

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC3850 Quad Core
Interface	Ethernet, I ² C, PCI, RGMII, Serial RapidIO, SGMII, SPI, UART/USART
Clock Rate	1GHz
Non-Volatile Memory	ROM (96kB)
On-Chip RAM	576kB
Voltage - I/O	2.50V
Voltage - Core	1.00V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8154tag1000b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name	
E17	M2DQ56	I/O	GVDD2	
E18	M2DQ57	I/O	GVDD2	
E19	M2DQS7	I/O	GVDD2	
E20	Reserved	NC	_	
E21	Reserved	NC	_	
E22	Reserved	NC		
E23	SXPVDD1	Power	N/A	
E24	SXPVSS1	Ground	N/A	
E25	SR1_PLL_AGND ⁹	Ground	SXCVSS1	
E26	SR1_PLL_AVDD ⁹	Power	SXCVDD1	
E27	SXCVSS1	Ground	N/A	
E28	SXCVDD1	Power	N/A	
F1	VSS	Ground	N/A	
F2	GVDD2	Power	N/A	
F3	M2DQ16	I/O	GVDD2	
F4	VSS	Ground	N/A	
F5	GVDD2	Power	N/A	
F6	M2DQ17	I/O	GVDD2	
F7	VSS	Ground	N/A	
F8	GVDD2	Power	N/A	
F9	M2BA2	0	GVDD2	
F10	VSS	Ground	N/A	
F11	GVDD2	Power	N/A	
F12	M2A4	0	GVDD2	
F13	VSS	Ground	N/A	
F14	GVDD2	Power	N/A	
F15	M2DQ42	I/O	GVDD2	
F16	VSS	Ground	N/A	
F17	GVDD2	Power	N/A	
F18	M2DQ58	I/O	GVDD2	
F19	M2DQS7	I/O	GVDD2	
F20	GVDD2	Power	N/A	
F21	SXPVDD1	Power	N/A	
F22	SXPVSS1	Ground	N/A	
F23	SR1_TXD2/SG1_TX ⁴	0	SXPVDD1	
F24	SR1_TXD2/SG1_TX ⁴	0	SXPVDD1	
F25	SXCVDD1	Power	N/A	
F26	SXCVSS1	Ground	N/A	
F27	SR1_RXD2/SG1_RX ⁴		SXCVDD1	
F28	SR1_RXD2/SG1_RX ⁴		SXCVDD1	
G1	M2DQS2	I/O	GVDD2	
G2	M2DQS2	I/O	GVDD2 GVDD2	
G3	M2DQ32 M2DQ19	I/O	GVDD2 GVDD2	
G3 G4	M2DQ19 M2DM2	0	GVDD2 GVDD2	
G5	M2DQ21	U	GVDD2 GVDD2	
00	M2DQ21 M2DQ22	I/O	GVDD2 GVDD2	

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name	
M5	M2DQ1	I/O	GVDD2	
M6	VSS	Ground	N/.A	
M7	GVDD2	Power	N/A	
M8	M2DQ7	I/O	GVDD2	
M9	M2DQ6	I/O	GVDD2	
M10	VSS	Ground	N/A	
M11	VDD	Power	N/A	
M12	VSS	Ground	N/A	
M13	VDD	Power	N/A	
M14	VSS	Ground	N/A	
M15	VSS	Ground	N/A	
M16	VSS	Ground	N/A	
M17	VSS	Ground	N/A	
M18	VSS	Ground	N/A	
M19	VDD	Power	N/A	
M20	Reserved	NC	_	
M21	Reserved	NC	_	
M22	Reserved	NC	_	
M23	SXPVSS2	Ground	N/A	
M24	SXPVDD2	Power	N/A	
M25	SR2_IMP_CAL_TX		SXCVDD2	
M26	SXCVSS2	Ground	N/A	
M27	Reserved	NC	_	
M28	Reserved	NC	_	
N1	VSS	Ground	N/A	
N2	TRST ⁷		QVDD	
N3	PORESET ⁷	I	QVDD	
N4	VSS	Ground	N/A	
N5	TMS ⁷		QVDD	
N6	CLKOUT	0	QVDD	
N7	VSS	Ground	N/A	
N8	VSS	Ground	N/A	
N9	VSS	Ground	N/A	
N10	VDD	Power	N/A	
N11	VSS	Ground	N/A	
N12	M3VDD	Power	N/A	
N13	VSS	Ground	N/A	
N14	VSS	Ground	N/A	
N15	VSS	Ground	N/A	
N16	VDD	Power	N/A	
N17	VSS	Ground	N/A	
N18	VDD	Power	N/A	
N19	VSS	Ground	N/A	
N20	Reserved	NC		
N21	SXPVDD2	Power	N/A	
N22	SXPVSS2	Ground	N/A	

