
Atmel - ATMEGA168-15MZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-QFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega168-15mz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega168-15mz-4396667
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

● I/O and packages

● 23 programmable I/O lines
● Green/ROHS 32-lead TQFP and 32-pad QFN

● Operating voltage:

● 2.7 - 5.5V for ATmega48/88/168

● Temperature range:

● –40°C to 125°C

● Speed grade:

● ATmega48/88/168: 0 to 8MHz at 2.7 to 5.5V, 0 - 16MHz at 4.5 to 5.5V

● Low power consumption

● Active mode:
● 4MHz, 3.0V: 1.8mA

● Power-down mode:
● 5µA at 3.0V
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

2

6.6.1 Oscillator Calibration Register – OSCCAL

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove process variations from the
oscillator frequency. The factory-calibrated value is automatically written to this register during chip reset, giving an oscillator
frequency of 8.0MHz at 25°C. The application software can write this register to change the oscillator frequency. The
oscillator can be calibrated to any frequency in the range 7.3 - 8.1MHz within ±1% accuracy. Calibration outside that range is
not guaranteed.

Note that this oscillator is used to time EEPROM and flash write accesses, and these write times will be affected accordingly.
If the EEPROM or flash are written, do not calibrate to more than 8.8MHz. Otherwise, the EEPROM or flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency range,
setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other words a setting of
OSCCAL = 0x7F gives a higher frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest frequency in
that range, and a setting of 0x7F gives the highest frequency in the range. Incrementing CAL6..0 by 1 will give a frequency
increment of less than 2% in the frequency range 7.3 - 8.1MHz.

6.7 128 kHz Internal Oscillator

The 128kHz internal oscillator is a low power oscillator providing a clock of 128kHz. The frequency is nominal at 3V and
25°C. This clock may be select as the system clock by programming the CKSEL fuses to “11” as shown in Table 6-10.

When this clock source is selected, start-up times are determined by the SUT fuses as shown in Table 6-11.

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Table 6-10. 128kHz Internal Oscillator Operating Modes

Nominal Frequency CKSEL3..0

128kHz 0011

Note: 1. The frequency is preliminary value. Actual value is TBD.

Table 6-11. Start-up Times for the 128kHz Internal Oscillator

Power Conditions
Start-up Time from Power-down and

Power-save Additional Delay from Reset SUT1..0

BOD enabled 6CK 14CK(1) 00

Fast rising power 6CK 14CK + 4ms 01

Slowly rising power 6CK 14CK + 64ms 10

Reserved 11

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1ms to ensure programming mode can be entered.
29ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 10-4. The out
instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the
synchronizer is 1 system clock period.

Figure 10-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 7 as
input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as previously discussed,
a nop instruction is included to be able to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.

Assembly Code Example(1)

...
; Define pull-ups and set outputs high
; Define directions for port pins
ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)
ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)
out PORTB,r16
out DDRB,r17
; Insert nop for synchronization
nop
; Read port pins
in r16,PINB
...

C Code Example

unsigned char i;
...
/* Define pull-ups and set outputs high */
/* Define directions for port pins */
PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);
DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);
/* Insert nop for synchronization*/
__no_operation();
/* Read port pins */
i = PINB;
...

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r16

r17

out PORTx, r16 nop

0x00 0xFF

0xFF

in r17, PINx

tpd
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

60

Table 10-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 10-5 on page 62 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals to the
alternate function. Refer to the alternate function description for further details.

10.3.1 MCU Control Register – MCUCR

• Bit 4 – PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn registers are
configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See Section 10.2.1 “Configuring the Pin” on page 58 for more
details about this feature.

Table 10-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE Pull-up override enable
If this signal is set, the pull-up enable is controlled by the PUOV signal. If
this signal is cleared, the pull-up is enabled when {DDxn, PORTxn, PUD} =
0b010.

PUOV Pull-up override value
If PUOE is set, the pull-up is enabled/disabled when PUOV is set/cleared,
regardless of the setting of the DDxn, PORTxn, and PUD register bits.

