
Digi - 101-1067 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Obsolete

Module/Board Type MPU Core

Core Processor Rabbit 3000

Co-Processor -

Speed 44.2MHz

Flash Size 512KB (Internal), 8MB (External)

RAM Size 1MB

Connector Type 2 IDC Headers 2x17, 1 IDC Header 2x5

Size / Dimension 1.85" x 2.73" (47mm x 69mm)

Operating Temperature -40°C ~ 70°C

Purchase URL https://www.e-xfl.com/product-detail/digi-international/101-1067

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/101-1067-4510358
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

2.2.2 Step 2 — Connect Programming Cable

The programming cable connects the RCM3305 series module to the PC running
Dynamic C to download programs and to monitor the module during debugging.

2.2.2.1 RCM3309 and RCM3319

Connect the 10-pin connector of the programming cable labeled PROG to header J1 on
the RCM3309/RCM3319 as shown in Figure 3(a). There is a small dot on the circuit board
next to pin 1 of header J1. Be sure to orient the marked (usually red) edge of the cable
towards pin 1 of the connector. (Do not use the DIAG connector, which is used for a non-
programming serial connection.)

Figure 3(a). Connect Programming Cable and Power Supply

Connect the other end of the programming cable to an available USB port on your PC or
workstation. Your PC should recognize the new USB hardware, and the LEDs in the
shrink-wrapped area of the USB programming cable will flash.

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"
�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������!�!��������
����
����
�����
 !��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

���

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

����

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�
��

���� �������������� ������������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

�� ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
��

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�
�� �+	����+	�����
����+%����+%���������
����'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

��!

��"��!

��!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�

�

�
�

�
�

�
�

�
��

�
��

�
�

�
��

�
�

�
��

������	�������

�
�

�
�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

���������	

$�

�
�

��

��

�
�

 �

$�

�
�

��

 �� �

�
 �� �� �� � �

�

���

�
�

�
�

�
�

�
�

���

$�

�
�

$�

�
�

�
��

���
�

��
��$

���

���

�
��

�
�

�
�� ���

�
��

 �
�

 �
��

 �
�

 �
�

��

 �

�
��

�
��

�
��

���

��

�
�

�
��

�
��

�
��

�
��

�
��

���

���

�
�$�

�
��

���

�
��

���
��

���������

���
���

���

���
���

���

�
��

��� $�

���

���

�
��

�
��

���

���
�����

�

�
��

� $
�

�
��

�
��

�
�

 �
��

 �
��

���
���

 �
��

�
��

��

�
��

�
��

 ��� ���

$�

��
���

���

�
��

��
���
��

���

�
�
��

��

�
�
�

�
�
�

�
�
	

�
�

�
�
�

�
�

�
�

��

�
��

�����))

�

$��

��

�
��

�
��

�
��

��
�

�
�
�
�

�/./:97�9739

�
��
	�������	���

�
�
�
�

 �

�/
���
���=/:5

�;19:5�5>?�2;5/�1./5

�:911�7/@;�/;�A.2=B
1;>=�=.C3�2;5/�=.>A9�

�
������
�����	���

����
����	���������	
User’s Manual 11

3.2.1 Use of Serial Flash
3.2.1.1 Onboard Serial Flash

The following sample programs can be found in the SAMPLES\RCM3300\SerialFlash
folder.

• SFLASH_INSPECT.c—This program is a handy utility for inspecting the contents of a
serial flash chip. When the sample program starts running, it attempts to initialize a
serial flash chip on Serial Port B. Once a serial flash chip is found, the user can perform
two different commands to either print out the contents of a specified page or clear (set
to zero) all the bytes in a specified page.

• SFLASH_LOG.c—This program runs a simple Web server and stores a log of hits in
the serial flash. This log can be viewed and cleared from a browser.

3.2.1.2 SF1000 Serial Flash Card

The following sample program can be found in the SAMPLES\RCM3300\SF1000 folder.

• SERFLASHTEST.c—An optional SF1000 Serial Flash card is required to run this dem-
onstration. Install the Serial Flash card into socket J11 on the Prototyping Board. This
sample program demonstrates how to read and write from/to the Serial Flash card.