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
R13	VSS	Ground	N/A
R14	VDD	Power	N/A
R15	VSS	Ground	N/A
R16	MVDD	Power	N/A
R17	VSS	Ground	N/A
R18	VDD	Power	N/A
R19	VSS	Ground	N/A
R20	VSS	Non-user	N/A
R21	SXPVSS2	Ground	N/A
R22	SXPVDD2	Power	N/A
R23	SR2_TXD1/PE_TXD1 ⁴	0	SXPVDD2
R24	SR2_TXD1/PE_TXD1 ⁴	0	SXPVDD2
R25	SXCVSS2	Ground	N/A
R26	SXCVDD2	Power	N/A
R27	SR2_RXD1/PE_RXD1 ⁴		SXCVDD2
R28	SR2_RXD1/PE_RXD1 ⁴		SXCVDD2
T1	VSS	Ground	N/A
T2	тск		QVDD
T3	SRESET ^{6,7}	I/O	QVDD
T4	TDI		QVDD
T5	VSS	Ground	N/A
T6	TDO	0	QVDD
T7	VSS	Ground	N/A
T8	VSS	Ground	N/A
T9	QVDD	Power	N/A
T10	VSS	Ground	N/A
T10	VDD	Power	N/A
T12	VSS	Ground	N/A N/A
T13	M3VDD	Power	N/A
T14	VSS	Ground	N/A
T15	VDD	Power	N/A
T16	VSS	Ground	N/A
T17	MVDD	Power	N/A
T18	VSS	Ground	N/A
T19	VDD	Power	N/A
T20	VSS	Ground	N/A
T21	VSS	Non-user	N/A
T22	SR2_IMP_CAL_RX		SXCVDD2
T23	SXPVSS2	Ground	N/A
T24	SXPVDD2	Power	N/A
T25	SR2_REF_CLK		SXCVDD2
T26	SR2_REF_CLK		SXCVDD2
T27	Reserved	NC	—
T28	Reserved	NC	
U1	M1DQ8	I/O	GVDD1
U2	VSS	Ground	N/A

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name	
Y11	GVDD1	Power	N/A	
Y12	VSS	Ground	N/A	
Y13	GVDD1	Power	N/A	
Y14	VSS	Ground	N/A	
Y15	GVDD1	Power	N/A	
Y16	VSS	Ground	N/A	
Y17	GVDD1	Power	N/A	
Y18	VSS	Ground	N/A	
Y19	GVDD1	Power	N/A	
Y20	VSS	Ground	N/A	
Y21	NVDD	Power	N/A	
Y22	GPIO20/SPI_SL ^{5,8}	I/O	NVDD	
Y23	GPIO17/SPI_SCK ^{5,8}	I/O	NVDD	
Y24	GPIO14/DRQ0/IRQ14/RC14 ^{5,8}	I/O	NVDD	
Y25	GPI012/IRQ12/RC12 ^{5,8}	I/O	NVDD	
Y26	GPIO8/IRQ8/RC8 ^{5,8}	I/O	NVDD	
Y27	NVDD	Power	N/A	
Y28	VSS	Ground	N/A	
AA1	GVDD1	Power	N/A	
AA2	VSS	Ground	N/A	
AA3	M1DQ18	I/O	GVDD1	
AA4	GVDD1	Power	N/A	
AA5	VSS	Ground	N/A	
AA6	M1DQ20	I/O	GVDD1	
AA7	GVDD1	Power	N/A	
AA8	VSS	Ground	N/A	
AA9	M1A15	0	GVDD1	
AA10	M1CK2	0	GVDD1	
AA11	M1MDIC0	I/O	GVDD1	
AA12	M1VREF		GVDD1	
AA13	M1MDIC1	I/O	GVDD1	
AA14	M1DQ46	I/O	GVDD1	
AA15	M1DQ47	I/O	GVDD1	
AA16	M1DQ45	I/O	GVDD1	
AA17	M1DQ41	I/O	GVDD1	
AA18	M1DQ62	I/O	GVDD1	
AA19	M1DQ63	I/O	GVDD1	
AA20	M1DQ61	I/O	GVDD1	
AA21	VSS	Ground	N/A	
AA22	GPI021 ^{5,8}	I/O	NVDD	
AA23	GPI018/SPI_MOSI ^{5,8}	I/O	NVDD	
AA23 AA24	GPIO16/RC16 ^{5,8}	I/O	NVDD	
AA24 AA25	GPIO4/DDN1/IRQ4/RC4 ^{5,8}	I/O	NVDD	
AA26	GPIO9/IRQ9/RC9 ^{5,8}	I/O	NVDD	
AA20 AA27	GPIO6/IRQ6/RC6 ^{5,8}	I/O	NVDD	
AA27 AA28	GPI01/IRQ1/RC1 ^{5,8}	I/O	NVDD	