DDOE
Data direction override
enable

If this signal is set, the output driver enable is controlled by the DDOV
signal. If this signal is cleared, the output driver is enabled by the DDxn
register bit.

DDOV
Data direction override
value

If DDOE is set, the output driver is enabled/disabled when DDOV is
set/cleared, regardless of the setting of the DDxn register bit.

PVOE
Port value override
enable

If this signal is set and the output driver is enabled, the port value is
controlled by the PVOV signal. If PVOE is cleared, and the output driver is
enabled, the port Value is controlled by the PORTxn register bit.

PVOV Port value override value
If PVOE is set, the port value is set to PVOV, regardless of the setting of the
PORTxn register bit.

PTOE
Port toggle override
enable

If PTOE is set, the PORTxn register bit is inverted.

DIEOE
Digital input enable
override enable

If this bit is set, the digital input enable is controlled by the DIEOV signal. If
this signal is cleared, the digital input enable is determined by MCU state
(normal mode, sleep mode).

DIEOV
Digital input enable
override value

If DIEOE is set, the digital input is enabled/disabled when DIEOV is
set/cleared, regardless of the MCU state (normal mode, sleep mode).

DI Digital input

This is the digital input to alternate functions. In the figure, the signal is
connected to the output of the schmitt trigger but before the synchronizer.
Unless the digital input is used as a clock source, the module with the
alternate function will use its own synchronizer.

AIO Analog input/output
This is the analog input/output to/from alternate functions. The signal is
connected directly to the pad, and can be used bi-directionally.

Bit 7 6 5 4 3 2 1 0

– – – PUD – – IVSEL IVCE MCUCR

Read/Write R R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
63ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

10.3.3 Alternate Functions of Port C

The port C pins with alternate functions are shown in Table 10-6.

The alternate pin configuration is as follows:

• RESET/PCINT14 – Port C, Bit 6

RESET, reset pin: When the RSTDISBL fuse is programmed, this pin functions as a normal I/O pin, and the part will have to
rely on power-on reset and brown-out reset as its reset sources. When the RSTDISBL fuse is unprogrammed, the reset
circuitry is connected to the pin, and the pin can not be used as an I/O pin.

If PC6 is used as a reset pin, DDC6, PORTC6 and PINC6 will all read 0.

PCINT14: pin change interrupt source 14. The PC6 pin can serve as an external interrupt source.

• SCL/ADC5/PCINT13 – Port C, Bit 5

SCL, 2-wire serial interface clock: When the TWEN bit in TWCR is set (one) to enable the 2-wire serial interface, pin PC5 is
disconnected from the port and becomes the serial clock I/O pin for the 2-wire serial interface. In this mode, there is a spike
filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation.

PC5 can also be used as ADC input channel 5. Note that ADC input channel 5 uses digital power.

PCINT13: pin change interrupt source 13. The PC5 pin can serve as an external interrupt source.

• SDA/ADC4/PCINT12 – Port C, Bit 4

SDA, 2-wire serial interface data: When the TWEN bit in TWCR is set (one) to enable the 2-wire serial interface, pin PC4 is
disconnected from the port and becomes the serial data I/O pin for the 2-wire serial interface. In this mode, there is a spike
filter on the pin to suppress spikes shorter than 50ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation.

PC4 can also be used as ADC input Channel 4. Note that ADC input channel 4 uses digital power.

PCINT12: pin change interrupt source 12. The PC4 pin can serve as an external interrupt source.

• ADC3/PCINT11 – Port C, Bit 3

PC3 can also be used as ADC input channel 3. Note that ADC input channel 3 uses analog power.

PCINT11: pin change interrupt source 11. The PC3 pin can serve as an external interrupt source.