3.2.2 Serial Communication

The following sample programs can be found in the SAMPLES\RCM3300\SERIAL folder.

• FLOWCONTROL.C—This program demonstrates hardware flow control by configuring
Serial Port F for CTS/RTS with serial data coming from TxE (Serial Port E) at 115,200
bps. One character at a time is received and is displayed in the STDIO window.

To set up the Prototyping Board, you will need to tie
TxE and RxE together on the RS-232 header at J14,
and you will also tie TxF and RxF together as shown in
the diagram.

A repeating triangular pattern should print out in the
STDIO window. The program will periodically switch flow control on or off to demon-
strate the effect of no flow control.

• PARITY.C—This program demonstrates the use of parity modes by repeatedly sending
byte values 0–127 from Serial Port E to Serial Port F. The program will switch between
generating parity or not on Serial Port E. Serial Port F will always be checking parity,
so parity errors should occur during every other sequence.

To set up the Prototyping Board, you will need to tie
TxE and RxF together on the RS-232 header at J14 as
shown in the diagram.

The Dynamic C STDIO window will display the error
sequence.

()*
�+	����+	�����
����+%����+%���������
����'

()*
�+	����+	�����
����+%����+%���������
����'
User’s Manual 19

• SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial communication.
Lower case characters are sent by TxE, and are received by RxF. The characters are
converted to upper case and are sent out by TxF, are received by RxE, and are displayed
in the Dynamic C STDIO window.

To set up the Prototyping Board, you will need to tie
TxE and RxF together on the RS-232 header at J14, and
you will also tie RxE and TxF together as shown in the
diagram.

• SIMPLE5WIRE.C—This program demonstrates 5-wire RS-232 serial communication
with flow control on Serial Port F and data flow on Serial Port E.

To set up the Prototyping Board, you will need to tie
TxE and RxE together on the RS-232 header at J14,
and you will also tie TxF and RxF together as shown in
the diagram.

Once you have compiled and run this program, you can
test flow control by disconnecting TxF from RxF while the program is running. Char-
acters will no longer appear in the STDIO window, and will display again once TxF is
connected back to RxF.

• SWITCHCHAR.C—This program transmits and then receives an ASCII string on Serial
Ports E and F. It also displays the serial data received from both ports in the STDIO
window.

To set up the Prototyping Board, you will need to tie
TxE and RxF together on the RS-232 header at J14, and
you will also tie RxE and TxF together as shown in the
diagram.

Once you have compiled and run this program, press
and release S2 and S3 on the Prototyping Board. The data sent between the serial ports
will be displayed in the STDIO window.

Two sample programs, SIMPLE485MASTER.C and SIMPLE485SLAVE.C, are available
to illustrate RS-485 master/slave communication. To run these sample programs, you will
need a second Rabbit-based system with RS-485—another Rabbit single-board computer
or RabbitCore module may be used as long as you use the master or slave sample program
associated with that board.

Before running either of these sample programs on the RCM3305/RCM3315 assembly,
make sure pins 1–2 and pins 5–6 are jumpered together on header JP5 to use the RS-485
bias and termination resistors. The sample programs use Serial Port C as the RS-485 serial
port, and they use PD7 to enable/disable the RS-485 transmitter.

()*
�+	����+	�����
����+%����+%���������
����'

()*
�+	����+	�����
����+%����+%���������
����'

()*
�+	����+	�����
����+%����+%���������
����'
20 RabbitCore RCM3305/RCM3315

4.2 Serial Communication
The RCM3305/RCM3315 does not have any serial transceivers directly on the board.
However, a serial interface may be incorporated into the board the RCM3305/RCM3315
is mounted on. For example, the Prototyping Board has RS-232 and RS-485 transceiver
chips.

4.2.1 Serial Ports

There are six serial ports designated as Serial Ports A, B, C, D, E, and F. All six serial
ports can operate in an asynchronous mode up to the baud rate of the system clock divided
by 8. An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where
an additional bit is sent to mark the first byte of a message, is also supported.

Serial Port A is normally used as a programming port, but may be used either as an asyn-
chronous or as a clocked serial port once the RCM3305/RCM3315 has been programmed
and is operating in the Run Mode.

