
Microchip Technology - ATMEGA168-15AT1 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega168-15at1

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega168-15at1-4433616
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

• Bit 2 – EEMPE: EEPROM Master Write Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written. When EEMPE is set, setting
EEPE within four clock cycles will write data to the EEPROM at the selected address If EEMPE is zero, setting EEPE will
have no effect. When EEMPE has been written to one by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM Write Enable

The EEPROM write enable signal EEPE is the write strobe to the EEPROM. When address and data are correctly set up,
the EEPE bit must be written to one to write the value into the EEPROM. The EEMPE bit must be written to one before a
logical one is written to EEPE, otherwise no EEPROM write takes place. The following procedure should be followed when
writing the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SELFPRGEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the flash memory. The software must check that the flash
programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the software contains a boot
loader allowing the CPU to program the flash. If the flash is never being updated by the CPU, step 2 can be omitted. See
Section 24. “Boot Loader Support – Read-While-Write Self-Programming, ATmega88 and ATmega168” on page 229 for
details about boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM master write enable
will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the EEAR
or EEDR register will be modified, causing the interrupted EEPROM access to fail. It is recommended to have
the global interrupt flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user software can poll this bit and wait
for a zero before writing the next byte. When EEPE has been set, the CPU is halted for two cycles before the next instruction
is executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM read enable signal EERE is the read strobe to the EEPROM. When the correct address is set up in the EEAR
register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM read access takes one
instruction, and the requested data is available immediately. When the EEPROM is read, the CPU is halted for four cycles
before the next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in progress, it is neither possible
to read the EEPROM, nor to change the EEAR register.

The calibrated oscillator is used to time the EEPROM accesses. Table 5-2 lists the typical programming time for EEPROM
access from the CPU.

Table 5-2. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typical Programming Time

EEPROM write (from
CPU)

26,368 3.3ms
19ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

6.5 Low Frequency Crystal Oscillator

The device can utilize a 32.768kHz watch crystal as clock source by a dedicated low frequency crystal Oscillator. The crystal
should be connected as shown in Figure 6-2 on page 25. When this oscillator is selected, start-up times are determined by
the SUT fuses and CKSEL0 as shown in Table 6-7.

6.6 Calibrated Internal RC Oscillator

The calibrated internal RC oscillator by default provides a 8.0MHz clock. The frequency is nominal value at 3V and 25°C.
The device is shipped with the CKDIV8 fuse programmed. See Section 6.11 “System Clock Prescaler” on page 31 for more
details. This clock may be selected as the system clock by programming the CKSEL fuses as shown in Table 6-8. If selected,
it will operate with no external components. During reset, hardware loads the calibration byte into the OSCCAL register and
thereby automatically calibrates the RC oscillator. At 3V and 25°C, this calibration gives a frequency of 8MHz ±1%. The
tolerance of the internal RC oscillator remains better than ±10% within the whole automotive temperature and voltage ranges
(2.7V to 5.5V, –40°C to +125°C). The oscillator can be calibrated to any frequency in the range 7.3 - 8.1MHz within ±1%
accuracy, by changing the OSCCAL register. When this Oscillator is used as the chip clock, the Watchdog Oscillator will still
be used for the watchdog timer and for the reset time-out. For more information on the pre-programmed calibration value,
see Section 25.4 “Calibration Byte” on page 245.

When this oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 6-9.

Table 6-7. Start-up Times for the Low Frequency Crystal Oscillator Clock Selection

Power Conditions
Start-up Time from Power-

down and Power-save
Additional Delay from

Reset (VCC = 5.0V) CKSEL0 SUT1..0

BOD enabled 1KCK 14CK(1) 0 00

Fast rising power 1KCK 14CK + 4.1ms(1) 0 01

Slowly rising power 1KCK 14CK + 65ms(1) 0 10

Reserved 0 11

BOD enabled 32KCK 14CK 1 00

Fast rising power 32KCK 14CK + 4.1ms 1 01

Slowly rising power 32KCK 14CK + 65ms 1 10

Reserved 1 11

Note: 1. These options should only be used if frequency stability at start-up is not important for the application.

Table 6-8. Internal Calibrated RC Oscillator Operating Modes(1)(3)

Frequency Range(2) (MHz) CKSEL3..0

7.3 - 8.1 0010

Notes: 1. The device is shipped with this option selected.