Table 10-6. Port C Pins Alternate Functions

Port Pin Alternate Function

PC6
RESET (reset pin)

PCINT14 (pin change interrupt 14)

PC5
ADC5 (ADC input channel 5)

SCL (2-wire serial bus clock line)
PCINT13 (pin change interrupt 13)

PC4
ADC4 (ADC input channel 4)

SDA (2-wire serial bus data input/output line)
PCINT12 (pin change interrupt 12)

PC3
ADC3 (ADC input channel 3)

PCINT11 (pin change interrupt 11)

PC2
ADC2 (ADC input channel 2)

PCINT10 (pin change interrupt 10)

PC1
ADC1 (ADC input channel 1)

PCINT9 (pin change interrupt 9)

PC0
ADC0 (ADC input channel 0)

PCINT8 (pin change interrupt 8)
67ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 14-1. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 3, Table 10-3 on page 64 and Table 10-9 on page 69 for Timer/Counter1 pin
placement and description.

14.1.1 Registers

The Timer/Counter (TCNT1), output compare registers (OCR1A/B), and input capture register (ICR1) are all 16-bit registers.
Special procedures must be followed when accessing the 16-bit registers. These procedures are described in the
Section 14.2 “Accessing 16-bit Registers” on page 96. The Timer/Counter control registers (TCCR1A/B) are 8-bit registers
and have no CPU access restrictions. Interrupt requests (abbreviated to int.req. in the figure) signals are all visible in the
timer interrupt flag register (TIFR1). All interrupts are individually masked with the timer interrupt mask register (TIMSK1).
TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T1 pin. The clock select
logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer
clock (clkT1).

Control Logic

TCNTn

Timer/Counter

Count
Clear

Direction
clkTn

OCRnA

OCRnB

ICRn

TCCRnA TCCRnB

=

Edge
Detector

(from Prescaler)

Clock Select

TOP BOTTOM

TOVn (Int. Req.)

OCnA (Int. Req.)

Tn

Waveform
Generation

Fixed
TOP
Value

D
AT

A
B

U
S

=

= = 0

OCnA

OCnB (Int. Req.)

Waveform
Generation

Noise
Canceler

OCnB

(From Analog
Comparator Output)

ICFn (Int. Req.)

Edge
Detector

ICPn
95ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

15.1.1 Registers

The Timer/Counter (TCNT2) and output compare register (OCR2A and OCR2B) are 8-bit registers. Interrupt request
(shorten as int.req.) signals are all visible in the timer interrupt flag register (TIFR2). All interrupts are individually masked
with the timer interrupt mask register (TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2 pins, as
detailed later in this section. The asynchronous operation is controlled by the asynchronous status register (ASSR). The
clock select logic block controls which clock source he Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer
clock (clkT2).

The double buffered output compare register (OCR2A and OCR2B) are compared with the Timer/Counter value at all times.
The result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on the
output compare pins (OC2A and OC2B). See Section 15.4 “Output Compare Unit” on page 121 for details. The compare
match event will also set the compare flag (OCF2A or OCF2B) which can be used to generate an output compare interrupt
request.

15.1.2 Definitions

Many register and bit references in this document are written in general form. A lower case “n” replaces the Timer/Counter
number, in this case 2. However, when using the register or bit defines in a program, the precise form must be used, i.e.,
TCNT2 for accessing Timer/Counter2 counter value and so on.

The definitions in the following table are also used extensively throughout the section.

15.2 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The clock source
clkT2 is by default equal to the MCU clock, clkI/O. When the AS2 bit in the ASSR register is written to logic one, the clock
source is taken from the Timer/Counter oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation,
see Section 15.9.2 “Asynchronous Status Register – ASSR” on page 135. For details on clock sources and prescaler, see
Section 15.10 “Timer/Counter Prescaler” on page 136.

15.3 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 15-2 shows a block diagram
of the counter and its surrounding environment.