Serial Port B is used to communicate with the serial flash on the RCM3305/RCM3315 and
is not available for other use.

Serial Ports C and D can also be operated in the clocked serial mode. In this mode, a clock
line synchronously clocks the data in or out. Either of the two communicating devices can
supply the clock.

Serial Ports E and F can also be configured as HDLC serial ports. The IrDA protocol is
also supported in SDLC format by these two ports.
30 RabbitCore RCM3305/RCM3315

4.3 Programming Cable
The programming cable is used to connect the programming port of the RCM3305/
RCM3315 to a PC serial COM port. The programming cable converts the RS-232 voltage
levels used by the PC serail port to the CMOS voltage levels used by the Rabbit 3000.

When the PROG connector on the programming cable is connected to the RCM3305/
RCM3315 programming port, programs can be downloaded and debugged over the serial
interface.

The DIAG connector of the programming cable may be used on header J1 of the RCM3305/
RCM3315 with the RCM3305/RCM3315 operating in the Run Mode. This allows the
programming port to be used as a regular serial port.

4.3.1 Changing Between Program Mode and Run Mode

The RCM3305/RCM3315 is automatically in Program Mode when the PROG connector
on the programming cable is attached, and is automatically in Run Mode when no pro-
gramming cable is attached. When the Rabbit 3000 is reset, the operating mode is deter-
mined by the state of the SMODE pins. When the programming cable’s PROG connector
is attached, the SMODE pins are pulled high, placing the Rabbit 3000 in the Program
Mode. When the programming cable’s PROG connector is not attached, the SMODE pins
are pulled low, causing the Rabbit 3000 to operate in the Run Mode.

Figure 8. Switching Between Program Mode and Run Mode

#���+

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

��
	

�"
�
��
#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%�

�
�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������!�!��������
����
����
�����
 !��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

���

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%�

���
%�

���
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

����

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�
��

���� �������������� ������������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

�� ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
��

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�
�� �+	����+	�����
����+%����+%���������
����'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

��!

��"��!

��!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�

�

�
�

�
�

�
�

�
��

�
��

�
�

�
��

�
�

�
��

������	�������

�
�

�
�

�
�
��

�(
�

�
�
��

�(
�

���
���
���
���

�
�

 �
���

��

��

�
�

�
��

��$�

�
�

���
�

�
�

�
�

�
�

���� �

�
�

�
��

�
��

�
��

�
��

$�

�
��

�
��

��

�
�

�
��

�
��

�
�

�
��

�
��

�
��

��

�
��

�
�

���

$�

�����

��

�
��

���
���
���

���

$�
��

��

���

������
$��

�
��

���
���
���
���
���

��

�
��

�
��

$�
���

���

�����))

�
�

����������
�
���

�
�

��

�
�

 �

��

���

���
���

�
��

�
��

�
��

�
��

�
��

�
��

���

��� �	����
�	����

 �
�

 �
�

 �
�

 �
�

 �

��

���

�
�� �
��

�
��

���

��
��
���

�
��

���

���

���

�
��

�
��

���

�
��

�
��

�
����

�
�� �

��

��

�
�

�
�
�
�
�

�
�

��
�

�
�
�
�

�/./:97�9739

�/
�������=/:5

�
��
	�������	���

����	���2��; :��2��� �<,!(��,$(3#(3�&�*!=
��	�����	�	��������� �������!��	����"���!����	�#$���
��"��������	����%��
$/)!"�"!&�+#(3��"�$))$�,#(3�."�3"$&&#(3��$-%!1
User’s Manual 33

5. SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with controllers based on the Rabbit micropro-
cessor. Chapter 5 describes the libraries and function calls
related to the RCM3305/RCM3315.

5.1 More About Dynamic C
Dynamic C has been in use worldwide since 1989. It is specially designed for program-
ming embedded systems, and features quick compile and interactive debugging. A com-
plete reference guide to Dynamic C is contained in the Dynamic C User’s Manual.

You have a choice of doing your software development in the flash memory or in the static
SRAM included on the RCM3305/RCM3315. The flash memory and SRAM options are
selected with the Options > Program Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fit in RAM.