2. The frequency ranges are preliminary values. Actual values are TBD.

3. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8 fuse can be
programmed in order to divide the internal frequency by 8.

Table 6-9. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Power Conditions
Start-up Time from Power-down and

Power-save
Additional Delay from Reset

(VCC = 5.0V) SUT1..0

BOD enabled 6CK 14CK(1) 00

Fast rising power 6CK 14CK + 4.1ms 01

Slowly rising power 6CK 14CK + 65ms(2) 10

Reserved 11
Notes: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to

14CK + 4.1ms to ensure programming mode can be entered.

2. The device is shipped with this option selected.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

28

9. Interrupts

This section describes the specifics of the interrupt handling as performed in Atmel® ATmega48/88/168. For a general
explanation of the AVR® interrupt handling, refer to Section 4.8 “Reset and Interrupt Handling” on page 13.

The interrupt vectors in Atmel ATmega48, Atmel ATmega88 and Atmel ATmega168 are generally the same, with the
following differences:

�” Each interrupt vector occupies two instruction words in ATmega168, and one instruction word in ATmega48 and
ATmega88.

�” ATmega48 does not have a separate boot loader section. In ATmega88 and ATmega168, the reset vector is affected
by the BOOTRST fuse, and the interrupt vector start address is affected by the IVSEL bit in MCUCR.

9.1 Interrupt Vectors in ATmega48

Table 9-1. Reset and Interrupt Vectors in ATmega48

Vector No. Program Address Source Interrupt Definition

1 0x000 RESET
External pin, power-on reset, brown-out reset and watchdog
system reset

2 0x001 INT0 External interrupt request 0

3 0x002 INT1 External interrupt request 1

4 0x003 PCINT0 Pin change interrupt request 0

5 0x004 PCINT1 Pin change interrupt request 1

6 0x005 PCINT2 Pin change interrupt request 2

7 0x006 WDT Watchdog time-out interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 compare match A

9 0x008 TIMER2 COMPB Timer/Counter2 compare match B

10 0x009 TIMER2 OVF Timer/Counter2 overflow

11 0x00A TIMER1 CAPT Timer/Counter1 capture event

12 0x00B TIMER1 COMPA Timer/Counter1 compare match A

13 0x00C TIMER1 COMPB Timer/coutner1 compare match B

14 0x00D TIMER1 OVF Timer/Counter1 overflow

15 0x00E TIMER0 COMPA Timer/Counter0 compare match A

16 0x00F TIMER0 COMPB Timer/Counter0 compare match B

17 0x010 TIMER0 OVF Timer/Counter0 overflow

18 0x011 SPI, STC SPI serial transfer complete

19 0x012 USART, RX USART Rx complete

20 0x013 USART, UDRE USART, data register empty

21 0x014 USART, TX USART, Tx complete

22 0x015 ADC ADC conversion complete

23 0x016 EE READY EEPROM ready

24 0x017 ANALOG COMP Analog comparator

25 0x018 TWI 2-wire serial interface

26 0x019 SPM READY Store program memory ready
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

48

14. 16-bit Timer/Counter1 with PWM

The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation, and signal
timing measurement. The main features are:

● True 16-bit Design (i.e., allows 16-bit PWM)

● Two independent output compare units

● Double buffered output compare registers

● One input capture unit

● Input capture noise canceler

● Clear timer on compare match (auto reload)

● Glitch-free, phase correct pulse width modulator (PWM)

● Variable PWM period

● Frequency generator

● External event counter

● Four independent interrupt sources (TOV1, OCF1A, OCF1B, and ICF1)

14.1 Overview

Most register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter
number, and a lower case “x” replaces the output compare unit channel. However, when using the register or bit defines in a
program, the precise form must be used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 14-1 on page 95. For the actual placement of
I/O pins, refer to Section 1-1 “Pinout ATmega48/88/168” on page 3. CPU accessible I/O registers, including I/O bits and I/O
pins, are shown in bold. The device-specific I/O register and bit locations are listed in the
Section 14.10 “16-bit Timer/Counter Register Description” on page 113.

The PRTIM1 bit in Section 7.7.1 “Power Reduction Register - PRR” on page 35 must be written to zero to enable
Timer/Counter1 module.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

94

Table 14-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast PWM mode.

