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2.3 Comparison Between ATmega48, ATmega88, and ATmega168

The Atmel® ATmega48, ATmega88 and ATmega168 differ only in memory sizes, boot loader support, and interrupt vector 
sizes. Table 2-2 summarizes the different memory and interrupt vector sizes for the three devices.

ATmega88 and ATmega168 support a real read-while-write self-programming mechanism. There is a separate boot loader 
section, and the SPM instruction can only execute from there. In ATmega48, there is no read-while-write support and no 
separate boot loader section. The SPM instruction can execute from the entire flash.

2.4 Pin Descriptions

2.4.1 VCC

Digital supply voltage.

2.4.2 GND

Ground.

2.4.3 Port B (PB7..0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The port B output buffers have 
symmetrical drive characteristics with both high sink and source capability. As inputs, port B pins that are externally pulled 
low will source current if the pull-up resistors are activated. The port B pins are tri-stated when a reset condition becomes 
active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting oscillator amplifier and input to the 
internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting oscillator amplifier.

If the internal calibrated RC oscillator is used as chip clock source, PB7..6 is used as TOSC2..1 input for the asynchronous 
Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of port B are elaborated in Section 10.3.2 “Alternate Functions of Port B” on page 64 and 
Section 6. “System Clock and Clock Options” on page 23.

2.4.4 Port C (PC5..0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5..0 output buffers have 
symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled 
low will source current if the pull-up resistors are activated. The port C pins are tri-stated when a reset condition becomes 
active, even if the clock is not running.

2.4.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from 
those of the other pins of Port C.

If the RSTDISBL fuse is unprogrammed, PC6 is used as a reset input. A low level on this pin for longer than the minimum 
pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 8-1 on page 
40. Shorter pulses are not guaranteed to generate a reset.

The various special features of port C are elaborated in Section 10.3.3 “Alternate Functions of Port C” on page 67.

Table 2-2. Memory Size Summary

Device Flash EEPROM RAM Interrupt Vector Size

ATmega48 4Kbytes 256 Bytes 512 Bytes 1 instruction word/vector

ATmega88 8Kbytes 512 Bytes 1K Bytes 1 instruction word/vector

ATmega168 16Kbytes 512 Bytes 1K Bytes 2 instruction words/vector
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In order to maximize performance and parallelism, the AVR® uses a Harvard architecture – with separate memories and 
buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one 
instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions 
to be executed in every clock cycle. The program memory is in-system reprogrammable flash memory.

The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This 
allows single-cycle arithmetic logic unit (ALU) operation. In a typical ALU operation, two operands are output from the 
register file, the operation is executed, and the result is stored back in the register file – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling 
efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in 
flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register 
operations can also be executed in the ALU. After an arithmetic operation, the status register is updated to reflect 
information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole 
address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 
32-bit instruction.

Program flash memory space is divided in two sections, the boot program section and the application program section. Both 
sections have dedicated lock bits for write and read/write protection. The SPM instruction that writes into the application flash 
memory section must reside in the boot program section.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is 
effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and 
the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are 
executed). The stack pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through 
the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status 
register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance 
with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as control registers, SPI, and other I/O functions. 
The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - 0x5F. In 
addition, the ATmega48/88/168 has extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and 
LD/LDS/LDD instructions can be used.

4.3 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a 
single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are 
executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some 
implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and 
fractional format. See the “Instruction Set” section for a detailed description.
9ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14



8. System Control and Reset

8.1 Resetting the AVR

During reset, all I/O registers are set to their initial values, and the program starts execution from the reset vector. For the 
ATmega168, the instruction placed at the reset vector must be a JMP – absolute jump – instruction to the reset handling 
routine. For the ATmega48 and ATmega88, the instruction placed at the reset vector must be an RJMP – relative jump – 
instruction to the reset handling routine. If the program never enables an interrupt source, the interrupt vectors are not used, 
and regular program code can be placed at these locations. This is also the case if the reset vector is in the application 
section while the interrupt vectors are in the boot section or vice versa (Atmel® ATmega88/168 only). The circuit diagram in 
Figure 8-1 shows the reset logic. Table 8-1 on page 40 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR® are immediately reset to their initial state when a reset source goes active. This does not require 
any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This allows the power to 
reach a stable level before normal operation starts. The time-out period of the delay counter is defined by the user through 
the SUT and CKSEL fuses. The different selections for the delay period are presented in
Section 6.2 “Clock Sources” on page 24. 