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
AB1	M1DQS2	I/O	GVDD1
AB2	M1DQS2	I/O	GVDD1
AB3	M1DQ19	I/O	GVDD1
AB4	M1DM2	0	GVDD1
AB5	M1DQ21	I/O	GVDD1
AB6	M1DQ22	I/O	GVDD1
AB7	M1CKE0	0	GVDD1
AB8	M1A11	0	GVDD1
AB9	M1A7	0	GVDD1
AB10	M1CK2	0	GVDD1
AB11	M1APAR_OUT	0	GVDD1
AB12	M1ODT1	0	GVDD1
AB13	M1APAR_IN	I	GVDD1
AB14	M1DQ43	I/O	GVDD1
AB15	M1DM5	0	GVDD1
AB16	M1DQ44	I/O	GVDD1
AB17	M1DQ40	I/O	GVDD1
AB18	M1DQ59	I/O	GVDD1
AB19	M1DM7	0	GVDD1
AB20	M1DQ60	I/O	GVDD1
AB21	VSS	Ground	N/A
AB22	GPIO31/I2C_SDA ^{5,8}	I/O	NVDD
AB23	GPIO27/TMR4/RCW_SRC0 ^{5,8}	I/O	NVDD
AB24	GPIO25/TMR2/RCW_SRC1 ^{5,8}	I/O	NVDD
AB25	GPIO24/TMR1/RCW_SRC2 ^{5,8}	I/O	NVDD
AB26	GPIO10/IRQ10/RC10 ^{5,8}	I/O	NVDD
AB27	GPIO5/IRQ5/RC5 ^{5,8}	I/O	NVDD
AB28	GPIO0/IRQ0/RC0 ^{5,8}	I/O	NVDD
AC1	VSS	Ground	N/A
AC2	GVDD1	Power	N/A
AC3	M1DQ16	I/O	GVDD1
AC4	VSS	Ground	N/A
AC5	GVDD1	Power	N/A
AC6	M1DQ17	I/O	GVDD1
AC7	VSS	Ground	N/A
AC8	GVDD1	Power	N/A
AC9	M1BA2	0	GVDD1
AC10	VSS	Ground	N/A
AC11	GVDD1	Power	N/A
AC12	M1A4	0	GVDD1
AC13	VSS	Ground	N/A
AC14	GVDD1	Power	N/A
AC15	M1DQ42	I/O	GVDD1
AC16	VSS	Ground	N/A
AC17	GVDD1	Power	N/A
AC18	M1DQ58	I/O	GVDD1

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
AE9	M1A8	0	GVDD1
AE10	GVDD1	Power	N/A
AE11	VSS	Ground	N/A
AE12	M1A0	0	GVDD1
AE13	GVDD1	Power	N/A
AE14	VSS	Ground	N/A
AE15	M1DQ39	I/O	GVDD1
AE16	GVDD1	Power	N/A
AE17	VSS	Ground	N/A
AE18	M1DQ54	I/O	GVDD1
AE19	GVDD1	Power	N/A
AE20	VSS	Ground	N/A
AE21	GPIO29/UART_TXD ^{5,8}	I/O	NVDD
AE22	TDM1TCK/GE2_RX_CLK ³		NVDD
AE23	TDM1RSN/GE2_RX_CTL ³	I/O	NVDD
AE24	VSS	Ground	N/A
AE25	TDM3RCK/GE1_GTX_CLK ³	I/O	NVDD
AE26	TDM3TSN/GE1_RX_CLK ³	I/O	NVDD
AE27	TDM2RSN/GE1_T02 ³	I/O	NVDD
AE28	TDM2RDT/GE1_TD1 ³	I/O	NVDD
AF1	M1DQ28	I/O	GVDD1
AF2	M1DM3	0	GVDD1 GVDD1
AF3	M1DQ26	I/O	GVDD1 GVDD1
AF3 AF4	MIECC4	I/O	GVDD1 GVDD1
AF4 AF5	M1ECC4 M1DM8	0	GVDD1 GVDD1
		U	
AF6	M1ECC2		GVDD1
AF7	M1CKE1	0	GVDD1 GVDD1
AF8	M1CK0		
AF9	M1CK0	0	GVDD1
AF10	M1BA1	0	GVDD1
AF11	M1A1	0	GVDD1
AF12	M1WE	0	GVDD1
AF13	M1DQ37	I/O	GVDD1
AF14	M1DM4	0	GVDD1
AF15	M1DQ36	I/O	GVDD1
AF16	M1DQ32	I/O	GVDD1
AF17	M1DQ55	I/O	GVDD1
AF18	M1DM6	0	GVDD1
AF19	M1DQ53	I/O	GVDD1
AF20	M1DQ52	I/O	GVDD1
AF21	GPIO28/UART_RXD ^{5,8}	I/O	NVDD
AF22	TDM0RSN/GE2_TD2 ³	I/O	NVDD
AF23	TDM0TDT/GE2_TD3 ³	I/O	NVDD
AF24	NVDD	Power	N/A
AF25	TDM2TSN/GE1_TX_CTL ³	I/O	NVDD
AF26	GE1_RX_CTL	I	NVDD

rical Characteristics

2.5.2.2 SerDes Reference Clock Receiver Characteristics

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clock inputs are SR1_REF_CLK/SR1_REF_CLK or SR2_REF_CLK/SR2_REF_CLK. Figure 5 shows a receiver reference diagram of the SerDes reference clocks.

