
Atmel - ATMEGA168-15AZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega168-15az

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega168-15az-4396696
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

5. AVR ATmega48/88/168 Memories

This section describes the different memories in the Atmel® ATmega48/88/168. The AVR® architecture has two main
memory spaces, the data memory and the program memory space. In addition, the Atmel ATmega48/88/168 features an
EEPROM memory for data storage. All three memory spaces are linear and regular.

5.1 In-System Reprogrammable Flash Program Memory

The Atmel ATmega48/88/168 contains 4/8/16K bytes on-chip in-system reprogrammable flash memory for program storage.
Since all AVR instructions are 16 or 32 bits wide, the flash is organized as 2/4/8K x 16. For software security, the flash
program memory space is divided into two sections, boot loader section and application program section in Atmel
ATmega88 and ATmega168. ATmega48 does not have separate boot loader and application program sections, and the
SPM instruction can be executed from the entire flash. See SELFPRGEN description in Section 23.4.1 “Store Program
Memory Control and Status Register – SPMCSR” on page 225 and Section 24.5.1 “Store Program Memory Control and
Status Register – SPMCSR” on page 233 for more details.

The flash memory has an endurance of at least 75,000 write/erase cycles. The Atmel ATmega48/88/168 program counter
(PC) is 11/12/13 bits wide, thus addressing the 2/4/8K program memory locations. The operation of boot program section
and associated boot lock bits for software protection are described in detail in Section 23. “Self-Programming the Flash,
ATmega48” on page 223 and Section 24. “Boot Loader Support – Read-While-Write Self-Programming, ATmega88 and
ATmega168” on page 229. Section 25. “Memory Programming” on page 242 contains a detailed description on flash
programming in SPI- or parallel programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM – load program memory
instruction description).

Timing diagrams for instruction fetch and execution are presented in Section 4.7 “Instruction Execution Timing” on page 13.

Figure 5-1. Program Memory Map, ATmega48

0x0000

0x7FFF

Program Memory

Application Flash Section
15ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

6. System Clock and Clock Options

6.1 Clock Systems and their Distribution

Figure 6-1 presents the principal clock systems in the AVR® and their distribution. All of the clocks need not be active at a
given time. In order to reduce power consumption, the clocks to modules not being used can be halted by using different
sleep modes, as described in Section 7. “Power Management and Sleep Modes” on page 33. The clock systems are detailed
below.

Figure 6-1. Clock Distribution

6.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such modules are
the general purpose register file, the status register and the data memory holding the stack pointer. Halting the CPU clock
inhibits the core from performing general operations and calculations.

6.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART. The I/O clock is also used by
the external interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such
interrupts to be detected even if the I/O clock is halted. Also note that start condition detection in the USI module is carried
out asynchronously when clkI/O is halted, TWI address recognition in all sleep modes.

6.1.3 Flash Clock – clkFLASH

The flash clock controls operation of the flash interface. The flash clock is usually active simultaneously with the CPU clock.

Asynchronous
Timer/Counter

Flash and
EEPROM

Timer/Counter
Oscillator

Calibrated RC
Oscillator

Low-frequency
Crystal Oscillator

Crystal
Oscillator

Watchdog
Oscillator

System Clock
Prescaler

General I/O
Modules

AVR Clock
Control Unit

ADC

External Clock

CPU Core

Source clock Watchdog clock

RAM

Reset Logic Watchdog Timer

clkI/O

clkASY

clkCPU

clkADC

clkFLASH

Clock
Multiplexer
23ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

If WDE is set, the watchdog timer is in interrupt and system reset mode. The first time-out in the watchdog timer will set
WDIF. Executing the corresponding interrupt vector will clear WDIE and WDIF automatically by hardware (the watchdog
goes to system reset mode). This is useful for keeping the watchdog timer security while using the interrupt. To stay in
interrupt and system reset mode, WDIE must be set after each interrupt. This should however not be done within the
interrupt service routine itself, as this might compromise the safety-function of the watchdog system reset mode. If the
interrupt is not executed before the next time-out, a system reset will be applied.

• Bit 4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit, and/or change the prescaler
bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 - WDE: Watchdog System Reset Enable

WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is set. To clear WDE, WDRF
must be cleared first. This feature ensures multiple resets during conditions causing failure, and a safe start-up after the
failure.

• Bit 5, 2..0 - WDP3..0: Watchdog Timer Prescaler 3, 2, 1 and 0

The WDP3..0 bits determine the watchdog timer prescaling when the watchdog timer is running. The different prescaling
values and their corresponding time-out periods are shown in Table 8-6.