8.2 Reset Sources

The Atmel ATmega48/88/168 has four sources of reset:

● Power-on reset. The MCU is reset when the supply voltage is below the power-on reset threshold (VPOT).

● External reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse 
length.

● Watchdog system reset. The MCU is reset when the watchdog timer period expires and the watchdog system reset 
mode is enabled.

● Brown-out reset. The MCU is reset when the supply voltage VCC is below the brown-out reset threshold (VBOT) and the 
brown-out detector is enabled.
ATmega48/88/168 Automotive [DATASHEET]
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8.9 Watchdog Timer

Atmel® ATmega48/88/168 has an enhanced watchdog timer (WDT). The main features are:

● Clocked from separate on-chip oscillator

● 3 operating modes

● Interrupt

● System reset

● Interrupt and system reset

● Selectable time-out period from 16ms to 8s

● Possible hardware fuse watchdog always on (WDTON) for fail-safe mode

Figure 8-7. Watchdog Timer 

The watchdog timer (WDT) is a timer counting cycles of a separate on-chip 128kHz oscillator. The WDT gives an interrupt or 
a system reset when the counter reaches a given time-out value. In normal operation mode, it is required that the system 
uses the WDR - watchdog timer reset - instruction to restart the counter before the time-out value is reached. If the system 
doesn't restart the counter, an interrupt or system reset will be issued.

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used to wake the device from 
sleep-modes, and also as a general system timer. One example is to limit the maximum time allowed for certain operations, 
giving an interrupt when the operation has run longer than expected. In system reset mode, the WDT gives a reset when the 
timer expires. This is typically used to prevent system hang-up in case of runaway code. The third mode, Interrupt and 
system reset mode, combines the other two modes by first giving an interrupt and then switch to system reset mode. This 
mode will for instance allow a safe shutdown by saving critical parameters before a system reset. 

The watchdog always on (WDTON) fuse, if programmed, will force the watchdog timer to system reset mode. With the fuse 
programmed the system reset mode bit (WDE) and interrupt mode bit (WDIE) are locked to 1 and 0 respectively. To further 
ensure program security, alterations to the watchdog set-up must follow timed sequences. The sequence for clearing WDE 
and changing time-out configuration is as follows:

1. In the same operation, write a logic one to the watchdog change enable bit (WDCE) and WDE. A logic one must 
be written to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, write the WDE and watchdog prescaler bits (WDP) as desired, but with the 
WDCE bit cleared. This must be done in one operation.
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10.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction 
can be used to toggle one single bit in a port.

10.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an intermediate 
state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the 
pull-up enabled state is fully acceptable, as a high-impedant environment will not notice the difference between a strong high 
driver and a pull-up. If this is not the case, the PUD bit in the MCUCR register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user must use either the tri-state 
({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 10-1 summarizes the control signals for the pin value.

10.2.4 Reading the Pin Value

Independent of the setting of data direction bit DDxn, the port pin can be read through the PINxn register bit. As shown in 
Figure 10-2 on page 58, the PINxn register bit and the preceding latch constitute a synchronizer. This is needed to avoid 
metastability if the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 10-3 
shows a timing diagram of the synchronization when reading an externally applied pin value. The maximum and minimum 
propagation delays are denoted tpd,max and tpd,min respectively.

Figure 10-3. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is 
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal 
value is latched when the system clock goes low. It is clocked into the PINxn register at the succeeding positive clock edge. 
As indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between ½ and 1½ 
system clock period depending upon the time of assertion.

Table 10-1. Port Pin Configurations

DDxn PORTxn PUD (in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (hi-Z)

1 0 X Output No Output low (sink)

1 1 X Output No Output high (source)

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r17

XXX XXX

0x00 0xFF

in r17, PINx

tpd, max

tpd, min
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• Bit 1 – INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in SREG 
and the INT1 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when 
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared 
when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG 
and the INT0 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when 
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared 
when INT0 is configured as a level interrupt.

11.4 Pin Change Interrupt Control Register - PCICR

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIE2: Pin Change Interrupt Enable 2

When the PCIE2 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 2 is enabled. Any 
change on any enabled PCINT23..16 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request 
is executed from the PCI2 interrupt vector. PCINT23..16 pins are enabled individually by the PCMSK2 register.