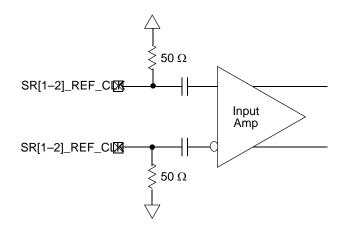
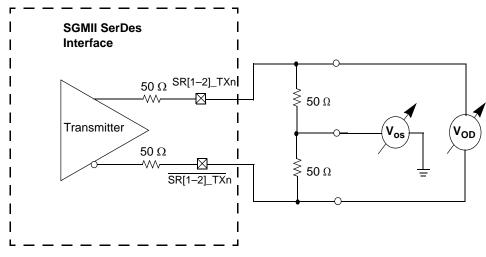



Figure 5. Receiver of SerDes Reference Clocks

The characteristics of the clock signals are as follows:

- The supply voltage requirements for V_{DDSXC} are as specified in **Table 3**.
- The SerDes reference clock receiver reference circuit structure is as follows:
 - The SR[1–2]_REF_CLK and SR[1–2]_REF_CLK are internally AC-coupled differential inputs as shown in Figure 5. Each differential clock input (SR[1–2]_REF_CLK or SR[1–2]_REF_CLK) has on-chip 50-Ω termination to GND_{SXC} followed by on-chip AC-coupling.
 - The external reference clock driver must be able to drive this termination.
 - The SerDes reference clock input can be either differential or single-ended. Refer to the differential mode and single-ended mode descriptions below for detailed requirements.
- The maximum average current requirement also determines the common mode voltage range.
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V / 50 = 8 mA) while the minimum common mode input level is 0.1 V above GND_{SXC}. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
 - If the device driving the SR[1–2]_REF_CLK and $\overline{SR[1-2]}_REF_CLK$ inputs cannot drive 50 Ω to GND_{SXC} DC or the drive strength of the clock driver chip exceeds the maximum input current limitations, it must be AC-coupled externally.
- The input amplitude requirement is described in detail in the following sections.

Figure 10. SGMII Transmitter DC Measurement Circuit

Table 16 describes the SGMII SerDes receiver AC-coupled DC electrical characteristics.

Table 16. SGMII DC Receiver Electrical Characteristics ⁵

Parameter		Symbol	Min	Тур	Max	Unit	Notes
DC Input voltage range		_		N/A	I	_	1
Input differential voltage	SRDSnCR4[EICE{12:10}] = 0b001 for SGMII1 SRDSnCR4[EICF{4:2}] = 0b001 for SGMII2	V _{RX_DIFFp-p}	IFFp-p 100	—	1200	mV	2, 4
	SRDSnCR4[EICE{12:10}] = 0b100 for SGMII1 SRDSnCR4[EICF{4:2}] = 0b100 for SGMII2		175	—			
Loss of signal threshold	SRDSnCR4[EICE{12:10}] = 0b001 for SGMII1 SRDSnCR4[EICF{4:2}] = 0b001 for SGMII2	VLOS	30	—	100	mV	3, 4
	SRDSnCR4[EICE{12:10}] = 0b100 for SGMII1 SRDSnCR4[EICF{4:2}] = 0b100 for SGMII2		65	_	175		
Receiver differential input impedance		Z _{RX_DIFF}	80	_	120	W	—

tes: 1. Input must be externally AC-coupled.

2. $V_{RX_DIFFp-p}$ is also referred to as peak-to-peak input differential voltage.

3. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in the PCI Express interface. Refer to the PCI Express Differential Receiver (RX) Input Specifications section of the PCI Express Specification document. for details.

4. The values for SGMII1 and SGMII2 are selected in the SRDS control registers.

5. The supply voltage is 1.0 V.

rical Characteristics

2.5.4 RGMII and Other Interface DC Electrical Characteristics

Table 17 describes the DC electrical characteristics for the following interfaces:

- RGMII Ethernet
- SPI
- TDM
- GPIO
- UART
- TIMER
- EE
- I²C
- Interrupts (IRQn, NMI_OUT, INT_OUT)
- Clock and resets (CLKIN, PORESET, HRESET, SRESET)
- DMA External Request
- JTAG signals

Table 17. 2.5 V I/O DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit	Notes		
Input high voltage	V _{IH}	1.7	_	V	1		
Input low voltage	V _{IL}	_	0.7	V	1		
Input high current (V _{IN} = V _{DDIO})	I _{IN}	—	30	μA	2		
Output high voltage ($V_{DDIO} = min, I_{OH} = -1.0 mA$)	V _{OH}	2.0	VDDIO + 0.3	V	1		
Output low voltage (V _{DDIO} = min, I _{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V	1		
 Notes: 1. The min V_{IL} and max V_{IH} values are based on the respective min and max V_{IN} values listed in Table 3. 2. The symbol V_{IN} represents the input voltage of the supply. It is referenced in Table 3. 							

Figure 11 shows the DDR2 and DDR3 SDRAM interface input timing diagram.