Table 14-4 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase correct or the phase and
frequency correct, PWM mode.

• Bit 1:0 – WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 14-5. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and
three types of pulse width modulation (PWM) modes. (See Section 14.8 “Modes of Operation” on page 105).

Table 14-3. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1
WGM13:0 = 14 or 15: Toggle OC1A on compare match, OC1B
disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on compare match, set OC1A/OC1B at TOP

1 1 Set OC1A/OC1B on compare match, clear OC1A/OC1B at TOP

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In this case the
compare match is ignored, but the set or clear is done at TOP.
See Section 14.8.3 “Fast PWM Mode” on page 106 for more details.

Table 14-4. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1
WGM13:0 = 8, 9, 10 or 11: Toggle OC1A on compare match,
OC1B disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on compare match when up-counting.
Set OC1A/OC1B on compare match when downcounting.

1 1
Set OC1A/OC1B on compare match when up-counting.
Clear OC1A/OC1B on compare match when downcounting.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set.
See Section 14.8.4 “Phase Correct PWM Mode” on page 108 for more details.

Table 14-5. Waveform Generation Mode Bit Description(1)

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10)

Timer/Counter Mode of
Operation TOP

Update of
OCR1x at

TOV1 Flag
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, phase correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, phase correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, phase correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP

8 1 0 0 0
PWM, phase and frequency
correct

ICR1 BOTTOM BOTTOM

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the
functionality and location of these bits are compatible with previous versions of the timer.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

114

15.8 8-bit Timer/Counter Register Description

15.8.1 Timer/Counter Control Register A – TCCR2A

• Bits 7:6 – COM2A1:0: Compare Match Output A Mode

These bits control the output compare pin (OC2A) behavior. If one or both of the COM2A1:0 bits are set, the OC2A output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OC2A pin must be set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the WGM22:0 bit setting. Table 15-2
shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode (non-PWM).

Table 15-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM mode.

Table 15-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode.

Bit 7 6 5 4 3 2 1 0

COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 TCCR2A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-2. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC2A on compare match

1 0 Clear OC2A on compare match

1 1 Set OC2A on compare match

Table 15-3. Compare Output Mode, Fast PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: normal port operation, OC0A disconnected.
WGM22 = 1: toggle OC2A on compare match.

1 0 Clear OC2A on compare match, set OC2A at TOP

1 1 Set OC2A on compare match, clear OC2A at TOP

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 15.6.3 “Fast PWM Mode” on page 125 for more
details.

Table 15-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: normal port operation, OC2A disconnected.
WGM22 = 1: toggle OC2A on compare match.

1 0
Clear OC2A on compare match when up-counting. Set OC2A on compare match
when down-counting.

1 1
Set OC2A on compare match when up-counting. Clear OC2A on compare match
when down-counting.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 15.6.4 “Phase Correct PWM Mode” on page 126 for
more details.
129ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

The function simply waits for data to be present in the receive buffer by checking the RXCn flag, before reading the buffer
and returning the value.

17.6.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCSRnB before reading the low bits
from the UDRn. This rule applies to the FEn, DORn and UPEn status flags as well. Read status from UCSRnA, then data
from UDRn. Reading the UDRn I/O location will change the state of the receive buffer FIFO and consequently the TXB8n,
FEn, DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit characters and the status
bits.

Note: 1. The example code assumes that the part specific header file is included. For I/O registers located in extended
I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow
access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The receive function example reads all the I/O registers into the register file before any computation is done. This gives an
optimal receive buffer utilization since the buffer location read will be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get status and 9th bit, then data from buffer
in r18, UCSRnA
in r17, UCSRnB
in r16, UDRn
; If error, return -1
andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)
breq USART_ReceiveNoError
ldi r17, HIGH(-1)
ldi r16, LOW(-1)

USART_ReceiveNoError:
; Filter the 9th bit, then return
lsr r17
andi r17, 0x01
ret

C Code Example(1)

unsigned int USART_Receive(void)
{

unsigned char status, resh, resl;
/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)))
;
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRnA;
resh = UCSRnB;
resl = UDRn;
/* If error, return -1 */
if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;
return ((resh << 8) | resl);

}

155ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

17.6.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the receiver is disabled, i.e., the buffer will be emptied of its contents. Unread
data will be lost. If the buffer has to be flushed during normal operation, due to for instance an error condition, read the UDRn
I/O location until the RXCn flag is cleared. The following code example shows how to flush the receive buffer.