• Bit 1 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 1 is enabled. Any 
change on any enabled PCINT14..8 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is 
executed from the PCI1 interrupt vector. PCINT14..8 pins are enabled individually by the PCMSK1 register.

• Bit 0 - PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 0 is enabled. Any 
change on any enabled PCINT7..0 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is 
executed from the PCI0 interrupt vector. PCINT7..0 pins are enabled individually by the PCMSK0 register.

11.5 Pin Change Interrupt Flag Register - PCIFR

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set (one). If the I-bit in SREG 
and the PCIE2 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when 
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

– – – – – PCIE2 PCIE1 PCIE0 PCICR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
75ATmega48/88/168 Automotive [DATASHEET]
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The following code examples show how to access the 16-bit timer registers assuming that no interrupts updates the 
temporary register. The same principle can be used directly for accessing the OCR1A/B and ICR1 registers. Note that when 
using “C”, the compiler handles the 16-bit access.

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must 
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with 
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two 
instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or 
any other of the 16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when 
both the main code and the interrupt code update the temporary register, the main code must disable the interrupts during 
the 16-bit access.

Assembly Code Examples(1)

...
; Set TCNT1 to 0x01FF
ldi r17,0x01
ldi r16,0xFF
out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples(1)

unsigned int i;
...
/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...
97ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14



Figure 14-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV1) is set each time the counter reaches BOTTOM. When either OCR1A or ICR1 is 
used for defining the TOP value, the OC1A or ICF1 flag is set accordingly at the same timer clock cycle as the OCR1x 
registers are updated with the double buffer value (at TOP). The interrupt flags can be used to generate an interrupt each 
time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the 
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between 
the TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits are masked to zero when any of the 
OCR1x registers are written. As the third period shown in Figure 14-8 illustrates, changing the TOP actively while the 
Timer/Counter is running in the phase correct mode can result in an unsymmetrical output. The reason for this can be found 
in the time of update of the OCR1x register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at 
TOP. This implies that the length of the falling slope is determined by the previous TOP value, while the length of the rising 
slope is determined by the new TOP value. When these two values differ the two slopes of the period will differ in length. The 
difference in length gives the unsymmetrical result on the output. 

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when changing the TOP 
value while the Timer/Counter is running. When using a static TOP value there are practically no differences between the 
two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the 
COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the 
COM1x1:0 to three (See Table  on page 114). The actual OC1x value will only be visible on the port pin if the data direction 
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x register at 
the compare match between OCR1x and TCNT1 when the counter increments, and clearing (or setting) the OC1x register at 
compare match between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the output when using 
phase correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x register represent special cases when generating a PWM waveform output in the phase 
correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set equal to TOP the 
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic 
values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output will toggle with a 
50% duty cycle.

1 2 3 4

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCRnx/ TOP Update and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

fOCnxPCPWM

fclk_I/O

2 N TOP 
----------------------------=
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14.8.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct pulse width modulation, or phase and frequency correct PWM mode (WGM13:0 = 8 or 9) 
provides a high resolution phase and frequency correct PWM waveform generation option. The phase and frequency correct 
PWM mode is, like the phase correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from 
BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting compare output mode, the output compare 
(OC1x) is cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the compare match 
while downcounting. In inverting compare output mode, the operation is inverted. The dual-slope operation gives a lower 
maximum operation frequency compared to the single-slope operation. However, due to the symmetric feature of the 
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM mode is the time the OCR1x 
register is updated by the OCR1x buffer register, (see Figure 14-8 on page 109 and Figure 14-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICR1 or OCR1A. The 
minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A 
set to MAX). The PWM resolution in bits can be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value matches either the value in 
ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The counter has then reached the TOP and changes the 
count direction. The TCNT1 value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct 
and frequency correct PWM mode is shown on Figure 14-9. The figure shows phase and frequency correct PWM mode 
when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram shown as a histogram for illustrating 
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on 
the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x interrupt flag will be set when a 
compare match occurs.