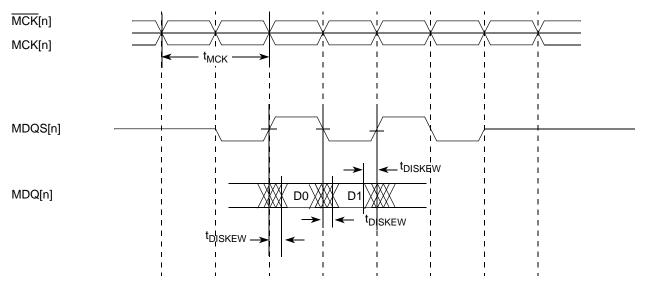


Figure 11. DDR2 and DDR3 SDRAM Interface Input Timing Diagram

2.6.1.2 DDR SDRAM Output AC Timing Specifications

Table 21 provides the output AC timing specifications for the DDR SDRAM interface.

Parameter	Symbol ¹	Min	Max	Unit	Notes
MCK[n] cycle time	t _{MCK}	2.5	5	ns	2
ADDR/CMD output setup with respect to MCK • 800 MHz data rate • 667 MHz data rate	^t DDKHAS	0.917 1.10		ns ns	3
ADDR/CMD output hold with respect to MCK • 800 MHz data rate • 667 MHz data rate	^t ddkhax	0.767 1.02		ns ns	3
MCSn output setup with respect to MCK • 800 MHz data rate • 667 MHz data rate	^t DDKHCS	0.917 1.10		ns ns	3
MCSn output hold with respect to MCK • 800 MHz data rate • 667 MHz data rate	^t DDKHCX	0.767 1.02		ns ns	3
MCK to MDQS Skew • 800 MHz data rate • 667 MHz data rate	t _{DDKHMH}	-0.4 -0.6	0.375 0.6	ns	4
MDQ/MECC/MDM output setup with respect to MDQS • 800 MHz • 667 MHz	^t DDKHDS, ^t DDKLDS	300 375		ps ps	5
MDQ/MECC/MDM output hold with respect to MDQS • 800 MHz • 667 MHz	^t DDKHDX, ^t DDKLDX	300 375		ps ps	5
MDQS preamble	t _{DDKHMP}	$-0.9 \times t_{MCK}$	—	ns	
MDQS postamble	t _{DDKHME}	$-0.4 \times t_{MCK}$	$-0.6 \times t_{\text{MCK}}$	ns	_

Table 21. DDR SDRAM Output AC Timing Specifications

2.6.2.2 PCI Express AC Physical Layer Specifications

The AC requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The MSC8154 supports a 2.5 Gbps PCI Express interface defined by the *PCI Express Base Specification, Revision 1.0a*. The transmitter specifications are defined in Table 25 and the receiver specifications are defined in Table 26. The parameters are specified at the component pins. the AC timing specifications do not include REF_CLK jitter.

Note: Specifications are valid at the recommended operating conditions listed in Table 3.

Table 25. PCI Express (2.5 Gbps) Differential Transmitter (Tx) Output AC Specifications

Parameter	Symbol	Min	Typical	Max	Units	Notes
Unit interval	UI	399.88	400.00	400.12	ps	1
Minimum Tx eye width	T _{TX-EYE}	0.70	-	-	UI	2, 3
Maximum time between the jitter median and maximum deviation from the median.	T _{TX-EYE-MEDIAN-} to-MAX-JITTER	_	_	0.15	UI	3, 4
AC coupling capacitor	C _{TX}	75	—	200	nF	5

Notes: 1. Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. No test load is necessarily associated with this value.

2. The maximum transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.3$ UI.

3. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 8 and measured over any 250 consecutive Tx UIs. A T_{TX-EYE} = 0.70 UI provides for a total sum of deterministic and random jitter budget of T_{TX-JITTER-MAX} = 0.30 UI for the transmitter collected over any 250 consecutive Tx UIs. The T_{TX-EYE-MEDIAN-to-MAX-JITTER} median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. Jitter is defined as the measurement variation of the crossing points (V_{TX-DIFFp-p} = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data.

4. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI.

5. All transmitters shall be AC-coupled. The AC coupling is required either within the media or within the transmitting component itself. The SerDes transmitter does not have built-in Tx capacitance. An external AC coupling capacitor is required.

Table 26. PCI Express (2.5 Gbps) Differential Receiver (Rx) Input AC Specifications

Parameter	Symbol	Min	Typical	Мах	Units	Notes
Unit Interval	UI	399.88	400.00	400.12	ps	1
Minimum receiver eye width	T _{RX-EYE}	0.4	—	_	UI	2, 3, 4
Maximum time between the jitter median and maximum deviation from the median.	T _{RX-EYE-MEDIAN-to-MAX} -JITTER	_	—	0.3	UI	3, 4, 5

Notes: 1. Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. No test load is necessarily associated with this value.

2. The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER} = 1 - T_{RX-EYE} = 0.6$ UI.

3. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 8 should be used as the Rx device when taking measurements. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.

4. A T_{RX-EYE} = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and interconnect collected any 250 consecutive UIs. The T_{RX-EYE-MEDIAN-to-MAX-JITTER} specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.

