crystal Oscillator (SysOsc)	35
7.22.1.3		
	and Watchdog Oscillator (WDOsc)	36
7.22.2	Clock input	36
7.22.3	System PLL	36
7.22.4	Clock output	36
7.22.5	Wake-up process	36
7.22.6	Power control	36
7.22.6.1	Sleep mode	36
7.22.6.2	· · · · · · · · · · · · · · · · · · ·	37
7.23	System control	37
7.23.1	UnderVoltage LockOut (UVLO) protection	37
7.23.2	Reset	37
7.23.3	Brown-out detection	38
7.23.4	Code security (Code Read Protection - CRP)	38
7.23.5		38
7.23.6	AHBLite	38
7.23.7	External interrupt inputs	39
7.24	Emulation and debugging	39
8	Limiting values	40
9	Static characteristics	42
9.1	Power consumption	45
9.2	Peripheral power consumption	47
9.3	Electrical pin characteristics	47
10	Dynamic characteristics	51
10.1	Power supply fluctuations	51
10.2	Flash/EEPROM memory	51
10.3	External clock for oscillator in slave mode	52
10.4	Internal oscillators	53
10.5	I/O pins	54
10.6	I ² C-bus	54
10.7	SSP interfaces	56
11	Characteristics of analog peripherals	58
12	Application information	66
12.1	ADC usage notes	66
12.2	Use of ADC input trigger signals	66
12.3	XTAL input	66
12.4	XTAL Printed Circuit Board (PCB) layout	
	guidelines	68
12.5	Standard I/O pad configuration	68
12.6	Reset pad configuration	69
12.7	UVLO protection and reset timer circuit	69
12.8	Guidelines for selecting a power supply filter	
	for UVLO protection	69
13	Package outline	71
14	Soldering	75

continued >>