Figure 15-2. Counter Unit Block Diagram

Table 15-1. Definitions

Parameter Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The
TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR2A register.
The assignment is dependent on the mode of operation.

topbottom

TOVn
(Int. Req.)DATA BUS

Control LogicTCNTn
clkTnclear

count

direction

clkI/O

Prescaler

T/C
Oscillator

TOSC1

TOSC2
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

120

The following code examples show how to initialize the SPI as a master and how to perform a simple transmission.
DDR_SPI in the examples must be replaced by the actual data direction register controlling the SPI pins. DD_MOSI,
DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. E.g. if MOSI is placed on pin PB5,
replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

SPI_MasterInit:
; Set MOSI and SCK output, all others input
ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)
out DDR_SPI,r17
; Enable SPI, Master, set clock rate fck/16
ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)
out SPCR,r17
ret

SPI_MasterTransmit:
; Start transmission of data (r16)
out SPDR,r16

Wait_Transmit:
; Wait for transmission complete
sbis SPSR,SPIF
rjmp Wait_Transmit
ret

C Code Example(1)

void SPI_MasterInit(void)
{

/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)
{

/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while(!(SPSR & (1<<SPIF)))

;
}

ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

140

• Bit 2 – CPHA: Clock Phase

The settings of the clock phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last) edge of SCK.
Refer to Figure 16-3 on page 145 and Figure 16-4 on page 145 for an example. The CPOL functionality is summarized
below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a master. SPR1 and SPR0 have no effect on the slave. The
relationship between SCK and the oscillator clock frequency fosc is shown in the following table:

16.1.4 SPI Status Register – SPSR

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE in SPCR is set and global interrupts
are enabled. If SS is an input and is driven low when the SPI is in master mode, this will also set the SPIF flag. SPIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by
first reading the SPI status register with SPIF set, then accessing the SPI data register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI data register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF bit) are
cleared by first reading the SPI status register with WCOL set, and then accessing the SPI data register.

Table 16-3. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 16-4. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
143ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

17.1 Overview

A simplified block diagram of the USART Transmitter is shown in Figure 17-1. CPU accessible I/O Registers and I/O pins are
shown in bold.

Figure 17-1. USART Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 3 and Table 10-9 on page 69 for USART0 pin placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from the top): clock generator,
transmitter and receiver. Control registers are shared by all units. The clock generation logic consists of synchronization
logic for external clock input used by synchronous slave operation, and the baud rate generator. The XCKn (transfer clock)
pin is only used by synchronous transfer mode. The transmitter consists of a single write buffer, a serial shift register, parity
generator and control logic for handling different serial frame formats. The write buffer allows a continuous transfer of data
without any delay between frames. The receiver is the most complex part of the USART module due to its clock and data
recovery units. The recovery units are used for asynchronous data reception. In addition to the recovery units, the receiver
includes a parity checker, control logic, a shift register and a two level receive buffer (UDRn). The receiver supports the
same frame formats as the transmitter, and can detect frame error, data overrun and parity errors.

Transmit Shift Register

Receive Shift Register
Data

Recoverc

Clock
Recoverc

Parity
Checker

Parity
Generator

Pin
Control

TX
Control

Pin
Control

Pin
Control

RX
Control

UDRn (Transmit)

Transmitter

Clock Generator

Receiver

UCSRnA UCSRnCUCSRnB

Sync Logic

OSC

UDRn (Receive)

D
AT

A
B

U
S

Baud Rate Generator

UBRRn [H:L]

XCKn

RxDn

TxDn
147ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

• Bit 15:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be written to zero when UBRRnH
is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRnH contains the four most significant bits, and the
UBRRnL contains the eight least significant bits of the USART baud rate. Ongoing transmissions by the transmitter and
receiver will be corrupted if the baud rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate
prescaler.

17.10 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asynchronous operation can be
generated by using the UBRRn settings in Table 17-9. UBRRn values which yield an actual baud rate differing less than
0.5% from the target baud rate, are bold in the table. Higher error ratings are acceptable, but the receiver will have less noise
resistance when the error ratings are high, especially for large serial frames (see Section 17.7.3 “Asynchronous Operational
Range” on page 159). The error values are calculated using the following equation:

Table 17-9. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud
Rate
(bps)

fosc = 1.0000MHz fosc = 1.8432MHz fosc = 2.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 –7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 –3.5% 7 0.0% 15 0.0% 8 –3.5% 16 2.1%

