
Digi - 20-101-1068 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Not For New Designs

Module/Board Type MPU Core

Core Processor Rabbit 3000

Co-Processor -

Speed 44.2MHz

Flash Size 512KB (Internal), 4MB (External)

RAM Size 1MB

Connector Type 2 IDC Headers 2x17, 1 IDC Header 2x5

Size / Dimension 1.85" x 2.73" (47mm x 69mm)

Operating Temperature -40°C ~ 70°C

Purchase URL https://www.e-xfl.com/product-detail/digi-international/20-101-1068

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/20-101-1068-4509933
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 RCM3305/RCM3315 Features ...2
1.2 Comparing the RCM3309/RCM3319 and RCM3305/RCM3315 ..4
1.3 Advantages of the RCM3305 and RCM3315...5
1.4 Development and Evaluation Tools..6

1.4.1 RCM3305 Series Development Kit ..6
1.4.2 Software ..7
1.4.3 Connectivity Interface Kits ...7
1.4.4 Online Documentation ..7

Chapter 2. Getting Started 9
2.1 Install Dynamic C ...9
2.2 Hardware Connections..10

2.2.1 Step 1 — Attach Module to Prototyping Board..10
2.2.2 Step 2 — Connect Programming Cable ..11

2.2.2.1 RCM3309 and RCM3319 .. 11
2.2.2.2 RCM3305 and RCM3315 .. 12

2.2.3 Step 3 — Connect Power ..13
2.2.3.1 Alternate Power-Supply Connections .. 13

2.3 Starting Dynamic C ..14
2.4 Run a Sample Program ...14

2.4.1 Troubleshooting ..14
2.5 Where Do I Go From Here? ...15

2.5.1 Technical Support ...15

Chapter 3. Running Sample Programs 17
3.1 Introduction...17
3.2 Sample Programs ..18

3.2.1 Use of Serial Flash ..19
3.2.1.1 Onboard Serial Flash.. 19
3.2.1.2 SF1000 Serial Flash Card... 19

3.2.2 Serial Communication...19
3.2.3 Real-Time Clock ...21
3.2.4 RabbitNet ..21
3.2.5 Other Sample Programs ..21

Chapter 4. Hardware Reference 23
4.1 RCM3305/RCM3315 Digital Inputs and Outputs ..24

4.1.1 Memory I/O Interface ...29
4.1.2 Other Inputs and Outputs ..29
4.1.3 LEDs ...29

4.2 Serial Communication ..30
4.2.1 Serial Ports ..30
4.2.2 Ethernet Port ...31
4.2.3 Programming Port ...32
User’s Manual

2.2.3 Step 3 — Connect Power

When all other connections have been made, you can connect power to the Prototyping
Board.

If you have the universal power supply, prepare the AC adapter for the country where it
will be used by selecting the plug. The RCM3305 Series Development Kit presently
includes Canada/Japan/U.S., Australia/N.Z., U.K., and European style plugs. Snap in the
top of the plug assembly into the slot at the top of the AC adapter as shown in Figure 3(a),
then press down on the spring-loaded clip below the plug assembly to allow the plug
assembly to click into place.

Depending on the style of adapter, connect the AC adapter to 3-pin header J2 or jack J1 on
the Prototyping Board as shown in Figure 3(a) or Figure 3(b).

Plug in the AC adapter. The red CORE LED on the Prototyping Board should light up.
The RCM3305 series RabbitCore module and the Prototyping Board are now ready to be
used.

NOTE: A RESET button is provided on the Prototyping Board to allow a hardware reset
without disconnecting power.

2.2.3.1 Alternate Power-Supply Connections

All Development Kits sold up to May, 2008, included a header connector that may be used
to connect your power supply to 3-pin header J2 on the Prototyping Board. The connector
may be attached either way as long as it is not offset to one side—the center pin of J2 is
always connected to the positive terminal, and either edge pin is negative. The power
supply should deliver 8 V to 30 V DC at 8 W.
User’s Manual 13

2.3 Starting Dynamic C
NOTE: Dynamic C v. 9.60 or a later version is required if you are using an RCM3309 or

an RCM3319 RabbitCore module.

Once the RCM3305 series module is connected as described in the preceding pages, start
Dynamic C by double-clicking on the Dynamic C icon on your desktop or in your Start
menu. Select Code and BIOS in Flash, Run in RAM on the “Compiler” tab in the
Dynamic C Options > Project Options menu. Click OK.