Table 8-5. Watchdog Timer Configuration

WDTON WDE WDIE Mode Action on Time-out

0 0 0 Stopped None

0 0 1 Interrupt mode Interrupt

0 1 0 System reset mode Reset

0 1 1 Interrupt and system reset mode Interrupt, then go to system reset mode

1 x x System reset mode Reset

Table 8-6. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0 Number of WDT Oscillator Cycles Typical Time-out at VCC = 5.0V

0 0 0 0 2K (2048) cycles 16ms

0 0 0 1 4K (4096) cycles 32ms

0 0 1 0 8K (8192) cycles 64ms

0 0 1 1 16K (16384) cycles 0.125s

0 1 0 0 32K (32768) cycles 0.25s

0 1 0 1 64K (65536) cycles 0.5 s

0 1 1 0 128K (131072) cycles 1.0s

0 1 1 1 256K (262144) cycles 2.0s

1 0 0 0 512K (524288) cycles 4.0s

1 0 0 1 1024K (1048576) cycles 8.0s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
47ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE is set, and
they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, interrupts remain disabled
for four cycles. The I-bit in the status register is unaffected by the automatic disabling.

Note: If interrupt vectors are placed in the boot loader section and boot lock bit BLB02 is programmed, interrupts are
disabled while executing from the Application section. If Interrupt Vectors are placed in the Application section
and boot lock bit BLB12 is programed, interrupts are disabled while executing from the boot loader section.
Refer to Section 24. “Boot Loader Support – Read-While-Write Self-Programming, ATmega88 and
ATmega168” on page 229 for details on boot lock bits.

This bit is not available in Atmel® ATmega48.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four cycles after it
is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the IVSEL description above.
See code example below.

This bit is not available in Atmel ATmega48.

Assembly Code Example

Move_interrupts:
; Enable change of Interrupt Vectors
ldi r16, (1<<IVCE)
out MCUCR, r16
; Move interrupts to Boot Flash section
ldi r16, (1<<IVSEL)
out MCUCR, r16
ret

C Code Example

void Move_interrupts(void)
{

/* Enable change of Interrupt Vectors */
MCUCR = (1<<IVCE);
/* Move interrupts to Boot Flash section */
MCUCR = (1<<IVSEL);

}

ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

56

• Bit 1 – INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in SREG
and the INT1 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG
and the INT0 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

11.4 Pin Change Interrupt Control Register - PCICR

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIE2: Pin Change Interrupt Enable 2

When the PCIE2 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 2 is enabled. Any
change on any enabled PCINT23..16 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request
is executed from the PCI2 interrupt vector. PCINT23..16 pins are enabled individually by the PCMSK2 register.

• Bit 1 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 1 is enabled. Any
change on any enabled PCINT14..8 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI1 interrupt vector. PCINT14..8 pins are enabled individually by the PCMSK1 register.

• Bit 0 - PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 0 is enabled. Any
change on any enabled PCINT7..0 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI0 interrupt vector. PCINT7..0 pins are enabled individually by the PCMSK0 register.

11.5 Pin Change Interrupt Flag Register - PCIFR

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set (one). If the I-bit in SREG
and the PCIE2 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

– – – – – PCIE2 PCIE1 PCIE0 PCICR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
75ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

• Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT14..8 pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG and
the PCIE1 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 0 - PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set (one). If the I-bit in SREG and
the PCIE0 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

11.6 Pin Change Mask Register 2 – PCMSK2

• Bit 7..0 – PCINT23..16: Pin Change Enable Mask 23..16

Each PCINT23..16-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is set
and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is cleared,
pin change interrupt on the corresponding I/O pin is disabled.

11.7 Pin Change Mask Register 1 – PCMSK1

• Bit 7 – Res: Reserved Bit

This bit is an unused bit in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 6..0 – PCINT14..8: Pin Change Enable Mask 14..8

Each PCINT14..8-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT14..8 is set and
the PCIE1 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT14..8 is cleared, pin
change interrupt on the corresponding I/O pin is disabled.

11.8 Pin Change Mask Register 0 – PCMSK0

• Bit 7..0 – PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is set and the
PCIE0 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is cleared, pin change
interrupt on the corresponding I/O pin is disabled.