5. Jitter is defined as the measurement variation of the crossing points (V_{RX-DIFFp-p} = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

rical Characteristics

Serial RapidIO AC Timing Specifications 2.6.2.3

Note: Specifications are valid at the recommended operating conditions listed in Table 3.

Table 27 defines the transmitter AC specifications for the Serial RapidIO interface. The AC timing specifications do not include REF_CLK jitter.

Table 27. Serial RapidIO	Transmitter AC	Timing Specifications
--------------------------	----------------	-----------------------

Characteristic	Symbol	Min	Typical	Мах	Unit
Deterministic Jitter	J _D	—	_	0.17	UI p-p
Total Jitter	J _T	—	—	0.35	UI p-p
Unit Interval: 1.25 GBaud	UI	800 – 100ppm	800	800 + 100ppm	ps
Unit Interval: 2.5 GBaud	UI	400 – 100ppm	400	400 + 100ppm	ps
Unit Interval: 3.125 GBaud	UI	320 – 100ppm	320	320 + 100ppm	ps

Table 28 defines the Receiver AC specifications for the Serial RapidIO interface. The AC timing specifications do not include REF_CLK jitter.

Table 28. Serial RapidIO Receiver AC Timing Specifications

Symbol	Min	Typical	Max	Unit	Notes
J _D	0.37	_	—	UI p-p	1
J _{DR}	0.55	_	_	UI p-p	1
J _T	0.65	_	—	UI p-p	1, 2
BER	—	_	10 ⁻¹²	_	—
UI	800 – 100ppm	800	800 + 100ppm	ps	_
UI	400 – 100ppm	400	400 + 100ppm	ps	—
UI	320 – 100ppm	320	320 + 100ppm	ps	_
	J _D J _{DR} J _T BER UI UI	J _D 0.37 J _{DR} 0.55 J _T 0.65 BER — UI 800 – 100ppm UI 400 – 100ppm	J _D 0.37 — J _{DR} 0.55 — J _T 0.65 — BER — — UI 800 – 100ppm 800 UI 400 – 100ppm 400	J _D 0.37 J _{DR} 0.55 J _T 0.65 BER 10 ⁻¹² 10 ⁻¹² UI 800 - 100ppm 800 800 + 100ppm UI 400 - 100ppm 400 400 + 100ppm	J _D 0.37 — — UI p-p J _{DR} 0.55 — — UI p-p J _T 0.65 — — UI p-p BER — — 10 ⁻¹² — UI 800 – 100ppm 800 800 + 100ppm ps UI 400 – 100ppm 400 400 + 100ppm ps

Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The 2. sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 18. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.

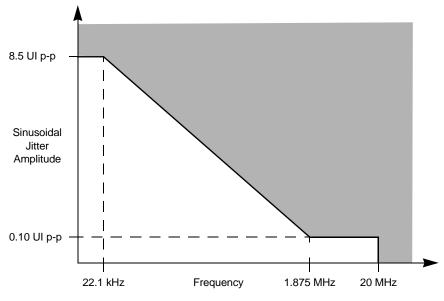


Figure 18. Single Frequency Sinusoidal Jitter Limits

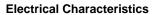


Figure 21 shows the TDM transmit signal timing.

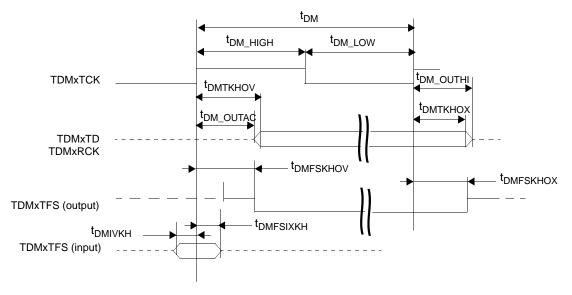


Figure 21. TDM Transmit Signals

Figure 22 provides the AC test load for the TDM/SI.

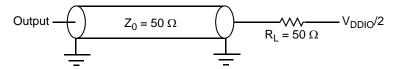


Figure 22. TDM AC Test Load

2.6.4 Timers AC Timing Specifications

Table 32 lists the timer input AC timing specifications.

Table 32. Timers Input AC Timing Specifications

		Characteristics	Symbol	Minimum	Unit	Notes
Timers i	nputs-	-minimum pulse width	T _{TIWID}	8	ns	1, 2
Notes:	Notes: 1. The maximum allowed frequency of timer outputs is 125 MHz. Configure the timer modules appropriately.					
 Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation. 		y any				

Note: For recommended operating conditions, see Table 3.

Figure 23 shows the AC test load for the timers.

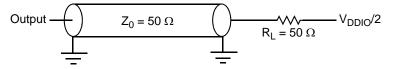


Figure 23. Timer AC Test Load

rical Characteristics

2.6.5 Ethernet Timing

This section describes the AC electrical characteristics for the Ethernet interface.

There are programmable delay units (PDU) that should be programmed differently for each interface to meet timing. There is a general configuration register 4 (GCR4) used to configure the timing. For additional information, see the *MSC8154 Reference Manual*.