Figure 14-9. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV1) is set at the same timer clock cycle as the OCR1x registers are updated with the 
double buffer value (at BOTTOM). When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 flag 
set when TCNT1 has reached TOP. The interrupt flags can then be used to generate an interrupt each time the counter 
reaches the TOP or BOTTOM value.
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TOVn Interrupt Flag Set

(Interrupt on Bottom)
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

110



• Bit 0 – TCR2BUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set. When TCCR2B has been 
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2B 
is ready to be updated with a new value.

If a write is performed to any of the five Timer/Counter2 registers while its update busy flag is set, the updated value might 
get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different. When reading TCNT2, the 
actual timer value is read. When reading OCR2A, OCR2B, TCCR2A and TCCR2B the value in the temporary storage 
register is read.

15.10 Timer/Counter Prescaler

Figure 15-12. Prescaler for Timer/Counter2 

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main system I/O clock clkIO. By 
setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin. This enables use of 
Timer/Counter2 as a real time counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from port C. A 
crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock source for 
Timer/Counter2. The oscillator is optimized for use with a 32.768kHz crystal. Applying an external clock source to TOSC1 is 
not recommended.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64, clkT2S/128, clkT2S/256, and 
clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected. Setting the PSRASY bit in GTCCR resets the prescaler. 
This allows the user to operate with a predictable prescaler. 
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• Bit 2 – CPHA: Clock Phase

The settings of the clock phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last) edge of SCK. 
Refer to Figure 16-3 on page 145 and Figure 16-4 on page 145 for an example. The CPOL functionality is summarized 
below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a master. SPR1 and SPR0 have no effect on the slave. The 
relationship between SCK and the oscillator clock frequency fosc is shown in the following table:

16.1.4 SPI Status Register – SPSR

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE in SPCR is set and global interrupts 
are enabled. If SS is an input and is driven low when the SPI is in master mode, this will also set the SPIF flag. SPIF is 
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by 
first reading the SPI status register with SPIF set, then accessing the SPI data register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI data register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF bit) are 
cleared by first reading the SPI status register with WCOL set, and then accessing the SPI data register.

Table 16-3. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 16-4. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
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17.2 Clock Generation

The clock generation logic generates the base clock for the transmitter and receiver. The USART supports four modes of 
clock operation: normal asynchronous, double speed asynchronous, master synchronous and slave synchronous mode. 
The UMSELn bit in USART control and status register C (UCSRnC) selects between asynchronous and synchronous 
operation. Double speed (asynchronous mode only) is controlled by the U2Xn found in the UCSRnA register. When using 
synchronous mode (UMSELn = 1), the data direction register for the XCKn pin (DDR_XCKn) controls whether the clock 
source is internal (master mode) or external (slave mode). The XCKn pin is only active when using synchronous mode.

Figure 17-2 shows a block diagram of the clock generation logic.

Figure 17-2. Clock Generation Logic, Block Diagram

Signal description:
txclk Transmitter clock (internal signal).

rxclk Receiver base clock (internal signal).

xcki Input from XCK pin (internal signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (internal signal). Used for synchronous master operation.

fosc XTAL pin frequency (system clock).

17.2.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of operation. The description in 
this section refers to Figure 17-2.

The USART baud rate register (UBRRn) and the down-counter connected to it function as a programmable prescaler or 
baud rate generator. The down-counter, running at system clock (fosc), is loaded with the UBRRn value each time the 
counter has counted down to zero or when the UBRRnL register is written. A clock is generated each time the counter 
reaches zero. This clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The transmitter divides the baud rate 
generator clock output by 2, 8 or 16 depending on mode. The baud rate generator output is used directly by the receiver’s 
clock and data recovery units. However, the recovery units use a state machine that uses 2, 8 or 16 states depending on 
mode set by the state of the UMSELn, U2Xn and DDR_XCKn bits.
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17.6.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the receiver is disabled, i.e., the buffer will be emptied of its contents. Unread 
data will be lost. If the buffer has to be flushed during normal operation, due to for instance an error condition, read the UDRn 
I/O location until the RXCn flag is cleared. The following code example shows how to flush the receive buffer.

Note: 1. The example code assumes that the part specific header file is included. For I/O registers located in extended 
I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow 
access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

17.7 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The clock 
recovery logic is used for synchronizing the internally generated baud rate clock to the incoming asynchronous serial frames 
at the RxDn pin. The data recovery logic samples and low pass filters each incoming bit, thereby improving the noise 
immunity of the receiver. The asynchronous reception operational range depends on the accuracy of the internal baud rate 
clock, the rate of the incoming frames, and the frame size in number of bits.