NOTE: An application should be run from the program execution SRAM after the pro-
gramming cable is disconnected. Your final code must always be stored in flash memory
for reliable operation. RCM3305/RCM3315 modules running at 44.2 MHz have a fast
program execution SRAM that is not battery-backed. Select Code and BIOS in Flash,
Run in RAM from the Dynamic C Options > Project Options > Compiler menu to
store the code in flash and copy it to the fast program execution SRAM at run-time to
take advantage of the faster clock speed. This option optimizes the performance of
RCM3305/RCM3315 modules running at 44.2 MHz.

NOTE: Do not depend on the flash memory sector size or type in your program logic.
The RCM3305/RCM3315 and Dynamic C were designed to accommodate flash
devices with various sector sizes in response to the volatility of the flash-memory
market.

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows 2000 and
later—see Rabbit’s Technical Note TN257, Running Dynamic C® With Windows Vista®,
User’s Manual 37

for additional information if you are using a Dynamic C release prior to v. 9.60 under Win-
dows Vista. Programs can be downloaded at baud rates of up to 460,800 bps after the pro-
gram compiles.

Dynamic C has a number of standard features.

• Full-feature source and/or assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:
Exceptionally fast support for floating-point arithmetic and transcendental functions.

RS-232 and RS-485 serial communication.

Analog and digital I/O drivers.

I2C, SPI, GPS, file system.

LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking

• Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.
38 RabbitCore RCM3305/RCM3315

5.2.6 Prototyping Board Functions

The functions described in this section are for use with the Prototyping Board features.
The source code is in the Dynamic C SAMPLES\RCM3300\RCM33xx.LIB library if you
need to modify it for your own board design.

The RCM33xx.LIB library is supported by the RN_CFG_RCM33.LIB—library, which is
used to configure the RCM3305/RCM3315 for use with RabbitNet peripheral boards on
the Prototyping Board.

Other generic functions applicable to all devices based on Rabbit microprocessors are
described in the Dynamic C Function Reference Manual.

5.2.6.1 Board Initialization

Call this function at the beginning of your program. This function initializes Parallel Ports A through G
for use with the Prototyping Board.

Summary of Initialization

1. I/O port pins are configured for Prototyping Board operation.

2. Unused configurable I/O are set as tied inputs or outputs.

3. External I/O are disabled.

4. The LCD/keypad module is disabled.

5. RS-485 is not enabled.

6. RS-232 is not enabled.

7. LEDs are off.

8. Ethernet select is disabled.

9. Mass-storage flash select is disabled.

10. Motor control is disabled.

11. The RabbitNet SPI interface is disabled.

12. The relay is set to normally closed positions.

RETURN VALUE
None.

void brdInit (void);
42 RabbitCore RCM3305/RCM3315

5.2.6.2 Digital I/O

Reads the input state of inputs on Prototyping Board headers J5 and J6. Do not use this function if you
configure these pins for alternate use after brdInit() is called.

PARAMETERS
channels is the channel number corresponding to the signal on header J5 or J6

0—IN0
1—IN1
2—IN2
3—IN3
4—QD1B
5—QD1A
6—QD2B
7—QD2A

RETURN VALUE
The logic state (0 or 1) of the input.

SEE ALSO
brdInit

Writes a value to an output channel on Prototyping Board header J10. Do not use this function if you
have installed the stepper motor chips at U2 and U3.

PARAMETERS
channel is output channel 0–7 (OUT00–OUT07).

value is the value (0 or 1) to output.

RETURN VALUE
None.

SEE ALSO
brdInit

int digIn(int channel);

void digOut(int channel, int value);
User’s Manual 43

First, you need to format and partition the serial flash. Find the FMT_DEVICE.C sample
program in the Dynamic C SAMPLES\FileSystem folder. Open this sample program
with the File > Open menu, then compile and run it by pressing F9. FMT_DEVICE.C
formats the mass storage device for use with the FAT file system. If the serial flash or
NAND flash is already formatted, FMT_DEVICE.C gives you the option of erasing the
mass storage flash and reformatting it with a single large partition. This erasure does not
check for non-FAT partitions and will destroy all existing partitions.