If you are using a USB port to connect your computer to the RCM3305/RCM3315 module,
choose Options > Project Options and select “Use USB to Serial Converter” on the
Communications tab. Click OK.

2.4 Run a Sample Program
Use the File menu to open the sample program PONG.C, which is in the Dynamic C
SAMPLES folder. Press function key F9 to compile and run the program. The STDIO win-
dow will open on your PC and will display a small square bouncing around in a box.

This program shows that the CPU is working. The sample program described in
Section 6.5, “Run the PINGME.C Sample Program,” tests the TCP/IP portion of the board.

2.4.1 Troubleshooting
If Dynamic C cannot find the target system (error message "No Rabbit Processor
Detected."):

• Check that the RCM3305 series module is powered correctly — the red CORE LED on
the Prototyping Board should be lit when the module is mounted on the Prototyping Board and
the AC adapter is plugged in.

• Check both ends of the programming cable to ensure that they are firmly plugged into
the PC and the PROG connector, not the DIAG connector, is plugged in to the program-
ming port on the RCM3305 series module with the marked (colored) edge of the pro-
gramming cable towards pin 1 of the programming header.

• Ensure that the RCM3305 series module is firmly and correctly installed in its connec-
tors on the Prototyping Board.

• Dynamic C uses the COM port or USB port specified during installation. Select a dif-
ferent COM port within Dynamic C. From the Options menu, select Project Options,
then select Communications. Select another COM port from the list, then click OK.
Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C still reports it
is unable to locate the target system, repeat the above steps until you locate the COM
port used by the programming cable.

• If you get an error message when you plugged the programming cable into a USB port,
you will have to install USB drivers. Drivers for Windows XP are available in the
Dynamic C Drivers\Rabbit USB Programming Cable\WinXP_2K folder —
double-click DPInst.exe to install the USB drivers. Drivers for other operating sys-
tems are available online at www.ftdichip.com/Drivers/VCP.htm.
14 RabbitCore RCM3305/RCM3315

http://www.ftdichip.com/Drivers/VCP.htm

3. RUNNING SAMPLE PROGRAMS

To develop and debug programs for the RCM3305/RCM3315
(and for all other Rabbit hardware), you must install and use
Dynamic C.

3.1 Introduction
To help familiarize you with the RCM3305 and RCM3315 modules, Dynamic C includes
several sample programs. Loading, executing and studying these programs will give you a
solid hands-on overview of the RCM3305/RCM3315’s capabilities, as well as a quick
start using Dynamic C as an application development tool.

NOTE: The sample programs assume that you have at least an elementary grasp of the C
programming language. If you do not, see the introductory pages of the Dynamic C
User’s Manual for a suggested reading list.

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.

In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Your RCM3305/RCM3315 must be plugged in to the Prototyping Board as described
in Chapter 2, “Getting Started.”

2. Dynamic C must be installed and running on your PC.

3. The programming cable must connect the programming header on the RCM3305/
RCM3315 to your PC.

4. Power must be applied to the RCM3305/RCM3315 through the Prototyping Board.

Refer to Chapter 2, “Getting Started,” if you need further information on these steps.

To run a sample program, open it with the File menu, then press function key F9 to com-
pile and run the program. The RCM3305/RCM3315 must be in Program Mode (see
Figure 8) and must be connected to a PC using the programming cable.
User’s Manual 17

4. HARDWARE REFERENCE

Chapter 4 describes the hardware components and principal hardware
subsystems of the RCM3305/RCM3315 modules. Appendix A,
“RCM3305/RCM3315 Specifications,” provides complete physical
and electrical specifications.

Figure 4 shows the Rabbit-based subsystems designed into the RCM3305/RCM3315.

Figure 4. RCM3305/RCM3315 Subsystems

������
���

#	������
��$�����

#����+�,
%&&&

������
-�������
�.��
�	��%�/��	���
�

�$0�-���������	�

�������������
�!"#$%���&&'(#�$)#�(
"#+!"���(�&�),!"-�$"

�'�)�&!"��.!�#/#�
$..%#�$)#�(�

$))!"0�$��'.
�#"�'#)

�!+!%
��(+!")!"

�),!"(!) ��1��2��
���

�"�3"$&

%$�,

$�)����2
4."�3"$&5

�$)$
���2

�!"#$%

%$�,
User’s Manual 23

4.2.3 Programming Port

The RCM3305/RCM3315 is programmed either through the serial programming port,
which is accessed using header J1, or through the Ethernet jack. The RabbitLink may be
used to provide a serial connection via the RabbitLink’s Ethernet jack. The programming
port uses the Rabbit 3000’s Serial Port A for communication; Serial Port A is not used
when programming is done over an Ethernet connection via the Dynamic C download
manager or the remote application update. Dynamic C uses the programming port to
download and debug programs.

