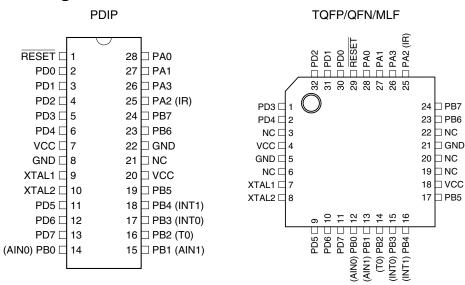


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	1.2MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	2KB (1K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/attiny28v-1mi

Features

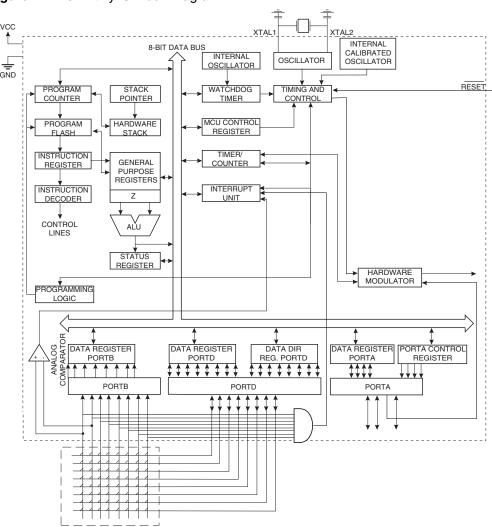
- Utilizes the AVR® RISC Architecture
- AVR High-performance and Low-power RISC Architecture
 - 90 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General-purpose Working Registers
 - Up to 4 MIPS Throughput at 4 MHz
- Nonvolatile Program Memory
 - 2K Bytes of Flash Program Memory
 - Endurance: 1,000 Write/Erase Cycles
 - Programming Lock for Flash Program Data Security
- Peripheral Features
 - Interrupt and Wake-up on Low-level Input
 - One 8-bit Timer/Counter with Separate Prescaler
 - On-chip Analog Comparator
 - Programmable Watchdog Timer with On-chip Oscillator
 - Built-in High-current LED Driver with Programmable Modulation
- Special Microcontroller Features
 - Low-power Idle and Power-down Modes
 - External and Internal Interrupt Sources
 - Power-on Reset Circuit with Programmable Start-up Time
 - Internal Calibrated RC Oscillator
- Power Consumption at 1 MHz, 2V, 25°C
 - Active: 3.0 mA
 - Idle Mode: 1.2 mA
 - Power-down Mode: <1 μA
- I/O and Packages
 - 11 Programmable I/O Lines, 8 Input Lines and a High-current LED Driver
 - 28-lead PDIP, 32-lead TQFP, and 32-pad MLF
- Operating Voltages
 - V_{CC}: 1.8V 5.5V for the ATtiny28V
 - V_{CC}: 2.7V 5.5V for the ATtiny28L
- Speed Grades
 - 0 1.2 MHz for the ATtiny28V
 - 0 4 MHz For the ATtiny28L

Pin Configurations

8-bit **AVR**® Microcontroller with 2K Bytes of Flash

ATtiny28L ATtiny28V

Summary



Description

The ATtiny28 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny28 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed. The AVR core combines a rich instruction set with 32 general-purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Block Diagram

Figure 1. The ATtiny28 Block Diagram

The ATtiny28 provides the following features: 2K bytes of Flash, 11 general-purpose I/O lines, 8 input lines, a high-current LED driver, 32 general-purpose working registers, an 8-bit timer/counter, internal and external interrupts, programmable Watchdog Timer with internal oscillator and 2 software-selectable power-saving modes. The Idle Mode stops the CPU while allowing the timer/counter and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset. The wake-up or inter-

rupt on low-level input feature enables the ATtiny28 to be highly responsive to external events, still featuring the lowest power consumption while in the power-down modes.

