

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST10
Core Size	16-Bit
Speed	64MHz
Connectivity	ASC, CANbus, EBI/EMI, I ² C, SSC, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	832KB (832K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	68K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	144-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st10f276-6qr3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

T 40		~ 7
Table 49.	GP12 timer input frequencies, resolutions and periods at 64 MHz.	87
Table 50.	PWM unit frequencies and resolutions at 40 MHz CPU clock	89
Table 51.	PWM unit frequencies and resolutions at 64 MHz CPU clock	89
Table 52.	ASC asynchronous baud rates by reload value and deviation errors (fCPU = 40 MHz)	95
Table 53.	ASC asynchronous baud rates by reload value and deviation errors (fCPU = 64 MHz)	96
Table 54.	ASC synchronous baud rates by reload value and deviation errors (fCPU = 40 MHz).	96
Table 55.	ASC synchronous baud rates by reload value and deviation errors (fCPU = 64 MHz) .	97
Table 56.	Synchronous baud rate and reload values (fCPU = 40 MHz)	98
Table 57.	Synchronous baud rate and reload values (fCPU = 64 MHz)	98
Table 58.	WDTREL reload value (fCPU = 40 MHz)	. 105
Table 59.	WDTREL reload value (fCPU = 64 MHz)	. 105
Table 60.	Reset event definition	. 106
Table 61.	Reset event	. 128
Table 62	PORT0 latched configuration for the different reset events	129
Table 63	Power reduction modes summary	135
Table 64	Description	137
Table 65	General nurnose registers (GPBs)	138
Table 05.	Conoral purpose registers (CPPs) butowice addressing	120
Table 00.	Special function registers ordered by address	140
Table 67.	Special function registers ordered by address	140
Table 66.		. 147
Table 69.		. 154
Table 70.	X-registers ordered by address	. 160
Table 71.	Flash registers ordered by name	. 165
Table 72.	Flash registers ordered by address	. 166
Table 73.	MANUF description.	. 167
Table 74.	IDCHIP description	. 167
Table 75.	IDMEM description	. 168
Table 76.	IDPROG description	. 168
Table 77.	SYSCON description	. 169
Table 78.	BUSCON4 description	. 171
Table 79.	RPOH description	. 172
Table 80.	EXIxES bit description	. 173
Table 81.	EXISEL	. 173
Table 82.	EXIxSS and port 2 pin configurations	. 173
Table 83.	SFR area description	. 174
Table 84.	ESFR description	. 174
Table 85.	Segment 8 address range mapping	. 176
Table 86.	Absolute maximum ratings	. 178
Table 87.	Recommended operating conditions	. 178
Table 88.	Thermal characteristics.	. 179
Table 89.	Package characteristics	. 180
Table 90.	DC characteristics	. 180
Table 91.	Flash characteristics	. 184
Table 92.	Data retention characteristics	. 185
Table 93.	A/D converter characteristics	. 187
Table 94	A/D converter programming	188
Table 95	On-chip clock generator selections	199
Table 96	Internal PLL divider mechanism	. 201
Table 97	PLL lock/unlock timing	204
Table 98	Main oscillator specifications	204
Table 99	Negative resistance (absolute min_value @ $1250C / VDD = 4.5V$)	205
Table 100	32 kHz Oscillator specifications	205