Bit 7 6 5 4 3 2 1 0

PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

76

14.5 Input Capture Unit

The Timer/Counter incorporates an input capture unit that can capture external events and give them a time-stamp
indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via the ICP1 pin or
alternatively, via the analog-comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle, and
other features of the signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The input capture unit is illustrated by the block diagram shown in Figure 14-3. The elements of the block diagram that are
not directly a part of the input capture unit are gray shaded. The small “n” in register and bit names indicates the
Timer/Counter number.

Figure 14-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the input capture pin (ICP1), alternatively on the analog comparator
output (ACO), and this change confirms to the setting of the edge detector, a capture will be triggered. When a capture is
triggered, the 16-bit value of the counter (TCNT1) is written to the input capture register (ICR1). The input capture flag (ICF1)
is set at the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1), the Input Capture
flag generates an input capture interrupt. The ICF1 flag is automatically cleared when the interrupt is executed. Alternatively
the ICF1 flag can be cleared by software by writing a logical one to its I/O bit location.

Reading the 16-bit value in the input capture register (ICR1) is done by first reading the low byte (ICR1L) and then the high
byte (ICR1H). When the low byte is read the high byte is copied into the high byte temporary register (TEMP). When the
CPU reads the ICR1H I/O location it will access the TEMP register.

The ICR1 register can only be written when using a waveform generation mode that utilizes the ICR1 register for defining the
counter’s TOP value. In these cases the waveform generation mode (WGM13:0) bits must be set before the TOP value can
be written to the ICR1 register. When writing the ICR1 register the high byte must be written to the ICR1H I/O location before
the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to Section 14.2 “Accessing 16-bit Registers” on page 96.

ICFn (Int. Req.)

ICRnL (8-bit)ICRnH (8-bit)

ICRn (16-bit Register)

TEMP (8-bit)

TCNTnL (8-bit)TCNTnH (8-bit)

TCNTn (16-bit Counter)

DATA BUS (8-bit)

Noise
Canceler

Analog
Comparator Edge

Detector

ICNCACIC*ACO*

WRITE

+

-

ICES

ICPn
101ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 14-11 shows the same timing data, but with the prescaler enabled.

Figure 14-11.Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 14-12 shows the count sequence close to TOP in various modes. When using phase and frequency correct PWM
mode the OCR1x register is updated at BOTTOM. The timing diagrams will be the same, but TOP should be replaced by
BOTTOM, TOP-1 by BOTTOM+1 and so on. The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 14-12.Timer/Counter Timing Diagram, no Prescaling

OCRnx - 1

clkI/O

(clkI/O/8)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx OCRnx + 1

OCRnx Value

OCRnx + 2

TOP - 1

clkI/O

(clkI/O/1)

TCNTn
(CTC and FPWM)

OCRnx
(Update at TOP)

TCNTn
(PC and PFC PWM)

TOVn (FPWM)
and ICFn

(if used as TOP)

clkTn

TOP

Old OCRnx Value New OCRnx Value

BOTTOM BOTTOM + 1

TOP - 1 TOP TOP -1 TOP -2
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

112

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

14.10.3 Timer/Counter1 Control Register C – TCCR1C

• Bit 7 – FOC1A: Force Output Compare for Channel A

• Bit 6 – FOC1B: Force Output Compare for Channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. However, for ensuring
compatibility with future devices, these bits must be set to zero when TCCR1A is written when operating in a PWM mode.
When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on the waveform generation
unit. The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that the FOC1A/FOC1B bits are
implemented as strobes. Therefore it is the value present in the COM1x1:0 bits that determine the effect of the forced
compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in clear timer on compare match (CTC)
mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

14.10.4 Timer/Counter1 – TCNT1H and TCNT1L

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both for read and for
write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low bytes are read and written
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers. See Section 14.2 “Accessing 16-bit Registers” on
page 96.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match between TCNT1
and one of the OCR1x registers.

Writing to the TCNT1 register blocks (removes) the compare match on the following timer clock for all compare units.

Table 14-6. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (no prescaling)

0 1 0 clkI/O/8 (from prescaler)

0 1 1 clkI/O/64 (from prescaler)

1 0 0 clkI/O/256 (from prescaler)

1 0 1 clkI/O/1024 (from prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

FOC1A FOC1B – – – – – – TCCR1C

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TCNT1[15:8] TCNT1H

TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

116

Table 17-1 contains equations for calculating the baud rate (in bits per second) and for calculating the UBRRn value for each
mode of operation using an internally generated clock source.

BAUD Baud rate (in bits per second, bps)

fOSC System oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL registers, (0-4095)

Some examples of UBRRn values for some system clock frequencies are found in Table 17-9 on page 165.