The programming port is also used for the following operations.

• Cold-boot the Rabbit 3000 on the RCM3305/RCM3315 after a reset.

• Remotely download and debug a program over an Ethernet connection using the
RabbitLink EG2110.

• Fast copy designated portions of flash memory from one Rabbit-based board (the
master) to another (the slave) using the Rabbit Cloning Board.

In addition to Serial Port A, the Rabbit 3000 startup-mode (SMODE0, SMODE1), status,
and reset pins are available on the programming port.

The two startup mode pins determine what happens after a reset—the Rabbit 3000 is
either cold-booted or the program begins executing at address 0x0000.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.

2. It can be driven low during an interrupt acknowledge cycle.

3. It can also serve as a general-purpose CMOS output.

The /RESET_IN pin is an external input that is used to reset the Rabbit 3000 and the
RCM3305/RCM3315 onboard peripheral circuits. The serial programming port can be
used to force a hard reset on the RCM3305/RCM3315 by asserting the /RESET_IN signal.

Alternate Uses of the Programming Port

All three clocked Serial Port A signals are available as

• a synchronous serial port

• an asynchronous serial port, with the clock line usable as a general CMOS I/O pin

The programming port may also be used as a serial port once the application is running.
The SMODE pins may then be used as inputs and the status pin may be used as an output.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.
32 RabbitCore RCM3305/RCM3315

4.4 Other Hardware
4.4.1 Clock Doubler

The RCM3305/RCM3315 takes advantage of the Rabbit 3000 microprocessor’s internal
clock doubler. A built-in clock doubler allows half-frequency crystals to be used to reduce
radiated emissions. The 44.2 MHz frequency specified for the RCM3305/RCM3315 is
generated using a 22.12 MHz resonator.

The clock doubler may be disabled if 44.2 MHz clock speeds are not required. This will
reduce power consumption and further reduce radiated emissions. The clock doubler is
disabled with a simple configuration macro as shown below.

4.4.2 Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. The
spectrum spreader is on by default, but it may also be turned off or set to a stronger setting.
The means for doing so is through a simple configuration macro as shown below.

NOTE: Refer to the Rabbit 3000 Microprocessor User’s Manual for more information
on the spectrum-spreading setting and the maximum clock speed.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.

2. Add the line CLOCK_DOUBLED=0 to always disable the clock doubler.

The clock doubler is enabled by default, and usually no entry is needed. If you need to
specify that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 to
always enable the clock doubler.

3. Click OK to save the macro. The clock doubler will now remain off whenever you are
in the project file where you defined the macro.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Normal spreading is the default, and usually no entry is needed. If you need to specify

normal spreading, add the line
ENABLE_SPREADER=1

For strong spreading, add the line
ENABLE_SPREADER=2

To disable the spectrum spreader, add the line
ENABLE_SPREADER=0

NOTE: The strong spectrum-spreading setting is unnecessary for the RCM3305/RCM3315.

3. Click OK to save the macro. The spectrum spreader will now be set to the state specified
by the macro value whenever you are in the project file where you defined the macro.
User’s Manual 35

for additional information if you are using a Dynamic C release prior to v. 9.60 under Win-
dows Vista. Programs can be downloaded at baud rates of up to 460,800 bps after the pro-
gram compiles.

Dynamic C has a number of standard features.

• Full-feature source and/or assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:
Exceptionally fast support for floating-point arithmetic and transcendental functions.

RS-232 and RS-485 serial communication.

Analog and digital I/O drivers.

I2C, SPI, GPS, file system.

LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking

• Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.
38 RabbitCore RCM3305/RCM3315

64 RabbitCore RCM3305/RCM3315

APPENDIX A. RCM3305/RCM3315
SPECIFICATIONS

Appendix A provides the specifications for the RCM3305/
RCM3315, and describes the conformal coating.
User’s Manual 65

Watchdog/
Supervisor Yes

Pulse-Width
Modulators

4 PWM registers with 10-bit free-running counter
and priority interrupts

Input Capture 2-channel input capture can be used to time input signals from
various port pins

Quadrature
Decoder

2-channel quadrature decoder accepts inputs from external
incremental encoder modules

Power 3.15–3.45 V DC
250 mA @ 44.2 MHz, 3.3 V

Operating
Temperature

-40°C to +70°C (boards manufactured up to May, 2008)
0°C to +70°C (boards manufactured after May, 2008)

Humidity 5% to 95%, noncondensing

Connectors
Two 2 × 17, 2 mm pitch

one 2 × 5 for programming with 1.27 mm pitch

Board Size 1.850" × 2.725" × 0.86"
(47 mm × 69 mm × 22 mm)

Table A-1. RCM3305/RCM3315 Specifications (continued)

Parameter RCM3305 RCM3315
User’s Manual 69

Table A-8 lists the configuration options.