List of figures

Figure 1.	Logic symbol	15
Figure 2.	Pin configuration (top view)	16
Figure 3.	Block diagram	
Figure 4.	Flash modules structure	
Figure 5.	ST10F276E new standard bootstrap loader program flow	49
Figure 6.	Booting steps for ST10F276E	51
Figure 7.	Hardware provisions to activate the BSL	52
Figure 8.	Memory configuration after reset	53
Figure 9.	UART bootstrap loader sequence	55
Figure 10.	Baud rate deviation between host and ST10F276E	
Figure 11.	CAN bootstrap loader sequence.	59
Figure 12.	Bit rate measurement over a predefined zero-frame	62
Figure 13.	Reset boot sequence	
Figure 14.	CPU Block Diagram (MAC Unit not included)	
Figure 15.	MAC unit architecture	
Figure 16.	X-Interrupt basic structure	
Figure 17	Block diagram of GPT1	86
Figure 18	Block diagram of GPT2	88
Figure 19	Block diagram of PWM module	89
Figure 20	Connection to single CAN bus via separate CAN transceivers	101
Figure 21	Connection to single CAN bus via common CAN transceivers	102
Figure 22	Connection to two different CAN buses (e.g. for gateway application)	103
Figure 22.	Connection to two different CAN buses (e.g. for gateway application)	103
Figure 24	Asymphronous power on DESET (EA = 1)	100
Figure 24.	Asynchronous power on RESET (EA = 1)	
Figure 25.	Asynchronous power-on RESET (EA = 0) \dots	
Figure 26.		110
Figure 27.	Asynchronous naroware RESET (EA = 0) \dots (EA = 1)	
Figure 28.	Synchronous short / long hardware RESET (EA = 1)	
Figure 29.	Synchronous short / long hardware RESET (EA = 0)	
Figure 30.	Synchronous long hardware RESET (EA = 1)	
Figure 31.	Synchronous long hardware RESET (EA = 0)	
Figure 32.	SW / WDT unidirectional RESET (EA = 1)	118
Figure 33.	SW / WDT unidirectional RESET (EA = 0)	119
Figure 34.	SW / WDT bidirectional RESET (EA = 1)	121
Figure 35.	SW / WDT bidirectional RESET (EA = 0)	122
Figure 36.	SW / WDT bidirectional RESET (EA = 0) followed by a HW RESET	123
Figure 37.	Minimum external reset circuitry	124
Figure 38.	System reset circuit	125
Figure 39.	Internal (simplified) reset circuitry	125
Figure 40.	Example of software or watchdog bidirectional reset (EA = 1)	126
Figure 41.	Example of software or watchdog bidirectional reset (EA = 0)	127
Figure 42.	PORT0 bits latched into the different registers after reset	130
Figure 43.	External RC circuitry on RPD pin	132
Figure 44.	Port2 test mode structure	
Figure 45.	Supply current versus the operating frequency (RUN and IDLE modes)	
Figure 46.	A/D conversion characteristic	190
Figure 47	A/D converter input pins scheme	
Figure 48.	Charge sharing timing diagram during sampling phase	
~		

4.3.4 Flash control register 1 high

The Flash control register 1 high (FCR1H), together with Flash control register 1 low (FCR1L), is used to select the sectors to erase, or during any write operation to monitor the status of each sector and each bank of the module selected by SMOD bit of FCR0H. First diagram shows FCR1H meaning when SMOD = 0; the second one when SMOD = 1.

FCR1	H (0x0	E 000	6) SM0	D = 0)		FCR						Reset	value:	0000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	B3S	B2S			Rese	erved			B3F1	B3F0				
						RS	RS							RS	RS

FCR1	H (0x0	E 000	6) SM0	DD = 1			FCR						Reset	value:	0000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved						B0S			Rese	erved			B1F1	B1F0
			-			RS	RS							RS	RS

Table 9. Flash control register 1 high

Bit	Function
SMOD = 0 (X	FLASH selected)
B3F(1:0)	Bank 3 XFLASH sector 1:0 status During any erase operation, these bits are automatically set and give the status of the two sectors of Bank 3 (B3F1-B3F0). The meaning of B3Fy bit for sector y of Bank 1 is given by <i>Table 10</i> . These bits are automatically reset at the end of a erase operation if no errors are detected.
B(3:2)S	Bank 3-2 status (XFLASH) During any erase operation, these bits are automatically modified and give the status of the two banks (B3-B2). The meaning of BxS bit for bank x is given in <i>Table 10</i> . These bits are automatically reset at the end of a erase operation if no errors are detected.
SMOD = 1 (IF	LASH selected)
B1F(1:0)	Bank 1 IFLASH sector 1:0 status During any erase operation, these bits are automatically set and give the status of the two sectors of Bank 1 (B1F1-B1F0). The meaning of B1Fy bit for sector y of Bank 1 is given by <i>Table 10</i> . These bits are automatically reset at the end of a erase operation if no errors are detected.
B(1:0)S	Bank 1-0 status (IFLASH) During any erase operation, these bits are automatically modified and give the status of the two banks (B1-B0). The meaning of BxS bit for bank x is given in <i>Table 10</i> . These bits are automatically reset at the end of a erase operation if no errors are detected.