19.2k 2 8.5% 6 –7.0% 5 0.0% 11 0.0% 6 –7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 –3.5%

38.4k 1 –18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 –7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 –18.6% 1 –25.0% 2 0.0% 1 –18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max.(1) 62.5kbps 125kbps 115.2kbps 230.4kbps 125kbps 250kbps

Note: 1. UBRRn = 0, error = 0.0%

Error[%]
BaudRateClosest Match

BaudRate
-- 1– 
  100%=
165ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 19-11. Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is done by writing a specific value into
TWCR, instructing the TWI hardware to transmit a START condition. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The
TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the application has
cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a
status code indicating that the START condition has successfully been sent.

3. The application software should now examine the value of TWSR, to make sure that the START condition was
successfully transmitted. If TWSR indicates otherwise, the application software might take some special action,
like calling an error routine. Assuming that the status code is as expected, the application must load SLA+W into
TWDR. Remember that TWDR is used both for address and data. After TWDR has been loaded with the desired
SLA+W, a specific value must be written to TWCR, instructing the TWI hardware to transmit the SLA+W present in
TWDR. Which value to write is described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate transmission of the
address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a
status code indicating that the address packet has successfully been sent. The status code will also reflect
whether a slave acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure that the address packet was
successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine. Assuming that the status code is
as expected, the application must load a data packet into TWDR. Subsequently, a specific value must be written to
TWCR, instructing the TWI hardware to transmit the data packet present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a one to TWINT
clears the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a status
code indicating that the data packet has successfully been sent. The status code will also reflect whether a slave
acknowledged the packet or not.

START

TW
I

H
ar

dw
ar

e
A

ct
io

n

A
pp

lic
at

io
n

A
ct

io
n

TWI bus

Indicates
TWINT set

SLA + W A A STOPData

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA + W sent,
ACK received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA + W into
TWDR, and loads appropriate control
signals into TWCR, makin sure that

TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA + W was
sent and ACK received.

Application loads data intoTWDR, and
loads appropriate control signals into

TWCR, makin sure that TWINT is
written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

makin sure that TWINT is
written to one
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

186

Figure 19-13. Formats and States in the Master Transmitter Mode

S
Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a
data byte

Arbitration lost and
addressed as slave

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

Arbitration lost in slave
address or data byte

SLA W

RS SLA W

A A P

A P R

MR

MT

DATA

ADATA

$08 $18

$20

$38

$28

A P

$30

$38

$10

A or A Other master
continues

$68 $78

n

A Other master
continues

To corresponding
states in slave mode

A or A Other master
continues

$B0
191ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 19-17. Formats and States in the Slave Receiver Mode

0xA0 A STOP condition or
repeated START condition
has been received while still
addressed as Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized; GCA will be
recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when
the bus becomes free
Switched to the not addressed slave mode;
own SLA will be recognized; GCA will be
recognized if TWGCE = “1”;a START
condition will be transmitted when the bus
becomes free

Table 19-6. Status Codes for Slave Receiver Mode (Continued)

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire Serial
Bus and 2-wire Serial
Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

S
Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Arbitration lost as master
and as slave by general call

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

SLA W A DATAA P or S

A

DATA

ADATA

$60

$68

$80 $80 $A0

$88

A

P or SA

n

$90 $90 $A0

$98

P or SA

Reception of the general call
address and one or more
data bytes

A

$70

General Call DATAA P or S

A

DATA

$78

A

197ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

21.5 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise induced from the CPU core
and other I/O peripherals. The noise canceler can be used with ADC noise reduction and idle mode. To make use of this
feature, the following procedure should be used:

a. Make sure that the ADC is enabled and is not busy converting. Single conversion mode must be selected and the
ADC conversion complete interrupt must be enabled.

b. Enter ADC noise reduction mode (or Idle mode). The ADC will start a conversion once the CPU has been halted.

c. If no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake up the CPU and
execute the ADC conversion complete interrupt routine. If another interrupt wakes up the CPU before the ADC
conversion is complete, that interrupt will be executed, and an ADC conversion complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode until a new sleep command
is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle mode and ADC noise
reduction mode. The user is advised to write zero to ADEN before entering such sleep modes to avoid excessive power
consumption.