NOTE: The jumper connections are made using 0 Ω surface-mounted resistors.

Table A-8. RCM3305/RCM3315 Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 Flash Memory Size
1–2 128K/256K

2–3 512K ×

JP2 Flash Memory Bank Select
1–2 Reserved for future use

2–3 Normal Mode ×

JP3 Data SRAM Size
1–2 128K/256K

2–3 512K ×

JP4 Ethernet or I/O Output
on Header J3

1–2 TPO+

2–3 PD3 ×

JP5 Ethernet or I/O Output
on Header J3

1–2 TPO–

2–3 PD2 ×

JP6 Ethernet or I/O Output
on Header J3

1–2 ENET_INT

2–3 PE0 ×

JP7 Ethernet or I/O Output
on Header J3

1–2 TPI+

2–3 PD7 ×

JP8 Ethernet or I/O Output
on Header J3

1–2 TPI–

2–3 PD6 ×
User’s Manual 77

APPENDIX B. PROTOTYPING BOARD

Appendix B describes the features and accessories of the Proto-
typing Board.
User’s Manual 79

B.1 Introduction
The Prototyping Board included in the Development Kit makes it easy to connect an
RCM3305/RCM3315 module to a power supply and a PC workstation for development. It
also provides some basic I/O peripherals (RS-232, RS-485, a relay, LEDs, and switches),
as well as a prototyping area for more advanced hardware development.

For the most basic level of evaluation and development, the Prototyping Board can be
used without modification.

As you progress to more sophisticated experimentation and hardware development, modi-
fications and additions can be made to the board without modifying or damaging the
RCM3305/RCM3315 module itself.

The Prototyping Board is shown below in Figure B-1, with its main features identified.

Figure B-1. Prototyping Board

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"
�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������!�!��������
����
����
�����
 !��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

���

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

����

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�
��

���� �������������� ������������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

�� ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
��

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�
�� �+	����+	�����
����+%����+%���������
����'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

��!

��"��!

��!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�

�

�
�

�
�

�
�

�
��

�
��

�
�

�
��

�
�

�
��

������	�������

�
�

�
�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

!/.5>39
�93C.>5/:1

�/@9:
�;=C5

�/@9:
�	

�9195
�@25A4

$19:
�	
1

�/7C.9
	+59;12/;�&9>79:

��!B��"��!B�>;7
��
��C191

���������������
�/7C.9

�/;;9A5/:1

��(���
�23;>.1

$19:
�@25A491

�����:/5/56=2;3
�:9>

��
��96=>7
�/7C.9

�/;;9A52/;1

�>??25�95
�/:5

�4:/C34(&/.9
�:/5/56=2;3��:9>

�9:2>.�%.>14
�/A095

K

�/:9
�	

K K

��(��
�9.>6�$19:

�	

K

�9.>6
�9:E2;>.1

K &(�:2739�/5/:�
:2L9:
�9:E2;>.1 K�C>7:>5C:9

9A/79:
�9:E2;>.1 K
2325>.�;=C51

�/7C.9
	+59;12/;�&9>79:
80 RabbitCore RCM3305/RCM3315

• Module Extension Headers—The complete pin set of the RCM3305/RCM3315
module is duplicated at headers J8 and J9. Developers can solder wires directly into the
appropriate holes, or, for more flexible development, 2 × 17 header strips with a 0.1"
pitch can be soldered into place. See Figure B-4 for the header pinouts.

• Digital I/O—Four digital inputs are available on screw-terminal header J6. See
Figure B-4 for the header pinouts.

• RS-232—Two 3-wire serial ports or one 5-wire RS-232 serial port are available on the
Prototyping Board at screw-terminal header J14.

• RS-485—One RS-485 serial port is available on the Prototyping Board at screw-termi-
nal header J14.

• Quadrature Decoder—Four quadrature decoder inputs (PF0–PF3) from the Rabbit
3000 chip are available on screw-terminal header J5. See Figure B-4 for the header
pinouts.