2.6.5.1 Management Interface Timing

Table 33 lists the timer input Ethernet controller management interface timing specifications shown in Figure 24.

Table 33. Ethernet Controller Management Interface Timing

Characteristics	Symbol	Min	Max	Unit
GE_MDC frequency	f _{MDC}	-	2.5	MHz
GE_MDC period	t _{MDC}	400	—	ns
GE_MDC clock pulse width high	t _{MDC_H}	160	_	ns
GE_MDC clock pulse width low	t _{MDC_L}	160	_	ns
GE_MDC to GE_MDIO delay ²	t _{MDKHDX}	10	70	ns
GE_MDIO to GE_MDC rising edge setup time	t _{MDDVKH}	20	—	ns
GE_MDC rising edge to GE_MDIO hold time	t _{MDDXKH}	0	_	ns

Notes: 1. Program the GE_MDC frequency (f_{MDC}) to a maximum value of 2.5 MHz (400 ns period for t_{MDC}). The value depends on the source clock and configuration of MIIMCFG[MCS] and UPSMR[MDCP]. For example, for a source clock of 400 MHz to achieve f_{MDC} = 2.5 MHz, program MIIMCFG[MCS] = 0x4 and UPSMR[MDCP] = 0. See the *MSC8154 Reference Manual* for configuration details.

2. The value depends on the source clock. For example, for a source clock of 267 MHz, the delay is 70 ns. For a source clock of 333 MHz, the delay is 58 ns.

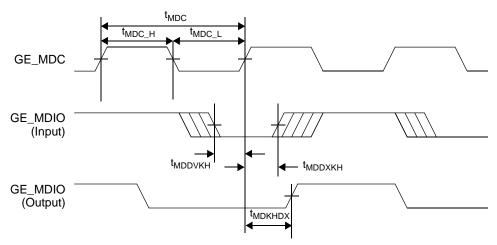


Figure 24. MII Management Interface Timing

ware Design Considerations

3.3 Clock and Timing Signal Board Layout Considerations

When laying out the system board, use the following guidelines:

- Keep clock and timing signal paths as short as possible and route with 50 Ω impedance.
- Use a serial termination resistor placed close to the clock buffer to minimize signal reflection. Use the following equation to compute the resistor value:

Rterm = Rim - Rbuf

where Rim = trace characteristic impedance

Rbuf = clock buffer internal impedance.

3.4 SGMII AC-Coupled Serial Link Connection Example

Figure 39 shows an example of a 4-wire AC-coupled serial link connection. For additional layout suggestions, see *AN3556 MSC815x High Speed Serial Interface Hardware Design Considerations*, available on the Freescale website or from your local sales office or representative.

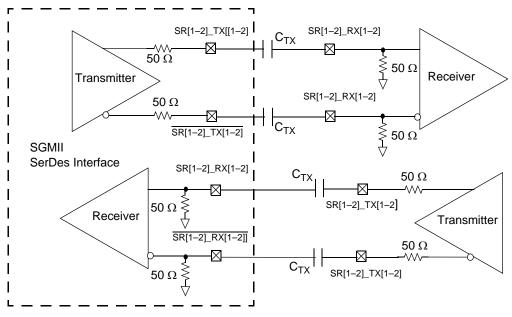


Figure 39. 4-Wire AC-Coupled SGMII Serial Link Connection Example

3.5 Connectivity Guidelines

Note: Although the package actually uses a ball grid array, the more conventional term pin is used to denote signal connections in this discussion.

First, select the pin multiplexing mode to allocate the required I/O signals. Then use the guidelines presented in the following subsections for board design and connections. The following conventions are used in describing the connectivity requirements:

- GND indicates using a 10 kΩ pull-down resistor (recommended) or a direct connection to the ground plane. Direct connections to the ground plane may yield DC current up to 50 mA through the I/O supply that adds to overall power consumption.
- 2. V_{DD} indicates using a 10 k Ω pull-up resistor (recommended) or a direct connection to the appropriate power supply. Direct connections to the supply may yield DC current up to 50 mA through the I/O supply that adds to overall power consumption.
- 3. Mandatory use of a pull-up or pull-down resistor is clearly indicated as "pull-up/pull-down." For buses, each pin on the bus should have its own resistor.
- 4. NC indicates "not connected" and means do not connect anything to the pin.
- 5. The phrase "in use" indicates a typical pin connection for the required function.
- **Note:** Please see recommendations #1 and #2 as mandatory pull-down or pull-up connection for unused pins in case of subset interface connection.

Signal Name	Pin Connection	
SR[1–2]_RXD n	SXCVSS	
SR[1-2]_RXD n	SXCVSS	
SR[1-2]_TXDn	NC	
SR[1–2]_TXD n	NC	
SR[1-2]_PLL_AVDD	in use	
SR[1–2]_PLL_AGND	in use	
SXPVSS	in use	
SXCVSS	in use	
SXPVDD	in use	
SXCVDD	in use	
Note: The <i>n</i> indicates the lane number {0,1,2,3} for all unused lanes.		