17.7.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 17-5 illustrates the sampling 
process of the start bit of an incoming frame. The sample rate is 16 times the baud rate for normal mode, and eight times the 
baud rate for double speed mode. The horizontal arrows illustrate the synchronization variation due to the sampling process. 
Note the larger time variation when using the double speed mode (U2Xn = 1) of operation. Samples denoted zero are 
samples done when the RxDn line is idle (i.e., no communication activity).

Figure 17-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the start bit detection sequence 
is initiated. Let sample 1 denote the first zero-sample as shown in the figure. The clock recovery logic then uses samples 8, 
9, and 10 for normal mode, and samples 4, 5, and 6 for double speed mode (indicated with sample numbers inside boxes on 
the figure), to decide if a valid start bit is received. If two or more of these three samples have logical high levels (the majority 
wins), the start bit is rejected as a noise spike and the receiver starts looking for the next high to low-transition. If however, a 
valid start bit is detected, the clock recovery logic is synchronized and the data recovery can begin. The synchronization 
process is repeated for each start bit.

Assembly Code Example(1)

USART_Flush:
sbis UCSRnA, RXCn
ret
in r16, UDRn
rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)
{

unsigned char dummy;
while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

0

IDLERxD

Sample
(U2X = 0)

Sample
(U2X = 1)

START BIT 0

0 1 2 3 4 5 6 7 8 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3
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18.5.1 Transmitter and Receiver Flags and Interrupts

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM mode are identical in function to the 
normal USART operation. However, the receiver error status flags (FE, DOR, and PE) are not in use and is always read as 
zero.

18.5.2 Disabling the Transmitter or Receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to the normal USART operation.

18.6 USART MSPIM Register Description

The following section describes the registers used for SPI operation using the USART.

18.6.1 USART MSPIM I/O Data Register - UDRn

The function and bit description of the USART data register (UDRn) in MSPI mode is identical to normal USART operation. 
See Section 17.9.1 “USART I/O Data Register n– UDRn” on page 161

18.6.2 USART MSPIM Control and Status Register n A - UCSRnA

• Bit 7 - RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty (i.e., does 
not contain any unread data). If the receiver is disabled, the receive buffer will be flushed and consequently the RXCn bit will 
become zero. The RXCn flag can be used to generate a receive complete interrupt (see description of the RXCIEn bit).

• Bit 6 - TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the transmit shift register has been shifted out and there are no new data currently 
present in the transmit buffer (UDRn). The TXCn flag bit is automatically cleared when a transmit complete interrupt is 
executed, or it can be cleared by writing a one to its bit location. The TXCn flag can generate a transmit complete interrupt 
(see description of the TXCIEn bit).

• Bit 5 - UDREn: USART Data Register Empty

The UDREn flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn is one, the buffer is empty, 
and therefore ready to be written. The UDREn flag can generate a data register empty interrupt (see description of the 
UDRIE bit). UDREn is set after a reset to indicate that the transmitter is ready.

• Bit 4:0 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices, these bits must be written 
to zero when UCSRnA is written.

18.6.3 USART MSPIM Control and Status Register n B - UCSRnB

• Bit 7 - RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn flag. A USART receive complete interrupt will be generated only if the 
RXCIEn bit is written to one, the global interrupt flag in SREG is written to one and the RXCn bit in UCSRnA is set.

• Bit 6 - TXCIEn: TX Complete Interrupt Enable

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn - - - - - UCSRnA

Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 1 1 0

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIE RXENn TXENn - - - UCSRnB

Read/Write R/W R/W R/W R/W R/W R R R

Initial Value 0 0 0 0 0 1 1 0
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Writing this bit to one enables interrupt on the TXCn flag. A USART transmit complete interrupt will be generated only if the 
TXCIEn bit is written to one, the global interrupt flag in SREG is written to one and the TXCn bit in UCSRnA is set.

• Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREn flag. A data register empty interrupt will be generated only if the 
UDRIE bit is written to one, the global interrupt flag in SREG is written to one and the UDREn bit in UCSRnA is set.