Note: 1. The example code assumes that the part specific header file is included. For I/O registers located in extended
I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow
access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

17.7 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The clock
recovery logic is used for synchronizing the internally generated baud rate clock to the incoming asynchronous serial frames
at the RxDn pin. The data recovery logic samples and low pass filters each incoming bit, thereby improving the noise
immunity of the receiver. The asynchronous reception operational range depends on the accuracy of the internal baud rate
clock, the rate of the incoming frames, and the frame size in number of bits.

17.7.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 17-5 illustrates the sampling
process of the start bit of an incoming frame. The sample rate is 16 times the baud rate for normal mode, and eight times the
baud rate for double speed mode. The horizontal arrows illustrate the synchronization variation due to the sampling process.
Note the larger time variation when using the double speed mode (U2Xn = 1) of operation. Samples denoted zero are
samples done when the RxDn line is idle (i.e., no communication activity).

Figure 17-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the start bit detection sequence
is initiated. Let sample 1 denote the first zero-sample as shown in the figure. The clock recovery logic then uses samples 8,
9, and 10 for normal mode, and samples 4, 5, and 6 for double speed mode (indicated with sample numbers inside boxes on
the figure), to decide if a valid start bit is received. If two or more of these three samples have logical high levels (the majority
wins), the start bit is rejected as a noise spike and the receiver starts looking for the next high to low-transition. If however, a
valid start bit is detected, the clock recovery logic is synchronized and the data recovery can begin. The synchronization
process is repeated for each start bit.

Assembly Code Example(1)

USART_Flush:
sbis UCSRnA, RXCn
ret
in r16, UDRn
rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)
{

unsigned char dummy;
while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

0

IDLERxD

Sample
(U2X = 0)

Sample
(U2X = 1)

START BIT 0

0 1 2 3 4 5 6 7 8 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3
157ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

20.2 Analog Comparator Control and Status Register – ACSR

• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the analog comparator is switched off. This bit can be set at any time to turn
off the analog comparator. This will reduce power consumption in Active and idle mode. When changing the ACD bit, the
analog comparator interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the
bit is changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the analog comparator. When this bit is
cleared, AIN0 is applied to the positive input of the analog comparator.

See Section 8.8 “Internal Voltage Reference” on page 43

• Bit 5 – ACO: Analog Comparator Output

The output of the analog comparator is synchronized and then directly connected to ACO. The synchronization introduces a
delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined by ACIS1 and ACIS0. The
analog comparator interrupt routine is executed if the ACIE bit is set and the I-bit in SREG is set. ACI is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the status register is set, the analog comparator interrupt is activated.
When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to be triggered by the analog
comparator. The comparator output is in this case directly connected to the input capture front-end logic, making the
comparator utilize the noise canceler and edge select features of the Timer/Counter1 input capture interrupt. When written
logic zero, no connection between the analog comparator and the input capture function exists. To make the comparator
trigger the Timer/Counter1 input capture interrupt, the ICIE1 bit in the timer interrupt mask register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the analog comparator interrupt. The different settings are shown
in Table 20-1.

When changing the ACIS1/ACIS0 bits, the analog comparator interrupt must be disabled by clearing its interrupt enable bit in
the ACSR register. Otherwise an interrupt can occur when the bits are changed.

Bit 7 6 5 4 3 2 1 0

ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0

Table 20-1. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator interrupt on output toggle.

0 1 Reserved

1 0 Comparator interrupt on falling output edge.

1 1 Comparator interrupt on rising output edge.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

204

20.3 Analog Comparator Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the analog comparator. The ADC multiplexer
is used to select this input, and consequently, the ADC must be switched off to utilize this feature. If the analog comparator
multiplexer enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in
ADMUX select the input pin to replace the negative input to the analog comparator, as shown in Table 20-2. If ACME is
cleared or ADEN is set, AIN1 is applied to the negative input to the analog comparator.

20.3.1 Digital Input Disable Register 1 – DIDR1

• Bit 7..2 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corresponding PIN register bit will
always read as zero when this bit is set. When an analog signal is applied to the AIN1/0 pin and the digital input from this pin
is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.