During any erase operation, these bits are automatically set and give the status of the two sectors of Bank 1 (B1F1-B1F0). The meaning of B1Fy bit for sector y of Bank 1 is given by *Table 10*. These bits are automatically reset at the end of a erase operation if no errors are detected.

4.4.3 Flash non-volatile write protection X register high

FNVW	/PXRH	l (0x0E	E DF B	2)		NVR					Delivery value: F							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
						Rese	erved							W3P1	W3P0			
														RW	RW			

Table 20. Flash non-volatile write protection X register high

Bit	Function
W3P(1:0)	Write Protection Bank 3 / Sectors 1-0 (XFLASH) These bits, if programmed at 0, disable any write access to the sectors of Bank 3 (XFLASH).

4.4.4 Flash non-volatile write protection I register low

FNVWPIRL (0x0E DFB4)							NVR					De	livery v	/alue:	FFFFh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			W0P9	W0P8	W0P7	W0P6	W0P5	W0P4	W0P3	W0P2	W0P1	W0P0
						RW	RW	RW							

Table 21. Flash non-volatile write protection I register low

Bit	Function
W0P(9:0)	Write Protection Bank 0 / Sectors 9-0 (IFLASH) These bits, if programmed at 0, disable any write access to the sectors of Bank 0 (IFLASH).

4.4.5 Flash non-volatile write protection I register high

FNVW	/PIRH	(0x0E	DFB6))			NVR			Delivery value: FFF					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							W1P1	W1P0
														RW	RW

Table 22. Flash non-volatile write protection I register high

Bit	Function
W1P(1:0)	Write Protection Bank 1 / Sectors 1-0 (IFLASH) These bits, if programmed at 0, disable any write access to the sectors of Bank 1 (IFLASH).

Operation	Select bit	Address and data	Start bit
Set Protection	SPR	FDR0L/FDR0H	WMS
Program/Erase Suspend	SUSP	None	None

 Table 27.
 Flash write operations (continued)

Figure 11. CAN bootstrap loader sequence

- 1. BSL initialization time, > 1ms @ f_{CPU} = 40 MHz
- 2. Zero frame (CAN message: standard ID = 0, DLC = 0), sent by host
- 3. CAN message (standard ID = E6h, DLC = 3, Data0 = D5h, Data1-Data2 = IDCHIP_low-high), sent by ST10F276E on request
- 4. 128 bytes of code / data, sent by host
- 5. Caution: CAN1_TxD is only driven a certain time after reception of the zero byte (1.3ms @ f_{CPU} = 40 MHz).
- 6. Internal Boot ROM / Test-Flash

The Bootstrap Loader can load

- the complete application software into ROM-less systems,
- temporary software into complete systems for testing or calibration,
- a programming routine for Flash devices.

The BSL mechanism may be used for standard system start-up as well as for only special occasions like system maintenance (firmware update) or end-of-line programming or testing.

5.4.2 Entering the CAN bootstrap loader

The ST10F276E enters BSL mode if pin P0L.4 is sampled low at the end of a hardware reset. In this case, the built-in bootstrap loader is activated independently of the selected bus mode. The bootstrap loader code is stored in a special Test-Flash; no part of the standard mask ROM or Flash memory area is required for this.

After entering BSL mode and the respective initialization, the ST10F276E scans the CAN1_TxD line to receive the following initialization frame:

- Standard identifier = 0h
- DLC = 0h

As all the bits to be transmitted are dominant bits, a succession of 5 dominant bits and 1 stuff bit on the CAN network is used. From the duration of this frame, it calculates the corresponding baud rate factor with respect to the current CPU clock, initializes the CAN1 interface accordingly, switches pin CAN1_TxD to output and enables the CAN1 interface to take part in the network communication. Using this baud rate, a Message Object is

Figure 13. Reset boot sequence

8 Interrupt system

The interrupt response time for internal program execution is from 78ns to 187.5ns at 64 MHz CPU clock.