The device is manufactured using Atmel's high-density, nonvolatile memory technology. By combining an enhanced RISC 8-bit CPU with Flash on a monolithic chip, the Atmel ATtiny28 is a powerful microcontroller that provides a highly flexible and cost-effective solution to many embedded control applications. The ATtiny28 AVR is supported with a full suite of program and system development tools including: macro assemblers, program debugger/simulators, in-circuit emulators and evaluation kits.

Pin Descriptions

VCC Supply voltage pin.

GND Ground pin.

Port A (PA3..PA0) Port A is a 4-bit I/O port. PA2 is output-only and can be used as a high-current LED

driver. At V_{CC} = 2.0V, the PA2 output buffer can sink 25 mA. PA3, PA1 and PA0 are bi-directional I/O pins with internal pull-ups (selected for each bit). The port pins are tri-

stated when a reset condition becomes active, even if the clock is not running.

Port B (PB7..PB0) Port B is an 8-bit input port with internal pull-ups (selected for all Port B pins). Port B

pins that are externally pulled low will source current if the pull-ups are activated.

Port B also serves the functions of various special features of the ATtiny28 as listed on page 27. If any of the special features are enabled, the pull-up(s) on the corresponding pin(s) is automatically disabled. The port pins are tri-stated when a reset condition

becomes active, even if the clock is not running.

Port D (PD7..PD0) Port D is an 8-bit I/O port. Port pins can provide internal pull-up resistors (selected for

each bit). The port pins are tri-stated when a reset condition becomes active, even if the

clock is not running.

XTAL1 Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting oscillator amplifier.

RESET Reset input. An external reset is generated by a low level on the RESET pin. Reset

pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter

pulses are not guaranteed to generate a reset.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	I	Т	Н	S	V	N	Z	С	page 6
\$3E	Reserved									
	Reserved									
\$20	Reserved									
\$1F	Reserved									
\$1E	Reserved									
\$1D	Reserved									
\$1C	Reserved									
\$1B	PORTA	-	-	-	-	PORTA3	PORTA2	PORTA1	PORTA0	page 32
\$1A	PACR	-	-	-	-	DDA3	PA2HC	DDA1	DDA0	page 32
\$19	PINA	-	-	-	-	PINA3	-	PINA1	PINA0	page 32
\$18	Reserved									
\$17	Reserved									
\$16	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 32
\$15	Reserved		I	l			·			, ,
\$14	Reserved									
\$13	Reserved									
\$12	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	page 33
\$11	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 33
\$10	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	page 33
\$0F	Reserved									. 0
\$0E	Reserved									
\$0D	Reserved									
\$0C	Reserved									
\$0B	Reserved									
\$0A	Reserved									
\$09	Reserved									
\$08	ACSR	ACD	-	ACO	ACI	ACIE	-	ACIS1	ACIS0	page 44
\$07	MCUCS	PLUPB	-	SE	SM	WDRF	-	EXTRF	PORF	page 19
\$06	ICR	INT1	INT0	LLIE	TOIE0	ISC11	ISC10	ISC01	ISC00	page 22
\$05	IFR	INTF1	INTF0	-	TOV0	-	-	-	-	page 23
\$04	TCCR0	FOV0	-	-	OOM01	OOM00	CS02	CS01	CS00	page 35
\$03	TCNT0	Timer/Counte	r0 (8-bit)							page 36
\$02	MODCR	ONTIM4	ONTIM3	ONTIM2	ONTIM1	ONTIM0	MCONF2	MCONF1	MCONF0	page 43
\$01	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 37
\$00	OSCCAL	Ossillator Call	bration Register							page 9

- Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
 - 2. Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary

Mnemonic	Operands	Description	Operation	Flags	# Clocks
ARITHMETIC AND	LOGIC INSTRUC	TIONS			
ADD	Rd, Rr	Add Two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry Two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
SUB	Rd, Rr	Subtract Two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry Two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
СОМ	Rd	One's Complement	Rd ← \$FF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (FFh - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	1
BRANCH INSTRU	CTIONS	, -		L	
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2
CP	Rd, Rr	Compare	Rd - Rr	Z,N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z,N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd - K	Z N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b) = 1) PC ← PC + 2 or 3	None	1/2
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b) = 0) PC ← PC + 2 or 3	None	1/2
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b) = 1) PC ← PC + 2 or 3	None	1/2
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC \leftarrow PC + k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less than Zero, Signed	if $(N \oplus V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T-flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T-flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2

Instruction Set Summary (Continued)

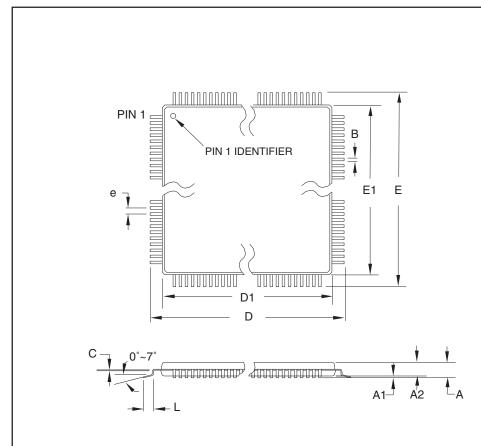
Mnemonic	Operands	Description	Operation	Flags	# Clocks
DATA TRANSFER	INSTRUCTIONS		-	•	•
LD	Rd, Z	Load Register Indirect	$Rd \leftarrow (Z)$	None	2
ST Z, Rr S		Store Register Indirect	(Z) ← Rr	None	2
MOV	Rd, Rr	Move between Registers	Rd ← Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
LPM		Load Program Memory	R0 ← (Z)	None	3
BIT AND BIT-TES	T INSTRUCTIONS				
SBI	P, b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P, b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n = 06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit Load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z←1	Z	1
CLZ		Clear Zero Flag	Z←0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	I ← 0	- [1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow	V ← 1	V	1
CLV		Clear Two's Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half-carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half-carry Flag in SREG	H ← 0	Н	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1

Ordering Information

Speed (MHz)	Power Supply (Volts)	Ordering Code	Package ⁽¹⁾	Operation Range
		ATtiny28L-4AC ATtiny28L-4PC ATtiny28L-4MC	32A 28P3 32M1-A	Commercial (0°C to 70°C)
4	2.7 - 5.5	ATtiny28L-4AI ATtiny28L-4AU ⁽²⁾ ATtiny28L-4PI ATtiny28L-4PU ⁽²⁾ ATtiny28L-4MI ATtiny28L-4MU ⁽²⁾	32A 32A 28P3 28P3 32M1-A 32M1-A	Industrial (-40°C to 85°C)
		ATtiny28V-1AC ATtiny28V-1PC ATtiny28V-1MC	32A 28P3 32M1-A	Commercial (0°C to 70°C)
1.2	1.8 - 5.5	ATtiny28V-1AI ATtiny28V-1AU ⁽²⁾ ATtiny28V-1PI ATtiny28V-1PU ⁽²⁾ ATtiny28V-1MI ATtiny28V-1MU ⁽²⁾	32A 32A 28P3 28P3 32M1-A 32M1-A	Industrial (-40°C to 85°C)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

	Package Type					
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)					
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)					
32M1-A	32-pad, 5x5x1.0 body, Lead Pitch 0.50mm, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF)					



^{2.} Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Packaging Information

32A

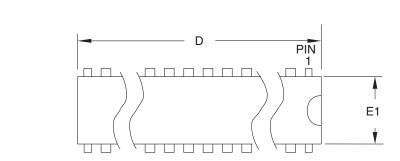
COMMON DIMENSIONS

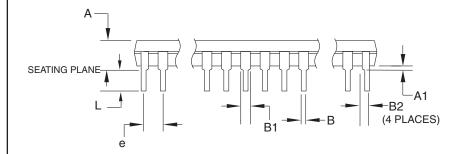
(Unit of Measure = mm)

	`		,	
SYMBOL	MIN	NOM	MAX	NOTE
А	_	_	1.20	
A1	0.05	-	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
Е	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е		0.80 TYP		

Notes:

- 1. This package conforms to JEDEC reference MS-026, Variation ABA.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.