17.2.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has effect for the asynchronous
operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer rate for
asynchronous communication. Note however that the receiver will in this case only use half the number of samples (reduced
from 16 to 8) for data sampling and clock recovery, and therefore a more accurate baud rate setting and system clock are
required when this mode is used. For the transmitter, there are no downsides.

17.2.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this section refers to
Figure 17-2 on page 148 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the chance of meta-stability.
The output from the synchronization register must then pass through an edge detector before it can be used by the
transmitter and receiver. This process introduces a two CPU clock period delay and therefore the maximum external XCKn
clock frequency is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to add some margin to avoid
possible loss of data due to frequency variations.

17.2.4 Synchronous Clock Operation

When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input (slave) or clock output
(master). The dependency between the clock edges and data sampling or data change is the same. The basic principle is
that data input (on RxDn) is sampled at the opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Table 17-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Equation for Calculating Baud Rate(1) Equation for Calculating UBRRn Value

Asynchronous normal mode
(U2Xn = 0)

Asynchronous double speed
mode (U2Xn = 1)

Synchronous master mode

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD
fOSC

16 UBRRn 1+ 
---= UBRRn

fOSC

16BAUD
----------------------- 1–=

BAUD
fOSC

8 UBRRn 1+ 
--------------------------------------= UBRRn

fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRRn 1+ 
--------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

fXCK

fOSC

4
-----------
149ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

18.4.1 USART MSPIM Initialization

The USART in MSPIM mode has to be initialized before any communication can take place. The initialization process
normally consists of setting the baud rate, setting master mode of operation (by setting DDR_XCKn to one), setting frame
format and enabling the transmitter and the receiver. Only the transmitter can operate independently. For interrupt driven
USART operation, the global interrupt flag should be cleared (and thus interrupts globally disabled) when doing the
initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be zero at the time
the transmitter is enabled. Contrary to the normal mode USART operation the UBRRn must then be written to
the desired value after the transmitter is enabled, but before the first transmission is started. Setting UBRRn to
zero before enabling the transmitter is not necessary if the initialization is done immediately after a reset since
UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that there is no ongoing
transmissions during the period the registers are changed. The TXCn flag can be used to check that the transmitter has
completed all transfers, and the RXCn flag can be used to check that there are no unread data in the receive buffer. Note
that the TXCn flag must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C function that are equal in
functionality. The examples assume polling (no interrupts enabled). The baud rate is given as a function parameter. For the
assembly code, the baud rate parameter is assumed to be stored in the r17:r16 registers.

Note: 1. The example code assumes that the part specific header file is included. For I/O registers located in extended
I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow
access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

Assembly Code Example(1)

USART_Init:
clr r18
out UBRRnH,r18
out UBRRnL,r18
; Setting the XCKn port pin as output, enables master mode.
sbi XCKn_DDR, XCKn
; Set MSPI mode of operation and SPI data mode 0.
ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)
out UCSRnC,r18
; Enable receiver and transmitter.
ldi r18, (1<<RXENn)|(1<<TXENn)
out UCSRnB,r18
; Set baud rate.
; IMPORTANT: The Baud Rate must be set after the transmitter is

enabled!
out UBRRnH, r17
out UBRRnL, r18
ret

C Code Example(1)

void USART_Init(unsigned int baud)
{

UBRRn = 0;
/* Setting the XCKn port pin as output, enables master mode. */
XCKn_DDR |= (1<<XCKn);
/* Set MSPI mode of operation and SPI data mode 0. */
UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);
/* Enable receiver and transmitter. */
UCSRnB = (1<<RXENn)|(1<<TXENn);
/* Set baud rate. */
/* IMPORTANT: The Baud Rate must be set after the transmitter

is enabled */
UBRRn = baud;

}

ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

170

To calculate bit rates, see Section 19.5.2 “Bit Rate Generator Unit” on page 181. The value of TWPS1..0 is used in the
equation.

19.6.4 TWI Data Register – TWDR

In transmit mode, TWDR contains the next byte to be transmitted. In receive mode, the TWDR contains the last byte
received. It is writable while the TWI is not in the process of shifting a byte. This occurs when the TWI interrupt flag (TWINT)
is set by hardware. Note that the data register cannot be initialized by the user before the first interrupt occurs. The data in
TWDR remains stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted in. TWDR
always contains the last byte present on the bus, except after a wake up from a sleep mode by the TWI interrupt. In this
case, the contents of TWDR is undefined.

In the case of a lost bus arbitration, no data is lost in the transition from master to slave. Handling of the ACK bit is controlled
automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7..0 – TWD: TWI Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte received on the 2-wire serial bus.