Table 20-2. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Bit 7 6 5 4 3 2 1 0

– – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
205ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

21.5.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog measurements. If
conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the analog ground plane, and
keep them well away from high-speed switching digital tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage via an LC network as shown in
Figure 21-9.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC [3..0] port pins are used as digital outputs, it is essential that these do not switch while a conversion is
in progress. However, using the 2-wire interface (ADC4 and ADC5) will only affect the conversion on ADC4 and
ADC5 and not the other ADC channels.

Figure 21-9. ADC Power Connections
G

N
D

V
C

C

P
C

5
(A

D
C

5/
S

C
L)

P
C

4
(A

D
C

4/
S

D
A

)

P
C

3
(A

D
C

3)

P
C

2
(A

D
C

2)
PC1 (ADC1)

A
na

lo
g

G
ro

un
d

P
la

ne

PA0 (ADC0)

ADC7

GND

10
0n

F
10

μH

AVCC

ADC6

AREF

PB5
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

214

21.6.2 ADC Control and Status Register A – ADCSRA

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the ADC off while a conversion is
in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In single conversion mode, write this bit to one to start each conversion. In free running mode, write this bit to one to start the
first conversion. The first conversion after ADSC has been written after the ADC has been enabled, or if ADSC is written at
the same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal 13. This first conversion performs
initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete, it returns to zero. Writing
zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, auto triggering of the ADC is enabled. The ADC will start a conversion on a positive edge of
the selected trigger signal. The trigger source is selected by setting the ADC trigger select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the data registers are updated. The ADC conversion complete
interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag. Beware that if
doing a read-modify-write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI instructions
are used.

Table 21-3. Input Channel Selections

MUX3..0 Single Ended Input

0000 ADC0

0001 ADC1

0010 ADC2

0011 ADC3

0100 ADC4

0101 ADC5

0110 ADC6

0111 ADC7

1000 (reserved)

1001 (reserved)

1010 (reserved)

1011 (reserved)

1100 (reserved)

1101 (reserved)

1110 1.1V (VBG)

1111 0V (GND)

Bit 7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

218

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC conversion complete interrupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the system clock frequency and the input clock to the ADC.

21.6.3 The ADC Data Register – ADCL and ADCH

21.6.3.1 ADLAR = 0

21.6.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC data register is not updated until ADCH is read. Consequently, if the result is left adjusted and
no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from the registers. If ADLAR is set,
the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.

• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in Section 21.6 “ADC Conversion Result” on page 217.

Table 21-4. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
219ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

34. Errata ATmega88

The revision letter in this section refers to the revision of the ATmega88 device.

34.1 Rev. G
● Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous Timer2 clock is written in the cycle before an
overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the
Timer2 control register, TCCR2, or output compare register, OCR2.

34.2 Rev. E
● Interrupts may be lost when writing the timer registers in the asynchronous timer

● POR sensitivity with Vcc ramp up from a very low supply voltage

1. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous Timer2 clock is written in the cycle before an
overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the
Timer2 control register, TCCR2, or output compare register, OCR2.

2. POR sensitivity with Vcc ramp up from a very low supply voltage

If Vcc ramp up from a stable 150mV to 300mV plateau, the power on reset (POR) may not reset the device properly.

Problem Fix/Workaround

None.

Note: Please note from datasheet 7530F-AVR-09/07 we introduce a new errata numbering scheme (Errata Rev F of
datasheet 7530E-AVR-03/07 is equivalent to Errata Rev E of datasheet 7530F-AVR-09/07)
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

300

28. ATmega48/88/168 Typical Characteristics . 270
28.1 Active Supply Current . 270

29. Register Summary . 285

30. Instruction Set Summary . 292

31. Ordering Information . 296
31.1 ATmega48 . 296
31.2 ATmega88 . 296
31.3 ATmega168 . 296
31.4 Package information . 296

32. Packaging Information . 297
32.1 MA . 297
32.2 PN . 298

33. Errata ATmega48 . 299
33.1 Rev. E . 299
33.2 Rev. D . 299
33.3 Rev. A . 299

34. Errata ATmega88 . 300
34.1 Rev. G . 300
34.2 Rev. E . 300

35. Errata ATmega168 . 301
35.1 Rev. F . 301
35.2 Rev. E . 301

36. Revision History . 302

37. Table of Contents . 303
307ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