Next, run the INTEGRATION_FAT_SETUP.C sample program in the Dynamic C
SAMPLES\RCM3300\Module_Integration folder. Open this sample program with the
File > Open menu, then compile and run it by pressing F9. INTEGRATION_FAT_
SETUP.C will copy some #ximported files into the FAT file system.

The last step to complete before you can run the INTEGRATION.C sample program is to
create an SSL certificate. The SSL walkthrough in the online documentation for the
Dynamic C SSL module explains how to do this.

Now you are ready to run the INTEGRATION.C sample program in the Dynamic C
SAMPLES\RCM3300\Module_Integration folder. Open this sample program with the
File > Open menu, then compile and run it by pressing F9.

NOTE: Since HTTP upload and the Dynamic C SSL module currently do not work
together, compiling the INTEGRATION.C sample program will generate a serious
warning. Ignore the warning because we are not using HTTP upload over SSL. A
macro (HTTP_UPLOAD_SSL_SUPRESS_WARNING) is available to suppress the
warning message.

Open a Web browser, and browse to the device using the IP address from the TCP_
CONFIG.LIB library or the URL you assigned to the device. The humidity monitor will
be displayed in your Web browser. This page is accessible via plain HTTP or over SSL-
secured HTTPS. Click on the administrator link to bring up the admin page, which is
secured automatically using SSL with a user name and a password. Use myadmin for user
name and use myadmin for the password.

The admin page demonstrates some RabbitWeb capabilities and provides access to the
HTTP upload page. Click the upload link to bring up the HTTP upload page, which allows
you to choose new files for both the humidity monitor and the admin page. If your browser
prompts you again for your user name and password, they are the same as above.

Note that the upload page is a static page included in the program flash, and can only be
updated by recompiling and downloading the application. This page is protected so that
you cannot accidentally change the upload page, possibly restricting yourself from per-
forming future updates.

To try out the update capability, click the upload link on the admin page and choose a sim-
ple text file to replace monitor.ztm. Open another browser window and load the main
page. You will see that your text file has replaced the humidity monitor. To restore the
monitor, go back to the other window, click back to go to the upload page again, and
choose HUMIDITY_MONITOR.ZHTML to replace monitor.ztm and click Upload.
62 RabbitCore RCM3305/RCM3315

Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM3305/
RCM3315.

Table A-1. RCM3305/RCM3315 Specifications

Parameter RCM3305 RCM3315

Microprocessor Low-EMI Rabbit 3000® at 44.2 MHz

EMI Reduction Spectrum spreader for reduced EMI (radiated emissions)

Ethernet Port 10/100Base-T, RJ-45, 3 LEDs

SRAM 512K program (fast SRAM) + 512K data

Flash Memory
(program) 512K

Flash Memory
(mass data
storage)

8 Mbytes
(serial flash)

4 Mbytes
(serial flash)

LED Indicators

ACT (activity)
LINK (link)

SPEED (on for 100Base-T Ethernet connection)
SF (serial flash)

USR (user-programmable)

Backup Battery Connection for user-supplied backup battery
(to support RTC and data SRAM)

General-Purpose
I/O

49 parallel digital I/0 lines:
• 43 configurable I/O
• 3 fixed inputs
• 3 fixed outputs

Additional Inputs Startup mode (2), reset in

Additional
Outputs Status, reset out

External I/O Bus Can be configured for 8 data lines and
5 address lines (shared with parallel I/O lines), plus I/O read/write

Serial Ports

Five 3.3 V, CMOS-compatible ports (shared with I/O)
• all 5 configurable as asynchronous (with IrDA)

• 3 configurable as clocked serial (SPI)

• 2 configurable as SDLC/HDLC

• 1 asynchronous serial port dedicated for programming

Serial Rate Maximum asynchronous baud rate = CLK/8

Slave Interface
A slave port allows the RCM3305/RCM3315 to be used as an
intelligent peripheral device slaved to a master processor, which
may either be another Rabbit 3000 or any other type of processor

Real-Time Clock Yes

Timers Ten 8-bit timers (6 cascadable, 3 reserved for internal peripherals),
one 10-bit timer with 2 match registers
68 RabbitCore RCM3305/RCM3315

A.2 Bus Loading
You must pay careful attention to bus loading when designing an interface to the
RCM3305/RCM3315. This section provides bus loading information for external devices.