21.5.1 Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 21-8 An analog source applied to ADCn is
subjected to the pin capacitance and input leakage of that pin, regardless of whether that channel is selected as input for the
ADC. When the channel is selected, the source must drive the S/H capacitor through the series resistance (combined
resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10k or less. If such a source is used,
the sampling time will be negligible. If a source with higher impedance is used, the sampling time will depend on how long
time the source needs to charge the S/H capacitor, with can vary widely. The user is recommended to only use low impedant
sources with slowly varying signals, since this minimizes the required charge transfer to the S/H capacitor.

Signal components higher than the nyquist frequency (fADC/2) should not be present for either kind of channels, to avoid
distortion from unpredictable signal convolution. The user is advised to remove high frequency components with a low-pass
filter before applying the signals as inputs to the ADC.

Figure 21-8. Analog Input Circuitry

IIL

VCC/2

CS/H = 14pF

IIH

ADCn
1 to 100kΩ
213ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

22. debugWIRE On-chip Debug System

22.1 Features
● Complete program flow control

● Emulates all on-chip functions, both digital and analog, except RESET pin

● Real-time operation

● Symbolic debugging support (both at C and assembler source Level, or for other HLLs)

● Unlimited number of program break points (using software break points)

● Non-intrusive operation

● Electrical characteristics identical to real device

● Automatic configuration system

● High-speed operation

● Programming of non-volatile memories

22.2 Overview

The debugWIRE on-chip debug system uses a one-wire, bi-directional interface to control the program flow, execute AVR®
instructions in the CPU and to program the different non-volatile memories.

22.3 Physical Interface

When the debugWIRE enable (DWEN) fuse is programmed and lock bits are unprogrammed, the debugWIRE system within
the target device is activated. The RESET port pin is configured as a wire-AND (open-drain) bi-directional I/O pin with pull-up
enabled and becomes the communication gateway between target and emulator.

Figure 22-1. The debugWIRE Setup

Figure 22-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator connector. The system clock
is not affected by debugWIRE and will always be the clock source selected by the CKSEL fuses.

When designing a system where debugWIRE will be used, the following observations must be made for correct operation:

● Pull-up resistors on the dW/(RESET) line must not be smaller than 10k. The pull-up resistor is not required for
debugWIRE functionality.

● Connecting the RESET pin directly to VCC will not work.

● Capacitors connected to the RESET pin must be disconnected when using debugWire.

● All external reset sources must be disconnected.

GND

2.7 - 5.5V

dw

VCC

dw(RESET)
221ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

24.7.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The content of PCWORD in the Z-register is used to address
the data in the temporary buffer. The temporary buffer will auto-erase after a page write operation or by writing the
RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than one time to
each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM page load operation, all data loaded will be lost.

24.7.3 Performing a Page Write

To execute page write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and execute SPM within four clock
cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits
in the Z-pointer must be written to zero during this operation.

● Page write to the RWW section: The NRWW section can be read during the page Write.

● Page write to the NRWW section: The CPU is halted during the operation.

24.7.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SELFPRGEN bit in SPMCSR is
cleared. This means that the interrupt can be used instead of polling the SPMCSR register in software. When using the SPM
interrupt, the interrupt vectors should be moved to the BLS section to avoid that an interrupt is accessing the RWW section
when it is blocked for reading. How to move the interrupts is described in Section 8.9 “Watchdog Timer” on page 44.

24.7.5 Consideration While Updating BLS

Special care must be taken if the user allows the boot loader section to be updated by leaving boot lock bit11
unprogrammed. An accidental write to the boot loader itself can corrupt the entire boot loader, and further software updates
might be impossible. If it is not necessary to change the boot loader software itself, it is recommended to program the boot
lock bit11 to protect the boot loader software from any internal software changes.