• H-Bridge Motor Driver—Two pairs of H-bridge motor drivers are supported using
screw-terminal headers J3 and J4 on the Prototyping Board for stepper-motor control.
See Figure B-4 for the header pinouts.

• RabbitNet Port—One RS-422 RabbitNet port (shared with the serial flash interface) is
available to allow RabbitNet peripheral cards to be used with the Prototyping Board.

• Serial Flash Interface—One serial flash interface (shared with the RabbitNet port) is
available to allow Rabbit’s SF1000 series serial flash to be used on the Prototyping
Board.
82 RabbitCore RCM3305/RCM3315

Table B-1 lists the electrical, mechanical, and environmental specifications for the Proto-
typing Board.

Table B-1. Prototyping Board Specifications

Parameter Specification

Board Size 5.25" × 6.75" × 1.00" (133 mm × 171 mm × 25 mm)

Operating Temperature –20°C to +70°C

Humidity 5% to 95%, noncondensing

Input Voltage 8 V to 30 V DC

Maximum Current Draw
(including user-added circuits)

800 mA max. for +3.3 V supply,
1 A total +3.3 V and +5 V combined

Backup Battery CR2032, 3 V lithium coin-type

Digital Inputs 4 inputs pulled up, ± 36 V DC,
switching threshold 0.9–2.3 V typical

Digital Outputs 4 sinking outputs,+30 V DC, 500 mA maximum per channel
8 CMOS-level outputs if stepper motor not installed

Relay SPDT relay, 500 mA @ 30 V

Serial Ports
• two 3-wire RS-232 or one RS-232 with RTS/CTS
• one RS-485

Other Serial Interfaces RabbitNet RS-422 port or serial flash interface

Other Interfaces
• stepper motor control
• quadrature decoder
• LCD/keypad module

LEDs

Seven LEDs
• one power on indicator
• one RCM3305/RCM3315 module indicator
• four user-configurable LEDs
• one relay indicator

Prototyping Area Throughhole, 0.1" spacing, additional space for SMT
components

Connectors

• two 2 × 17, 2 mm pitch sockets for RCM3305/RCM3315
module

• one 2 × 5, 2 mm pitch socket for serial flash
• six screw-terminal headers for serial ports, digital inputs,

stepper motor control, quadrature decoder, and relay
contacts

• one RJ-45 RabbitNet jack

Standoffs/Spacers 7, accept 4-40 x 1/2 screws
84 RabbitCore RCM3305/RCM3315

B.4.8 Other Prototyping Board Modules

An optional LCD/keypad module is available that can be mounted on the Prototyping
Board. The signals on headers LCD1JB and LCD1JC will be available only if the LCD/
keypad module is installed. Refer to Appendix C, “LCD/Keypad Module,” for complete
information.

Rabbit’s SF1000 series serial flash may be installed in the socket labeled J11. The J11
interface is enabled in software by setting PD2 = 0. Header JP3 must have pins 2–3 jum-
pered when using the J11 interface. Note that the RabbitNet port and the J11 interface
cannot be used simultaneously.

B.4.9 Quadrature Decoder

Four quadrature decoder inputs are available on screw-terminal header J5. To use the PF0
input from the Rabbit microprocessor, which goes to the QD1B input, remember to recon-
figure the jumper on header JP3 to jumper pins 1–2.

Additional information on the use of the quadrature decoders on Parallel Port F is pro-
vided in the Rabbit 3000 Microprocessor User’s Manual.

B.4.10 Stepper-Motor Control

The Prototyping Board can be used to demonstrate the use of the RCM3305/RCM3315 to
control a stepper motor. Stepper motor control typically directs moves in two orthogonal
directions, and so two sets of stepper-motor control circuits are provided for via screw-
terminal headers J3 and J4.

In order to use the stepper-motor control, install two Texas Instruments L293DN chips at
locations U2 and U3 (shown in Figure B-10). These chips are readily available from your
favorite electronics parts source, and may be purchased through Rabbit’s Web store as part
number 660-0205.

Figure B-10. Install Four-Channel Push-Pull Driver Chips

��
��

�

��
�

�	

�

�	

�

�	

 ��

��

 �� ��
�
�

�

�������	�

��
���
�

��
�

��
�

��
�

��������

�

��
�

���
�
�

�	
��

�
��

���
��

���
��

���
��

���
��

��
��

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	�

�	

�

�	

�

�	

�

�	

�

��

�� ��
�
�
�
�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

��
�

��
�

��
�

��
�

��

��
�

�	
��

���
��

	

�"

���
#
���

�!