19.6.5 TWI (Slave) Address Register – TWAR

The TWAR should be loaded with the 7-bit slave address (in the seven most significant bits of TWAR) to which the TWI will
respond when programmed as a slave transmitter or receiver, and not needed in the master modes. In multi master
systems, TWAR must be set in masters which can be addressed as slaves by other masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an associated address
comparator that looks for the slave address (or general call address if enabled) in the received serial address. If a match is
found, an interrupt request is generated.

• Bits 7..1 – TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit.

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a general call given over the 2-wire serial bus.

Table 19-2. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

184

20.3 Analog Comparator Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the analog comparator. The ADC multiplexer
is used to select this input, and consequently, the ADC must be switched off to utilize this feature. If the analog comparator
multiplexer enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in
ADMUX select the input pin to replace the negative input to the analog comparator, as shown in Table 20-2. If ACME is
cleared or ADEN is set, AIN1 is applied to the negative input to the analog comparator.

20.3.1 Digital Input Disable Register 1 – DIDR1

• Bit 7..2 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corresponding PIN register bit will
always read as zero when this bit is set. When an analog signal is applied to the AIN1/0 pin and the digital input from this pin
is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.

Table 20-2. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Bit 7 6 5 4 3 2 1 0

– – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
205ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

21.5.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog measurements. If
conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the analog ground plane, and
keep them well away from high-speed switching digital tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage via an LC network as shown in
Figure 21-9.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC [3..0] port pins are used as digital outputs, it is essential that these do not switch while a conversion is
in progress. However, using the 2-wire interface (ADC4 and ADC5) will only affect the conversion on ADC4 and
ADC5 and not the other ADC channels.

Figure 21-9. ADC Power Connections
G

N
D

V
C

C

P
C

5
(A

D
C

5/
S

C
L)

P
C

4
(A

D
C

4/
S

D
A

)

P
C

3
(A

D
C

3)

P
C

2
(A

D
C

2)
PC1 (ADC1)

A
na

lo
g

G
ro

un
d

P
la

ne

PA0 (ADC0)

ADC7

GND

10
0n

F
10

μH

AVCC

ADC6

AREF

PB5
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

214

25.7.9 Programming the Fuse High Bits

The algorithm for programming the use high bits is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248
for details on command and data loading):

1. A: Load command “0100 0000”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

25.7.10 Programming the Extended Fuse Bits

The algorithm for programming the extended fuse bits is as follows (refer to
Section 25.7.4 “Programming the Flash” on page 248 for details on command and data loading):

1. 1. A: Load command “0100 0000”.

2. 2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.

Figure 25-5. Programming the FUSES Waveforms

25.7.11 Programming the Lock Bits

The algorithm for programming the lock bits is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248 for
details on command and data loading):

1. A: Load command “0010 0000”.

2. C: Load data low byte. Bit n = “0” programs the lock bit. If LB mode 3 is programmed (LB1 and LB2 is
programmed), it is not possible to program the boot lock bits by any external programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The lock bits can only be cleared by executing chip erase.

0x40

A C

DATA

XA1

XA0

BS1

BS2

XTAL1

WR

PAGEL

RDY/BSY

OE

RESET +12V

0x40 0x40 DATA

A

DATA XX

C

Write Fuse Low byte Write Fuse High byte Write Extended Fuse byte

XXDATA

A

XX

C

ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

252

25.7.12 Reading the Fuse and Lock Bits

The algorithm for reading the fuse and lock bits is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248
for details on command loading):

1. A: Load command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the fuse low bits can now be read at DATA (“0” means
programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the fuse high bits can now be read at DATA (“0” means
programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the extended fuse bits can now be read at DATA (“0”
means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the lock bits can now be read at DATA (“0” means
programmed).

6. Set OE to “1”.

Figure 25-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

25.7.13 Reading the Signature Bytes

The algorithm for reading the signature bytes is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248 for
details on command and address loading):

1. A: Load command “0000 1000”.

2. B: Load address low byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0”. The selected signature byte can now be read at DATA.

4. Set OE to “1”.

25.7.14 Reading the Calibration Byte

The algorithm for reading the calibration byte is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248 for
details on command and address loading):

1. A: Load command “0000 1000”.

2. B: Load address low byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The calibration byte can now be read at DATA.