The ST10F276E architecture supports several mechanisms for fast and flexible response to service requests that can be generated from various sources (internal or external) to the microcontroller. Any of these interrupt requests can be serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single Byte or Word data transfer between any two memory locations with an additional increment of either the PEC source or destination pointer. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited to perform the transmission or the reception of blocks of data. The ST10F276E has 8 PEC channels, each of them offers such fast interrupt-driven data transfer capabilities.

An interrupt control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bit-field is dedicated to each existing interrupt source. Thanks to its related register, each source can be programmed to one of sixteen interrupt priority levels. Once starting to be processed by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Fast external interrupts may also have interrupt sources selected from other peripherals; for example the CANx controller receive signals (CANx_RxD) and I²C serial clock signal can be used to interrupt the system.

Table 40 shows all the available ST10F276E interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers:

Source of interrupt or PEC service request	Request flag	Enable flag	Interrupt vector	Vector location	Trap number
CAPCOM Register 0	CC0IR	CC0IE	CC0INT	00'0040h	10h
CAPCOM Register 1	CC1IR	CC1IE	CC1INT	00'0044h	11h
CAPCOM Register 2	CC2IR	CC2IE	CC2INT	00'0048h	12h
CAPCOM Register 3	CC3IR	CC3IE	CC3INT	00'004Ch	13h
CAPCOM Register 4	CC4IR	CC4IE	CC4INT	00'0050h	14h
CAPCOM Register 5	CC5IR	CC5IE	CC5INT	00'0054h	15h

Table 40. Interrupt source	es:
----------------------------	-----

12.2.2 Input threshold control

The standard inputs of the ST10F276E determine the status of input signals according to TTL levels. In order to accept and recognize noisy signals, CMOS input thresholds can be selected instead of the standard TTL thresholds for all the pins. These CMOS thresholds are defined above the TTL thresholds and feature a higher hysteresis to prevent the inputs from toggling while the respective input signal level is near the thresholds.

The Port Input Control registers PICON and XPICON are used to select these thresholds for each Byte of the indicated ports, this means the 8-bit ports P0L, P0H, P1L, P1H, P4, P7 and P8 are controlled by one bit each while ports P2, P3 and P5 are controlled by two bits each.

All options for individual direction and output mode control are available for each pin, independent of the selected input threshold.

12.3 Alternate port functions

Each port line has one associated programmable alternate input or output function.

- PORT0 and PORT1 may be used as address and data lines when accessing external memory. Besides, PORT1 provides also:
 - Input capture lines
 - 8 additional analog input channels to the A/D converter
- Port 2, Port 7 and Port 8 are associated with the capture inputs or compare outputs of the CAPCOM units and/or with the outputs of the PWM0 module, of the PWM1 module and of the ASC1.

Port 2 is also used for fast external interrupt inputs and for timer 7 input.

- Port 3 includes the alternate functions of timers, serial interfaces, the optional bus control signal BHE and the system clock output (CLKOUT).
- Port 4 outputs the additional segment address bit A23...A16 in systems where more than 64 Kbytes of memory are to be access directly. In addition, CAN1, CAN2 and I²C lines are provided.
- Port 5 is used as analog input channels of the A/D converter or as timer control signals.
- Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select signals and the SSC1 lines.

If the alternate output function of a pin is to be used, the direction of this pin must be programmed for output (DPx.y='1'), except for some signals that are used directly after reset and are configured automatically. Otherwise the pin remains in the high-impedance state and is not effected by the alternate output function. The respective port latch should hold a '1', because its output is ANDed with the alternate output data (except for PWM output signals).

If the alternate input function of a pin is used, the direction of the pin must be programmed for input (DPx.y='0') if an external device is driving the pin. The input direction is the default after reset. If no external device is connected to the pin, however, one can also set the direction for this pin to output. In this case, the pin reflects the state of the port output latch. Thus, the alternate input function reads the value stored in the port output latch. This can be used for testing purposes to allow a software trigger of an alternate input function by writing to the port output latch.