Table A-2 lists the capacitance for the various RCM3305/RCM3315 I/O ports.

Table A-3 lists the external capacitive bus loading for the various RCM3305/RCM3315
output ports. Be sure to add the loads for the devices you are using in your custom system
and verify that they do not exceed the values in Table A-3.

Table A-2. Capacitance of Rabbit 3000 I/O Ports

I/O Ports
Input

Capacitance
(pF)

Output
Capacitance

(pF)

Parallel Ports A to G 12 14

Table A-3. External Capacitive Bus Loading -40°C to +85°C

Output Port Clock Speed
(MHz)

Maximum External
Capacitive Loading (pF)

All I/O lines with clock
doubler enabled 44.2 100
User’s Manual 71

APPENDIX B. PROTOTYPING BOARD

Appendix B describes the features and accessories of the Proto-
typing Board.
User’s Manual 79

B.3 Power Supply
The RCM3305/RCM3315 requires a regulated 3.15 V to 3.45 V DC power source to oper-
ate. Depending on the amount of current required by the application, different regulators
can be used to supply this voltage.

The Prototyping Board has an onboard +5 V switching power regulator from which a
+3.3 V linear regulator draws its supply. Thus both +5 V and +3.3 V are available on the
Prototyping Board.

The Prototyping Board itself is protected against reverse polarity by a diode at D1 as
shown in Figure B-3.

Figure B-3. Prototyping Board Power Supply

���	�����*	�
�	�$�����

�
�
*
	
�

��

 �

���M%

������
$�

��"��!

�

�

�

�

�

�
�����

�

���M% ����M%

��!

��

��
����M&

�
�����

�*���&������*	���	�$�����

���
$�

����

���M%
User’s Manual 85

Figure B-11 shows the stepper-motor driver circuit.

Figure B-11. Stepper-Motor Driver Circuit

The stepper motor(s) can be powered either from the onboard power supply or from an
external power based on the jumper settings on headers JP1 and JP2.

Table B-3. Stepper Motor Power-Supply Options

Header Pins Connected Factory
Default

JP1

1–2
9–10 Onboard power supply to U2 ×
3–4
7–8 External power supply to U2

JP2

1–2
9–10 Onboard power supply to U3 ×
3–4
7–8 External power supply to U3

 �

�

�

�

$�

�

�

�

�

��

��

�

�

�

��

�

�

	����	�

	����	�

�������K
������'K

��
�0
�

��
�0
�

����
�

!���

�
��

�
��

�
��

�
��

!��(

�$��

�$��

�$��

�$��

���

���

���

���

��
�0
�

��
�0
�

 �

�

�

�

$�

�

�

�

�

��

��

�

�

�

��

�

�

	����	�

	����	�

�������K
������'K

��
�0
�

��
�0
�

����
�

!��(

�
��

�
��

�
��

�
��

!���

>
�$��

�$��

�$��

�$��

���

���

���

���

��
�0
�

��
�0
�

> �%�

�%

�%�

�%�
User’s Manual 95

PF0 Input SPI, serial flash, quadrature decoder, J7 High

PF1–PF3 Input Quadrature decoder, J7 High

PF4–PF7 Output Motor 1–4 control Low (disabled)

PG0 Input Switch S1 High

PG1 Input Switch S2 High

PG2 Input TXF RS-232
Serial Port F

High (disabled)

PG3 Input RXF RS-232 High (disabled)

PG4 Output Motor driver A enable High (disabled)

PG5 Output Motor driver B enable High (disabled)

PG6 Input TXE RS-232
Serial Port E

High (disabled)

PG7 Input RXE RS-232 High (disabled)

* Serial Port B is not available on the Prototyping Board when the RCM3305/RCM3315 is
plugged in.

† PD0, PD1, and PE2 are not normally available on the Prototyping Board because they are not
brought out on RCM3305 headers J3 and J4.

Table B-5. Prototyping Board Use of Rabbit 3000 Parallel Ports (continued)

Port I/O Use Initial State
User’s Manual 99

Mounting hardware and a 60 cm (24") extension cable are also available for the LCD/
keypad module through your sales representative or authorized distributor.