Table 45. Connectivity of HSSI Related Pins When Specific Lane Is Not Used (continued)

3.5.3 RGMII Ethernet Related Pins

Note: Table 46 and Table 47 assume that the alternate function of the specified pin is not used. If the alternate function is used, connect the pin as required to support that function.

Table 46. Connectivity of RGMII Related Pins When the RGMII Interface Is Not Used

Signal Name	Pin Connection	
GE1_RX_CTL	GND	
GE2_TX_CTL	NC	
Note: Assuming GE1 and GE2 are disabled in the reset configuration word.		

GE_MDC and GE_MDIO pins should be connected as required by the specified protocol. If neither GE1 nor GE2 is used, Table 47 lists the recommended management pin connections.

Table 47. Connectivity of GE Management Pins When GE1 and GE2 Are Not Used

Signal Name	Pin Connection
GE_MDC	NC
GE_MDIO	NC

3.5.4 TDM Interface Related Pins

Table 48 lists the board connections of the TDM pins when an entire specific TDM is not used. For multiplexing options that select a subset of a TDM interface, use the connections described in Table 48 for those signals that are not selected. Table 48 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Table 48. Connectivity of TDM Related Pins When TDM Interface Is Not Used

Signal Name	Pin Connection
TDM n RCLK	GND
TDM n RDAT	GND
TDM n RSYN	GND

ware Design Considerations

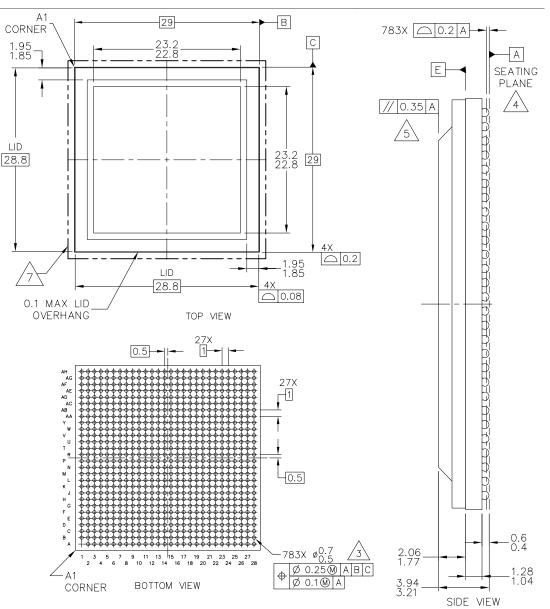
Table 48. Connectivity of TDM Related Pins When TDM Interface Is Not Used

Signal Name		Pin Connection	
TDMnTCLK		GND	
TDMT <i>n</i> DAT GND		GND	
TDM n TSYN		GND	
V _{DDIO}	2.5 V		
	<i>n</i> = {0, 1, 2,3} In case of subset of TDM interface usage please make <i>MSC8154 Reference Manual</i> for details.	set of TDM interface usage please make sure to disable unused TDM modules. See <i>TDM</i> chapter in the ference Manual for details.	

3.5.5 Miscellaneous Pins

Table 49 lists the board connections for the pins not required by the system design. Table 49 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Table 49. Connectivity of Individual Pins When They Are Not Required


Signal Name	Pin Connection
CLKOUT	NC
EEO	GND
EE1	NC
GPIO[31-0]	NC
SCL	See the GPIO connectivity guidelines in this table.
SDA	See the GPIO connectivity guidelines in this table.
INT_OUT	NC
IRQ[15–0]	See the GPIO connectivity guidelines in this table.
NMI	V _{DDIO}
NMI_OUT	NC
RC[21–0]	GND
STOP_BS	GND
ТСК	GND
ТDI	GND
TDO	NC
TMR[4-0]	See the GPIO connectivity guidelines in this table.
TMS	GND
TRST	See Section 3.1 for guidelines.
URXD	See the GPIO connectivity guidelines in this table.
UTXD	See the GPIO connectivity guidelines in this table.
DDN[1-0]	See the GPIO connectivity guidelines in this table.
DRQ[1-0]	See the GPIO connectivity guidelines in this table.
RCW_LSEL_0	GND
RCW_LSEL_1	GND
RCW_LSEL_2	GND
RCW_LSEL_3	GND
V _{DDIO}	2.5 V

Note: For details on configuration, see the *MSC*8154 *Reference Manual*. For additional information, refer to the *MSC*815x and *MSC*825x DSP Family Design Checklist.

age Information

Package Information

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A MAXIMUM SOLDER BALL DIAMETER MEASURE PARALLEL TO DATUM A.
- A DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- A PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.
- 6. ALL DIMENSIONS ARE SYMMETRIC ACROSS THE PACKAGE CENTER LINES, UNLESS DIMENSIONED OTHERWISE.
- 7. 29.2MM MAXIMUM PACKAGE ASSEMBLY (LID + LAMINATE) X AND Y.

Figure 40. MSC8154 Mechanical Information, 783-ball FC-PBGA Package

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, ColdFire, ColdFire+, StarCore are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2010–2013 Freescale Semiconductor, Inc.

> Document Number: MSC8154 Rev. 7 08/2013