On most of the port lines, the user software is responsible for setting the proper direction when using an alternate input or output function of a pin.

19.2 Asynchronous reset

An asynchronous reset is triggered when RSTIN pin is pulled low while RPD pin is at low level. Then the ST10F276E is immediately (after the input filter delay) forced in reset default state. It pulls low RSTOUT pin, it cancels pending internal hold states if any, it aborts all internal/external bus cycles, it switches buses (data, address and control signals) and I/O pin drivers to high-impedance, it pulls high Port0 pins.

Note: If an asynchronous reset occurs during a read or write phase in internal memories, the content of the memory itself could be corrupted: to avoid this, synchronous reset usage is strongly recommended.

Power-on reset

The asynchronous reset must be used during the power-on of the device. Depending on crystal or resonator frequency, the on-chip oscillator needs about 1ms to 10ms to stabilize (refer to *Chapter 23: Electrical characteristics*), with an already stable V_{DD}. The logic of the ST10F276E does not need a stabilized clock signal to detect an asynchronous reset, so it is suitable for power-on conditions. To ensure a proper reset sequence, the RSTIN pin and the RPD pin must be held at low level until the device clock signal is stabilized and the system configuration value on Port0 is settled.

At Power-on it is important to respect some additional constraints introduced by the start-up phase of the different embedded modules.

In particular the on-chip voltage regulator needs at least 1ms to stabilize the internal 1.8V for the core logic: this time is computed from when the external reference (V_{DD}) becomes stable (inside specification range, that is at least 4.5V). This is a constraint for the application hardware (external voltage regulator): the RSTIN pin assertion shall be extended to guarantee the voltage regulator stabilization.

A second constraint is imposed by the embedded Flash. When booting from internal memory, starting from RSTIN releasing, it needs a maximum of 1ms for its initialization: before that, the internal reset (RST signal) is not released, so the CPU does not start code execution in internal memory.

Note: This is not true if external memory is used (pin EA held low during reset phase). In this case, once RSTIN pin is released, and after few CPU clock (Filter delay plus 3...8 TCL), the internal reset signal RST is released as well, so the code execution can start immediately after. Obviously, an eventual access to the data in internal Flash is forbidden before its initialization phase is completed: an eventual access during starting phase will return FFFFh (just at the beginning), while later 009Bh (an illegal opcode trap can be generated).

> At Power-on, the $\overrightarrow{\text{RSTIN}}$ pin shall be tied low for a minimum time that includes also the startup time of the main oscillator ($t_{STUP} = 1$ ms for resonator, 10ms for crystal) and PLL synchronization time ($t_{PSUP} = 200\mu$ s): this means that if the internal Flash is used, the $\overrightarrow{\text{RSTIN}}$ pin could be released before the main oscillator and PLL are stable to recover some time in the start-up phase (Flash initialization only needs stable V₁₈, but does not need stable system clock since an internal dedicated oscillator is used).

Warning: It is recommended to provide the external hardware with a current limitation circuitry. This is necessary to avoid permanent damages of the device during the power-on transient, when the capacitance on V_{18} pin is charged. For the on-chip voltage regulator functionality 10nF are

Figure 24. Asynchronous power-on RESET (EA = 1)

5 V operation), the asynchronous reset is then immediately entered.

- 3. RSTIN pin is pulled low if bit BDRSTEN (bit 3 of SYSCON register) was previously set by software. Bit BDRSTEN is cleared after reset.
- 4. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the internal filter (refer to *Section 19.1*).

Figure 29. Synchronous short / long hardware RESET (EA = 0)

- 1. RSTIN assertion can be released there. Refer also to Section 19.1 for details on minimum pulse duration.
- 2. If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5V for 5V operation), the asynchronous reset is then immediately entered.
- 3. 3 to 8 TCL depending on clock source selection.
- 4. RSTIN pin is pulled low if bit BDRSTEN (bit 3 of SYSCON register) was previously set by software. Bit BDRSTEN is cleared after reset.
- 5. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the internal filter (refer to *Section 19.1*).

