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4.5 General Purpose Register File

The register file is optimized for the AVR® enhanced RISC instruction set. In order to achieve the required performance and 
flexibility, the following input/output schemes are supported by the register file:

● One 8-bit output operand and one 8-bit result input

● Two 8-bit output operands and one 8-bit result input

● Two 8-bit output operands and one 16-bit result input

● One 16-bit output operand and one 16-bit result input

Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle 
instructions.

As shown in Figure 4-2, each register is also assigned a data memory address, mapping them directly into the first
32 locations of the user data space. Although not being physically implemented as SRAM locations, this memory 
organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any 
register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
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6.1.4 Asynchronous Timer Clock – clkASY

The asynchronous timer clock allows the asynchronous Timer/Counter to be clocked directly from an external clock or an 
external 32kHz clock crystal. The dedicated clock domain allows using this Timer/Counter as a real-time counter even when 
the device is in sleep mode.

6.1.5 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce noise 
generated by digital circuitry. This gives more accurate ADC conversion results.

6.2 Clock Sources

The device has the following clock source options, selectable by flash fuse bits as shown below. The clock from the selected 
source is input to the AVR® clock generator, and routed to the appropriate modules.

6.2.1 Default Clock Source

The device is shipped with internal RC oscillator at 8.0MHz and with the fuse CKDIV8 programmed, resulting in 1.0MHz 
system clock. The startup time is set to maximum and time-out period enabled. 
(CKSEL = “0010”, SUT = “10”, CKDIV8 = “0”). The default setting ensures that all users can make their desired clock source 
setting using any available programming interface.

6.2.2 Clock Startup Sequence

Any clock source needs a sufficient VCC to start oscillating and a minimum number of oscillating cycles before it can be 
considered stable. 

To ensure sufficient VCC, the device issues an internal reset with a time-out delay (tTOUT) after the device reset is released by 
all other reset sources. Section 8. “System Control and Reset” on page 38 describes the start conditions for the internal 
reset. The delay (tTOUT) is timed from the watchdog oscillator and the number of cycles in the delay is set by the SUTx and 
CKSELx fuse bits. Th e selectable delays are shown in Table 6-2. The frequency of the watchdog oscillator is voltage 
dependent as shown in Section  “” on page 285.

Table 6-1. Device Clocking Options Select(1)

Device Clocking Option  CKSEL3..0

Low power crystal oscillator 1111 - 1000

Full swing crystal oscillator 0111 - 0110

Low frequency crystal oscillator 0101 - 0100

Internal 128kHz RC 0scillator 0011

Calibrated Internal RC 0scillator 0010

External clock 0000

Reserved 0001

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

Table 6-2. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

0ms 0ms 0

4.1ms 4.3ms 4K (4,096)

65ms 69ms 8K (8,192)
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7.2 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter idle mode, stopping the CPU but 
allowing the SPI, USART, analog comparator, ADC, 2-wire serial interface, Timer/Counters, watchdog, and the interrupt 
system to continue operating. This sleep mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow and 
USART transmit complete interrupts. If wake-up from the analog comparator interrupt is not required, the analog comparator 
can be powered down by setting the ACD bit in the analog comparator control and status register – ACSR. This will reduce 
power consumption in idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered. 

7.3 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC noise reduction mode, stopping 
the CPU but allowing the ADC, the external interrupts, the 2-wire serial interface address watch, Timer/Counter2, and the 
watchdog to continue operating (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the 
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a 
conversion starts automatically when this mode is entered. Apart from the ADC conversion complete interrupt, only an 
external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a 2-wire serial interface address match, a 
Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT0 or INT1 or a pin change 
interrupt can wake up the MCU from ADC noise reduction mode.

7.4 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter power-down mode. In this mode, the 
external oscillator is stopped, while the external interrupts, the 2-wire serial interface address watch, and the watchdog 
continue operating (if enabled). Only an external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a 
2-wire serial interface address match, an external level interrupt on INT0 or INT1, or a pin change interrupt can wake up the 
MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from power-down mode, the changed level must be held for some 
time to wake up the MCU. Refer to Section 11. “External Interrupts” on page 73 for details.

When waking up from power-down mode, there is a delay from the wake-up condition occurs until the wake-up becomes 
effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined by the 
same CKSEL fuses that define the reset time-out period, as described in Section 6.2 “Clock Sources” on page 24.

7.5 Power-save Mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter power-save mode. This mode is 
identical to power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from either timer overflow or output 
compare event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in TIMSK2, and the 
global interrupt enable bit in SREG is set.

If Timer/Counter2 is not running, power-down mode is recommended instead of power-save mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in power-save mode. If Timer/Counter2 is not 
using the asynchronous clock, the Timer/Counter oscillator is stopped during sleep. If Timer/Counter2 is not using the 
synchronous clock, the clock source is stopped during sleep. Note that even if the synchronous clock is running in 
power-save, this clock is only available for Timer/Counter2.
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10.3.3 Alternate Functions of Port C

The port C pins with alternate functions are shown in Table 10-6.

The alternate pin configuration is as follows:

• RESET/PCINT14 – Port C, Bit 6

RESET, reset pin: When the RSTDISBL fuse is programmed, this pin functions as a normal I/O pin, and the part will have to 
rely on power-on reset and brown-out reset as its reset sources. When the RSTDISBL fuse is unprogrammed, the reset 
circuitry is connected to the pin, and the pin can not be used as an I/O pin.

If PC6 is used as a reset pin, DDC6, PORTC6 and PINC6 will all read 0.

PCINT14: pin change interrupt source 14. The PC6 pin can serve as an external interrupt source.