24.7.6 Prevent Reading the RWW Section During Self-Programming

During self-programming (either page erase or page write), the RWW section is always blocked for reading. The user
software itself must prevent that this section is addressed during the self programming operation. The RWWSB in the
SPMCSR will be set as long as the RWW section is busy. During self-programming the interrupt vector table should be
moved to the BLS as described in Section 8.9 “Watchdog Timer” on page 44, or the interrupts must be disabled. Before
addressing the RWW section after the programming is completed, the user software must clear the RWWSB by writing the
RWWSRE. See Section 24.7.12 “Simple Assembly Code Example for a Boot Loader” on page 238 for an example.

24.7.7 Setting the Boot Loader Lock Bits by SPM

To set the boot loader lock bits, write the desired data to R0, write “X0001001” to SPMCSR and execute SPM within four
clock cycles after writing SPMCSR. The only accessible lock bits are the boot lock bits that may prevent the application and
boot loader section from any software update by the MCU.

See Table 24-2 on page 232 and Table 24-3 on page 232 for how the different settings of the boot loader bits affect the flash
access.

If bits 5..2 in R0 are cleared (zero), the corresponding boot lock bit will be programmed if an SPM instruction is executed
within four cycles after BLBSET and SELFPRGEN are set in SPMCSR. The Z-pointer is don’t care during this operation, but
for future compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For
future compatibility it is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the lock bits. When
programming the lock bits the entire flash can be read during the operation.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

236

Figure 27-1. 2-wire Serial Bus Timing

Data setup time
fSCL ≤ 100kHz

tSU;DAT

250 – ns

fSCL > 100kHz 100 – ns

Setup time for STOP condition
fSCL ≤ 100kHz

tSU;STO

4.0 – µs

fSCL > 100kHz 0.6 – µs

Bus free time between a STOP and START
condition

fSCL ≤ 100kHz
tBUF

4.7 – µs

fSCL > 100kHz 1.3 – µs

Table 27-1. 2-wire Serial Bus Requirements (Continued)

Parameter Condition Symbol Min Max Unit

Notes: 1. In Atmel ATmega48/88/168, this parameter is characterized and not 100% tested.

2. Required only for fSCL > 100kHz.

3. Cb = capacitance of one bus line in pF.

4. fCK = CPU clock frequency

5. This requirement applies to all ATmega48/88/168 2-wire serial interface operation. Other devices connected to the 2-
wire serial bus need only obey the general fSCL requirement.

6. The actual low period generated by the Atmel ATmega48/88/168 2-wire serial interface is (1/fSCL – 2/fCK), thus fCK must
be greater than 6MHz for the low time requirement to be strictly met at fSCL = 100kHz.

7. The actual low period generated by the ATmega48/88/168 2-wire serial interface is (1/fSCL – 2/fCK), thus the low time
requirement will not be strictly met for fSCL > 308kHz when fCK = 8MHz. Still, ATmega48/88/168 devices connected to
the bus may communicate at full speed (400kHz) with other ATmega48/88/168 devices, as well as any other device
with a proper tLOW acceptance margin.

tof

tSU,STA tSU,STO
tHD,STA

tBUF

tHD,DAT tSU,DAT

tHIGH

tLOW tLOW

SCL

SDA

tr
267ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

28.1.4 Pin Thresholds and Hysteresis

Figure 28-15. I/O Pin Input Threshold versus VCC (VIH, I/O Pin Read as ‘1

Figure 28-16. I/O Pin Input Threshold versus VCC (VIL, I/O Pin Read as ‘0’)

2 32.5 3.5 4 4.5 5 5.5
VCC (V)

3.5

3

2.5

2

1.5

1

I IH
 (V

)

125

85

25

-40

2 32.5 3.5 4 4.5 5 5.5 6
VCC (V)

2.5

2

1.5

1

0.5

3

0

V I
L

(V
)

125°C
-40°C
277ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

29. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) Reserved – – – – – – – –

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

5. Only valid for Atmel® ATmega88/168
285ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