19.8 Reset application examples

Next two timing diagrams (*Figure 40* and *Figure 41*) provides additional examples of bidirectional internal reset events (Software and Watchdog) including in particular the external capacitances charge and discharge transients (refer also to *Figure 38* for the external circuit scheme).

-	1024 TCL (12.8 μs)	1 ms (C1 charge)	38 TCL		EINIT
RSTOUT						<u> </u>
	· · · ·				 	
RSTF	<pre></pre>	-ř 	<mark>∢</mark> √ < 500 r	ast ns ►		
RPD VIL			1			
RST		4 TCL			Ì	
	04h			1Ch		00h
				4 TCL		
P0[15:13]	Not transparent	X	Transparent		Not transparent	
	<u> </u>	1 1 1		Latch	ing point	
P0[12:8]	Not transparent		Transparent		Not transparer	t
					Latching point	
P0[7:2]	Not transparent	Ľ X	Transpa	rent	Not transparen	t
					Latching point	
P0[1:0]		Not transparent			Not transparen	t
					Latching point	
					GAPGRI00117	

Figure 40. Example of software or watchdog bidirectional reset ($\overline{EA} = 1$)

Figure 42. PORT0 bits latched into the different registers after reset

Name	Physical address	Description	Reset value
XSSCRB	E808h	XSSC receive buffer	XXXXh
XSSCTB	E806h	XSSC transmit buffer	0000h

 Table 69.
 X-Registers ordered by name (continued)

Name	Physical address	Description	Reset value
XPICON	EB26h	Extended port input threshold control register	00h
XIR2SEL	EB30h	X-Interrupt 2 selection register	0000h
XIR2SET	EB32h	X-Interrupt 2 set register (write-only)	0000h
XIR2CLR	EB34h	X-Interrupt 2 clear register (write-only)	0000h
XP1DIDIS	EB36h	Port 1 digital disable register	0000h
XIR3SEL	EB40h	X-Interrupt 3 selection register	0000h
XIR3SET	EB42h	X-Interrupt 3 set selection register (write-only)	0000h
XIR3CLR	EB44h	X-Interrupt 3 clear selection register (write-only)	0000h
XMISC	EB46h	XBUS miscellaneous features register	0000h
XEMU0	EB76h	XBUS emulation register 0 (write-only)	XXXXh
XEMU1	EB78h	XBUS emulation register 1 (write-only)	XXXXh
XEMU2	EB7Ah	XBUS emulation register 2 (write-only)	XXXXh
XEMU3	EB7Ch	XBUS emulation register 3 (write-only)	XXXXh
XPEREMU	EB7Eh	XPERCON copy for emulation (write-only)	XXXXh
XPWMCON0	EC00h	XPWM module control register 0	0000h
XPWMCON1	EC02h	XPWM module control register 1	0000h
XPOLAR	EC04h	XPWM module channel polarity register	0000h
XPWMCON0SET	EC06h	XPWM module set control register 0 (write-only)	0000h
XPWMCON0CLR	EC08h	XPWM module clear control reg. 0 (write-only)	0000h
XPWMCON1SET	EC0Ah	XPWM module set control register 0 (write-only)	0000h
XPWMCON1CLR	EC0Ch	XPWM module clear control reg. 0 (write-only)	0000h
XPT0	EC10h	XPWM module up/down counter 0	0000h
XPT1	EC12h	XPWM module up/down counter 1	0000h
XPT2	EC14h	XPWM module up/down Counter 2	0000h
ХРТ3	EC16h	XPWM module up/down counter 3	0000h
XPP0	EC20h	XPWM module period register 0	0000h
XPP1	EC22h	XPWM module period register 1	0000h
XPP2	EC24h	XPWM module period register 2	0000h
XPP3	EC26h	XPWM module period register 3	0000h
XPW0	EC30h	XPWM module pulse width register 0	0000h

 Table 70.
 X-registers ordered by address (continued)

23.7 A/D converter characteristics

 V_{DD} = 5V \pm 10%, V_{SS} = 0V, T_A = -40 to +125°C, 4.5V \leq V_{AREF} \leq V_{DD} , V_{SS} \leq V_{AGND} \leq V_{SS} + 0.2V