 ��

$��$��

���

��
� ��
����

���

���

�	
���

��%
��

�&
�

��

	

�

 �

�� ��

�� �� � ��

��

�� $�

��
�

��

��

�

 �

 �
 � �

��
��������������������������������!�!��������
����
����
�����
 !��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

���

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �
��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�%
���
�%

���
�	

�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

����

��

�

�

��

�
�

��

��
�
�

�

��

��

��
�

 �
�

���

��

�	
�

�		

��
�

 �
�

 ��

��� ���

��� �

���

��
�

$

���
��

��
�

���� �������������� ������������� ����$�

�$�

�����
$�

$�
����

&(
��!	�

����

&(
��!	�

$�

�� ��� ��� ���

 �� ���

$��

���

��
�

��

���
 �

���

���

��
�

$�

���

 ��

��
�

��
� ��

� ��
�

$)

$)�
����*

$)�
����*

)�

��

 ��
��

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

��
�

��
�

��
�

��
�

���	

��
��
��
�
�� �+	����+	�����
����+%����+%���������
����'

�� �� �� ��

���

������������

���	���
$�	
��
�	��

$�

��
��

��"��!

��!

��"��!

��!

$�

$)�

)�

�)��
�)��

�)��

�)��
�)���)�

�%�,���

�%�,�

 ��

��

$�

��
�

��
�

��
�

��
�

��

�)�

�)�

�

�
�

�
�

�
�

��
�

��
�

��

��
�

�
�

��
�������	�������

�
�

�
�

��
��

�(�
��

��
�(�

���
���

���
���

��

 �
���

��

��

�����
��$�

�� ��������

��

���� �

��

���
���

���

���

$�

���

��� ��

��

���

���

��

���

���

���

��

���

��

���

$�

�����

��

���

���
���
���

���

$���

��

���

������
$��

���

���
���
���
���
���

��

���
���

$�
���

���

�����))

��

����������������

��

��

 �

��

���
���
���

���

���

���

���

���

���

���

��� �	���� �	����

 ��

 ��
 ��
 ��
 �

��

���

��� ���

���

���

��
��
���

���

���

���

���

���
���

���

���

���
�����

��� ���

��

��
�����

��
94 RabbitCore RCM3305/RCM3315

http://www.rabbit.com/store/

100 RabbitCore RCM3305/RCM3315

Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the
function will return without doing anything.

PARAMETERS
n is the number of vertices.
x1 is the x coordinate of the first vertex.
y1 is the y coordinate of the first vertex.
x2 is the x coordinate of the second vertex.
y2 is the y coordinate of the second vertex.
... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any por-
tion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.
yc is the y coordinate of the center of the circle.
rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.
yc is the y coordinate of the center of the circle.
rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glPlotCircle, glPlotPolygon, glFillPolygon

void glFillPolygon(int n, int x1, int y1, int x2,
int y2, ...);

void glPlotCircle(int xc, int yc, int rad);

void glFillCircle(int xc, int yc, int rad);
User’s Manual 117

Provides an interface between the STDIO string-handling functions and the graphic library. The
STDIO string-formatting function will call this function, one character at a time, until the entire format-
ted string has been parsed. Any portion of the bitmap character that is outside the LCD display area will
be clipped.

PARAMETERS
ch is the character to be displayed on the LCD.

*ptr is not used, but is a place holder for STDIO string functions.

*cnt is not used, is a place holder for STDIO string functions.

pInst is a pointer to the font descriptor.

RETURN VALUE
None.

SEE ALSO
glPrintf, glPutFont, doprnt

Prints a formatted string (much like printf) on the LCD screen. Only the character codes that exist in
the font set are printed, all others are skipped. For example, '\b', '\t', '\n' and '\r' (ASCII backspace, tab,
new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have
any effect as control characters. Any portion of the bitmap character that is outside the LCD display area
will be clipped.

PARAMETERS
x is the x coordinate (column) of the upper left corner of the text.

y is the y coordinate (row) of the upper left corner of the text.

pInfo is a pointer to the font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
glprintf(0,0, &fi12x16, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
glXFontInit

void glPutChar(char ch, char *ptr, int *cnt,
glPutCharInst *pInst)

void glPrintf(int x, int y, fontInfo *pInfo,
char *fmt, ...);
120 RabbitCore RCM3305/RCM3315