• Bit 4 - RXENn: Receiver Enable

Writing this bit to one enables the USART receiver in MSPIM mode. The receiver will override normal port operation for the 
RxDn pin when enabled. Disabling the receiver will flush the receive buffer. Only enabling the receiver in MSPI mode (i.e. 
setting RXENn=1 and TXENn=0) has no meaning since it is the transmitter that controls the transfer clock and since only 
master mode is supported.

• Bit 3 - TXENn: Transmitter Enable

Writing this bit to one enables the USART transmitter. The transmitter will override normal port operation for the TxDn pin 
when enabled. The disabling of the transmitter (writing TXENn to zero) will not become effective until ongoing and pending 
transmissions are completed, i.e., when the transmit shift register and transmit buffer register do not contain data to be 
transmitted. When disabled, the transmitter will no longer override the TxDn port.

• Bit 2:0 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices, these bits must be written 
to zero when UCSRnB is written.

18.6.4 USART MSPIM Control and Status Register n C - UCSRnC

• Bit 7:6 - UMSELn1:0: USART Mode Select

These bits select the mode of operation of the USART as shown in Table 18-3 on page 173. 
See Section 17.9.4 “USART Control and Status Register n C – UCSRnC” on page 163 for full description of the normal 
USART operation. The MSPIM is enabled when both UMSELn bits are set to one. The UDORDn, UCPHAn, and UCPOLn 
can be set in the same write operation where the MSPIM is enabled. 

• Bit 5:3 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices, these bits must be written 
to zero when UCSRnC is written.

• Bit 2 - UDORDn: Data Order

When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the data word is transmitted first. 
Refer to the frame formats section page 4 for details. 

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 - - - UDORDn UCPHAn UCPOLn UCSRnC

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 18-3. UMSELn Bits Settings

UMSELn1  UMSELn0 Mode

0  0 Asynchronous USART

0 1  Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)
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Figure 19-13. Formats and States in the Master Transmitter Mode 
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To initiate the slave receiver mode, TWAR and TWCR must be initialized as follows:

The upper 7 bits are the address to which the 2-wire serial interface will respond when addressed by a master. If the LSB is 
set, the TWI will respond to the general call address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledgement of 
the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the general 
call address if enabled) followed by the data direction bit. If the direction bit is “0” (write), the TWI will operate in SR mode, 
otherwise ST mode is entered. After its own slave address and the write bit have been received, the TWINT flag is set and a 
valid status code can be read from TWSR. The status code is used to determine the appropriate software action. The 
appropriate action to be taken for each status code is detailed in Table 19-6 on page 196. The slave receiver mode may also 
be entered if arbitration is lost while the TWI is in the master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA after the next received data 
byte. This can be used to indicate that the slave is not able to receive any more bytes. While TWEA is zero, the TWI does not 
acknowledge its own slave address. However, the 2-wire serial bus is still monitored and address recognition may resume at 
any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire serial 
bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the interface can 
still acknowledge its own slave address or the general call address by using the 2-wire serial bus clock as a clock source. 
The part will then wake up from sleep and the TWI will hold the SCL clock low during the wake up and until the TWINT flag is 
cleared (by writing it to one). Further data reception will be carried out as normal, with the AVR clocks running as normal. 
Observe that if the AVR® is set up with a long start-up time, the SCL line may be held low for a long time, blocking other data 
transmissions.

Note that the 2-wire serial interface data register – TWDR does not reflect the last byte present on the bus when waking up 
from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X
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Table 19-7. Status Codes for Slave Transmitter Mode

Status 
Code 

(TWSR) 
Prescaler 
Bits are 0

Status of the 2-wire Serial 
Bus and 2-wire Serial 
Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0xA8 Own SLA+R has been 
received; 
ACK has been returned

Load data byte 
or 

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT 
ACK should be received 
Data byte will be transmitted and ACK should 
be received

0xB0 Arbitration lost in SLA+R/W 
as Master; own SLA+R has 
been received; ACK has 
been returned

Load data byte 
or 

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT 
ACK should be received 
Data byte will be transmitted and ACK should 
be received

0xB8 Data byte in TWDR has 
been transmitted; ACK has 
been received

Load data byte 
or 

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT 
ACK should be received 
Data byte will be transmitted and ACK should 
be received