Symbol	Paramatar	Test condition	Limit	Unit	
бутрог	Parameter	lest condition	Min.	Max.	Unit
V _{AREF} SR	Analog reference voltage ⁽¹⁾		4.5	V _{DD}	V
V _{AGND} SR	Analog ground voltage		V _{SS}	V _{SS} + 0.2	V
V _{AIN} SR	Analog Input voltage ⁽²⁾		V _{AGND}	V _{AREF}	V
I _{AREF} CC	Reference supply current	Running mode ⁽³⁾ Power Down mode	-	5 1	mΑ μΑ
t _S CC	Sample time	(4)	1	-	μs
t _C CC	Conversion time	(5)	3	-	μs
DNL CC	Differential nonlinearity ⁽⁶⁾	No overload	-1	+1	LSB
INL CC	Integral nonlinearity ⁽⁶⁾	No overload	-1.5	+1.5	LSB
OFS CC	Offset error ⁽⁶⁾	No overload	-1.5	+1.5	LSB
TUE CC	Total unadjusted error ⁽⁶⁾	Port5 Port1 - No overload ⁽³⁾ Port1 - Overload ⁽³⁾	-2.0 -5.0 -7.0	+2.0 +5.0 +7.0	LSB LSB LSB
к сс	Coupling factor between inputs ⁽³⁾⁽⁷⁾	On both Port5 and Port1	-	10 ⁻⁶	-
C _{P1} CC			-	3	pF
C _{P2} CC	Input pin capacitance ⁽³⁾⁽⁸⁾	Port5 Port1	-	4 6	pF pF
C _S CC	Sampling capacitance ⁽³⁾⁽⁸⁾		-	3.5	pF
R _{SW} CC	Analog switch	Port5 Port1	-	600 1600	Ω Ω
R _{AD} CC			-	1300	Ω

Table 93. A/D converter characteristics

 V_{AREF} can be tied to ground when A/D converter is not in use: An extra consumption (around 200µA) on main V_{DD} is added due to internal analog circuitry not completely turned off. Therefore, it is suggested to maintain the V_{AREF} at V_{DD} level even when not in use, and eventually switch off the A/D converter circuitry setting bit ADOFF in ADCON register.

2. V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be $0x000_H$ or $0x3FF_H$, respectively.

- 3. Not 100% tested, guaranteed by design characterization.
- 4. During the sample time, the input capacitance C_{AIN} can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result.

Values for the sample clock t_S depend on programming and can be taken from Table 94.

 This parameter includes the sample time t_S, the time for determining the digital result and the time to load the result register with the conversion result. Values for the conversion clock t_{CC} depend on programming and can be taken from next *Table 94*.

Figure 62. Demultiplexed bus with/without R/W delay and extended ALE

23.8.21 External bus arbitration

 V_{DD} = 5V ±10%, V_{SS} = 0V, T_A = -40 to +125°C, C_L = 50pF

Table 107. External bus arbitration

Symbol	Parameter	f _{CPU} = 40 MHz TCL = 12.5ns		Variable CPU Clock 1/2 TCL = 1 to 64 MHz		Unit
		Min.	Max.	Min.	Max.	
t ₆₁ SR	HOLD input setup time to CLKOUT	18.5	-	18.5	-	
t ₆₂ CC	CLKOUT to HLDA high or BREQ low delay		12.5		12.5	
t ₆₃ CC	CLKOUT to HLDA low or BREQ high delay	-	12.0	-	12.5	ns
t ₆₄ CC	CSx release		20		20	
t ₆₅ CC	CSx drive	- 4	15	- 4	15	
t ₆₆ CC	Other signals release	-	20	-	20]
t ₆₇ CC	Other signals drive	- 4	15	- 4	15	

Figure 66. External bus arbitration (releasing the bus)

1. The ST10F276E will complete the currently running bus cycle before granting bus access.

2. This is the first possibility for $\overline{\text{BREQ}}$ to become active.

3. The $\overline{\text{CS}}$ outputs will be resistive high (pull-up) after t₆₄.

Figure 70. PQFP144 mechanical data