10/5/2001


4Imei	2325 Orchard Parkway
AIIIEL	2325 Orchard Parkway San Jose, CA 95131

TITLE	DR
32A, 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness,	
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)	

RAWING NO.	REV.
32A	В

28P3

Note:

 Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

COMMON DIMENSIONS

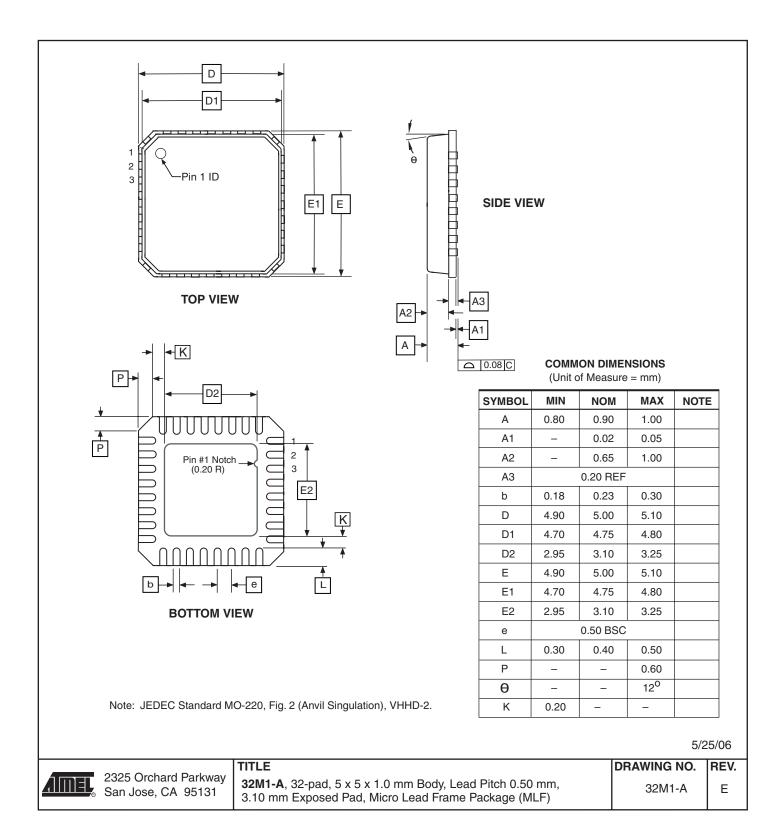
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	4.5724	
A1	0.508	_	_	
D	34.544	_	34.798	Note 1
Е	7.620	_	8.255	
E1	7.112	_	7.493	Note 1
В	0.381	_	0.533	
B1	1.143	_	1.397	
B2	0.762	_	1.143	
L	3.175	_	3.429	
С	0.203	_	0.356	
eВ	_	_	10.160	
е	2.540 TYP			

09/28/01

D. | REV.

В


2325 Orchard Parkway San Jose, CA 95131 **TITLE 28P3**, 28-lead (0.300"/7.62 mm Wide) Plastic Dual Inline Package (PDIP)

DRAWING NO. 28P3

32M1-A

Errata

All revisions

No known errata.

Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

- Rev 01/06G
- 1. Updated chapter layout.
- 2. Updated "Ordering Information" on page 7.
- Rev 01/06G
- 1. Updated description for "Port A" on page 25.
- 2. Added note 6 in "DC Characteristics" on page 54.
- 3. Updated "Ordering Information" on page 7.
- 4. Added "Errata" on page 11.
- Rev 03/05F
- 1. Updated "Electrical Characteristics" on page 54.
- 2. MLF-package alternative changed to "Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF".
- 3. Updated "Ordering Information" on page 7.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602

44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. ATMEL®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio®, and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.