0xC0 Data byte in TWDR has 
been transmitted; NOT ACK 
has been received

No TWDR action 
or 

No TWDR action 
or 

No TWDR action 
or 

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode; 
no recognition of own SLA or GCA 
Switched to the not addressed slave mode; 
own SLA will be recognized; GCA will be 
recognized if TWGCE = “1” 
Switched to the not addressed slave mode; 
no recognition of own SLA or GCA; a START 
condition will be transmitted when the bus 
becomes free 
Switched to the not addressed slave mode; 
own SLA will be recognized; GCA will be 
recognized if TWGCE = “1”; a START 
condition will be transmitted when the bus 
becomes free

0xC8 Last data byte in TWDR has 
been transmitted (TWEA = 
“0”); ACK has been received

No TWDR action 
or 

No TWDR action 
or 

No TWDR action 
or 

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode; 
no recognition of own SLA or GCA 
Switched to the not addressed slave mode; 
own SLA will be recognized; GCA will be 
recognized if TWGCE = “1” 
Switched to the not addressed slave mode; 
no recognition of own SLA or GCA; a START 
condition will be transmitted when the bus 
becomes free 
Switched to the not addressed slave mode; 
own SLA will be recognized; GCA will be 
recognized if TWGCE = “1”; a START 
condition will be transmitted when the bus 
becomes free
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24.7.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to SPMCSR and 
execute SPM within four clock cycles after writing SPMCSR. The content of PCWORD in the Z-register is used to address 
the data in the temporary buffer. The temporary buffer will auto-erase after a page write operation or by writing the 
RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than one time to 
each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM page load operation, all data loaded will be lost.

24.7.3 Performing a Page Write

To execute page write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and execute SPM within four clock 
cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits 
in the Z-pointer must be written to zero during this operation.

● Page write to the RWW section: The NRWW section can be read during the page Write.

● Page write to the NRWW section: The CPU is halted during the operation.

24.7.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SELFPRGEN bit in SPMCSR is 
cleared. This means that the interrupt can be used instead of polling the SPMCSR register in software. When using the SPM 
interrupt, the interrupt vectors should be moved to the BLS section to avoid that an interrupt is accessing the RWW section 
when it is blocked for reading. How to move the interrupts is described in Section 8.9 “Watchdog Timer” on page 44.

24.7.5 Consideration While Updating BLS

Special care must be taken if the user allows the boot loader section to be updated by leaving boot lock bit11 
unprogrammed. An accidental write to the boot loader itself can corrupt the entire boot loader, and further software updates 
might be impossible. If it is not necessary to change the boot loader software itself, it is recommended to program the boot 
lock bit11 to protect the boot loader software from any internal software changes.

24.7.6 Prevent Reading the RWW Section During Self-Programming

During self-programming (either page erase or page write), the RWW section is always blocked for reading. The user 
software itself must prevent that this section is addressed during the self programming operation. The RWWSB in the 
SPMCSR will be set as long as the RWW section is busy. During self-programming the interrupt vector table should be 
moved to the BLS as described in Section 8.9 “Watchdog Timer” on page 44, or the interrupts must be disabled. Before 
addressing the RWW section after the programming is completed, the user software must clear the RWWSB by writing the 
RWWSRE. See Section 24.7.12 “Simple Assembly Code Example for a Boot Loader” on page 238 for an example.

24.7.7 Setting the Boot Loader Lock Bits by SPM

To set the boot loader lock bits, write the desired data to R0, write “X0001001” to SPMCSR and execute SPM within four 
clock cycles after writing SPMCSR. The only accessible lock bits are the boot lock bits that may prevent the application and 
boot loader section from any software update by the MCU.

See Table 24-2 on page 232 and Table 24-3 on page 232 for how the different settings of the boot loader bits affect the flash 
access.

If bits 5..2 in R0 are cleared (zero), the corresponding boot lock bit will be programmed if an SPM instruction is executed 
within four cycles after BLBSET and SELFPRGEN are set in SPMCSR. The Z-pointer is don’t care during this operation, but 
for future compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For 
future compatibility it is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the lock bits. When 
programming the lock bits the entire flash can be read during the operation.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1
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Figure 28-9. Output High Voltage versus Output High Current (VCC = 3V) 

Figure 28-10. Reset Pull-up Resistor Current versus Reset Pin Voltage (VCC = 5V) 
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