Table C-1 lists the electrical, mechanical, and environmental specifications for the LCD/
keypad module.

Table C-1. LCD/Keypad Specifications

Parameter Specification

Board Size 2.60" x 3.00" x 0.75"
(66 mm x 76 mm x 19 mm)

Bezel Size 4.50" × 3.60" × 0.30"
(114 mm × 91 mm × 7.6 mm)

Temperature Operating Range: 0°C to +50°C
Storage Range: –40°C to +85°C

Humidity 5% to 95%, noncondensing

Power Consumption 1.5 W maximum*

* The backlight adds approximately 650 mW to the power consumption.

Connections Connects to high-rise header sockets on the Prototyping Board

LCD Panel Size 122 × 32 graphic display

Keypad 7-key keypad

LEDs Seven user-programmable LEDs

The LCD/keypad module has 0.1"
IDC headers at J1, J2, and J3 for
physical connection to other boards or
ribbon cables. Figure C-2 shows the
LCD/keypad module footprint. These
values are relative to one of the
mounting holes.

NOTE: All measurements are in
inches followed by millimeters
enclosed in parentheses. All dimen-
sions have a manufacturing toler-
ance of ±0.01" (0.25 mm).

Figure C-2. User Board Footprint for
LCD/Keypad Module

(;

()

�"���
-"�<

�"���
-�"<

�"��
-��"�<

�"��
-��"�<

(%

�"���
-"�<

�"
��

�
-�
�"
�<

�"
��

�
-�
�"
<

�"
��

�
-�
"
�<
102 RabbitCore RCM3305/RCM3315

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad
module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm)
longer than the thickness of the panel.

Figure C-9. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-
plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or
two turns to each screw in sequence until all are tightened manually as far as they can
be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

��A��5�	3��

�����������

$� $�
��

�� ��

��
$�

�
��

 �

��

�

��

�� �� ��

�
�

�
��

�
��

�� �� ��

�
��

� ��

� ��

�
��

��

�
��

��
�
�

�
��

�� �� �

�
��

�� �
$�

���
 �

�
�

�
�

���

�	���
108 RabbitCore RCM3305/RCM3315

C.8 LCD/Keypad Module Function Calls
When mounted on the Prototyping Board, the LCD/keypad module uses the external I/O
bus on the Rabbit 3000 chip. Remember to add the line

#define PORTA_AUX_IO

to the beginning of any programs using the external I/O bus.

C.8.1 LCD/Keypad Module Initialization

The function used to initialize the LCD/keypad module can be found in the Dynamic C
LIB\DISPLAYS\LCD122KEY7.LIB library.

Initializes the LCD/keypad module. The keypad is set up using keypadDef() or keyConfig() after
this function call.

RETURN VALUE
None.

C.8.2 LEDs

When power is applied to the LCD/keypad module for the first time, the red LED (DS1)
will come on, indicating that power is being applied to the LCD/keypad module. The red
LED is turned off when the brdInit function executes.

One function is available to control the LEDs, and can be found in the Dynamic C LIB\
DISPLAYS\LCD122KEY7.LIB library.

LED on/off control. This function will only work when the LCD/keypad module is installed on the
RCM3700 Prototyping Board.

PARAMETERS
led is the LED to control.

0 = LED DS1
1 = LED DS2
2 = LED DS3
3 = LED DS4
4 = LED DS5
5 = LED DS6
6 = LED DS7

value is the value used to control whether the LED is on or off (0 or 1).

0 = off
1 = on

RETURN VALUE
None.

void dispInit();

void displedOut(int led, int value);
User’s Manual 111

Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.

y1 is the y coordinate of the first vertex.

x1 is the x coordinate of the first vertex.

y2 is the y coordinate of the second vertex.

x2 is the x coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glPlotVPolygon, glFillPolygon, glFillVPolygon

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of
the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified,
the function will return without doing anything.

PARAMETERS
n is the number of vertices.
pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

void glPlotPolygon(int n, int y1, int x1, int y2,
int x2, ...);

void glFillVPolygon(int n, int *pFirstCoord);
116 RabbitCore RCM3305/RCM3315