4. Set OE to “1”.

Extended Fuse Byte

0

1

Fuse Low Byte

BS2

Fuse High Byte

0

1

Lock Bits

BS2

BS1

DATA

0

1

253ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 25-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 25-7 on page 254 (i.e., tDVXH, tXHXL, and tXLDX) also apply to reading
operation.

Table 25-15. Parallel Programming Characteristics, VCC = 5V ±10%

Parameter Symbol Min Typ Max Unit

Programming enable voltage VPP 11.5 12.5 V

Programming enable current IPP 250 µA

Data and control valid before XTAL1 high tDVXH 67 ns

XTAL1 low to XTAL1 high tXLXH 200 ns

XTAL1 pulse width high tXHXL 150 ns

Data and control hold after XTAL1 low tXLDX 67 ns

XTAL1 low to WR low tXLWL 0 ns

XTAL1 low to PAGEL high tXLPH 0 ns

PAGEL low to XTAL1 high tPLXH 150 ns

BS1 valid before PAGEL high tBVPH 67 ns

PAGEL pulse width high tPHPL 150 ns

BS1 hold after PAGEL low tPLBX 67 ns

BS2/1 hold after WR low tWLBX 67 ns

PAGEL low to WR low tPLWL 67 ns

BS1 valid to WR low tBVWL 67 ns

WR pulse width low tWLWH 150 ns

WR low to RDY/BSY low tWLRL 0 1 µs

WR low to RDY/BSY high(1) tWLRH 3.7 4.5 ms

WR Low to RDY/BSY high for chip erase(2) tWLRH_CE 7.5 9 ms

XTAL1 low to OE low tXLOL 0 ns

BS1 valid to DATA valid tBVDV 0 250 ns

OE low to DATA valid tOLDV 250 ns

OE high to DATA tri-stated tOHDZ 250 ns
Notes: 1. tWLRH is valid for the write flash, write EEPROM, write fuse bits and write lock bits commands.

2. tWLRH_CE is valid for the chip erase command.

XTAL1

BS1

OE

DATA

XA0

XA1

tBVDV

tXLOL

tOLDV

tOHDZ

Load Address
(Low Byte)

Read Data
(Low Byte)

Read Data
(High Byte)

Load Address
(Low Byte)

ADDR0 (Low Byte) ADDR1 (Low Byte)DATA (Low Byte) DATA (High Byte)
255ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

26.3 External Clock Drive Waveforms

Figure 26-1. External Clock Drive Waveforms

26.4 External Clock Drive

26.5 Maximum Speed versus VCC

Maximum frequency is dependent on VCC. As shown in Figure 26-2, the maximum frequency versus VCC curve is linear
between 2.7V < VCC < 4.5V.

Figure 26-2. Maximum Frequency versus VCC, ATmega48/88/168

tCHCX

VIH1

VIL1

tCHCX
tCLCH tCHCL

tCLCX

tCLCL

Table 26-1. External Clock Drive

Parameter Symbol

VCC=2.7 to 5.5V VCC=4.5 to 5.5V

UnitMin. Max. Min. Max.

Oscillator frequency 1/tCLCL 0 8 0 16 MHz

Clock period tCLCL 125 62.5 ns

High time tCHCX 50 25 ns

Low time tCLCX 50 25 ns

Rise time tCLCH 1.6 0.5 µs

Fall time tCHCL 1.6 0.5 µs

Change in period from one clock
cycle to the next

DtCLCL 2 2 %

Safe Operating Area

2.7V

4MHz

16MHz

5.5V4.5V

8MHz
263ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 28-9. Output High Voltage versus Output High Current (VCC = 3V)

Figure 28-10. Reset Pull-up Resistor Current versus Reset Pin Voltage (VCC = 5V)

0 42 6 8 10 12 14 16 18 20

IOH (mA)

2.5

2

1.5

1

0.5

3

3.5

0

C
ur

re
nt

 (V
)

125°C
85°C
25°C

-40°C

0 21 3 4 5 6
VOP (V)

100

80

60

40

20

160

140

120

0

I O
P

(µ
A

)

125

-40
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

274

28.1.7 Peripheral Units

Figure 28-27. Analog to Digital Converter GAIN versus VCC

Figure 28-28. Analog to Digital Converter OFFSET versus VCC

-50 0 50 100 150

Temperature (°C)

-0.6

-0.8

-1

0

-0.2

-0.4

-1.2

-1.4

-1.6

Er
ro

r (
LS

B
)

4V IDLE

4V STD

-50 0 50 100 150

Temperature (°C)

2.5

2

1.5

1

0.5

0

Er
ro

r (
LS

B
)

4V IDLE

4V STD
283ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