• SCL/ADC5/PCINT13 – Port C, Bit 5

SCL, 2-wire serial interface clock: When the TWEN bit in TWCR is set (one) to enable the 2-wire serial interface, pin PC5 is 
disconnected from the port and becomes the serial clock I/O pin for the 2-wire serial interface. In this mode, there is a spike 
filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with 
slew-rate limitation.

PC5 can also be used as ADC input channel 5. Note that ADC input channel 5 uses digital power.

PCINT13: pin change interrupt source 13. The PC5 pin can serve as an external interrupt source.

• SDA/ADC4/PCINT12 – Port C, Bit 4

SDA, 2-wire serial interface data: When the TWEN bit in TWCR is set (one) to enable the 2-wire serial interface, pin PC4 is 
disconnected from the port and becomes the serial data I/O pin for the 2-wire serial interface. In this mode, there is a spike 
filter on the pin to suppress spikes shorter than 50ns on the input signal, and the pin is driven by an open drain driver with 
slew-rate limitation. 

PC4 can also be used as ADC input Channel 4. Note that ADC input channel 4 uses digital power.

PCINT12: pin change interrupt source 12. The PC4 pin can serve as an external interrupt source.

• ADC3/PCINT11 – Port C, Bit 3

PC3 can also be used as ADC input channel 3. Note that ADC input channel 3 uses analog power.

PCINT11: pin change interrupt source 11. The PC3 pin can serve as an external interrupt source.

Table 10-6. Port C Pins Alternate Functions

Port Pin Alternate Function

PC6
RESET (reset pin)

PCINT14 (pin change interrupt 14)

PC5
ADC5 (ADC input channel 5)

SCL (2-wire serial bus clock line)
PCINT13 (pin change interrupt 13)

PC4
ADC4 (ADC input channel 4)

SDA (2-wire serial bus data input/output line)
PCINT12 (pin change interrupt 12)

PC3
ADC3 (ADC input channel 3)

PCINT11 (pin change interrupt 11)

PC2
ADC2 (ADC input channel 2)

PCINT10 (pin change interrupt 10)

PC1
ADC1 (ADC input channel 1)

PCINT9 (pin change interrupt 9)

PC0
ADC0 (ADC input channel 0)

PCINT8 (pin change interrupt 8)
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Bits 5:4 – COM0B1:0: Compare Match Output B Mode

These bits control the output compare pin (OC0B) behavior. If one or both of the COM0B1:0 bits are set, the OC0B output 
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR) 
bit corresponding to the OC0B pin must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the WGM02:0 bit setting.
Table 12-5 on page 88 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to a normal or CTC mode 
(non-PWM).

Table 12-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM mode.

Table 12-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega48/88/168 and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B register, these bits control the counting sequence of the counter, the 
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 12-8. Modes of 
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and 
two types of pulse width modulation (PWM) modes (see Section 12.6 “Modes of Operation” on page 81).

Table 12-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on compare match

1 0 Clear OC0B on compare match

1 1 Set OC0B on compare match

Table 12-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on compare match, set OC0B at TOP

1 1 Set OC0B on compare match, clear OC0B at TOP

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is 
ignored, but the set or clear is done at TOP. See Section 12.6.3 “Fast PWM Mode” on page 83 for more 
details.

Table 12-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on compare match when up-counting. Set OC0B on compare match when 
down-counting.

1 1
Set OC0B on compare match when up-counting. Clear OC0B on compare match when 
down-counting.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is 
ignored, but the set or clear is done at TOP. See Section 12.6.4 “Phase Correct PWM Mode” on page 84 for 
more details.
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Figure 14-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV1) is set each time the counter reaches BOTTOM. When either OCR1A or ICR1 is 
used for defining the TOP value, the OC1A or ICF1 flag is set accordingly at the same timer clock cycle as the OCR1x 
registers are updated with the double buffer value (at TOP). The interrupt flags can be used to generate an interrupt each 
time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the 
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between 
the TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits are masked to zero when any of the 
OCR1x registers are written. As the third period shown in Figure 14-8 illustrates, changing the TOP actively while the 
Timer/Counter is running in the phase correct mode can result in an unsymmetrical output. The reason for this can be found 
in the time of update of the OCR1x register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at 
TOP. This implies that the length of the falling slope is determined by the previous TOP value, while the length of the rising 
slope is determined by the new TOP value. When these two values differ the two slopes of the period will differ in length. The 
difference in length gives the unsymmetrical result on the output. 

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when changing the TOP 
value while the Timer/Counter is running. When using a static TOP value there are practically no differences between the 
two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the 
COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the 
COM1x1:0 to three (See Table  on page 114). The actual OC1x value will only be visible on the port pin if the data direction 
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x register at 
the compare match between OCR1x and TCNT1 when the counter increments, and clearing (or setting) the OC1x register at 
compare match between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the output when using 
phase correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x register represent special cases when generating a PWM waveform output in the phase 
correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set equal to TOP the 
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic 
values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output will toggle with a 
50% duty cycle.

1 2 3 4

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCRnx/ TOP Update and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

fOCnxPCPWM

fclk_I/O

2 N TOP 
----------------------------=
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If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the counter even if the pin is 
configured as an output. This feature allows software control of the counting.

14.10.3 Timer/Counter1 Control Register C – TCCR1C

• Bit 7 – FOC1A: Force Output Compare for Channel A

• Bit 6 – FOC1B: Force Output Compare for Channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. However, for ensuring 
compatibility with future devices, these bits must be set to zero when TCCR1A is written when operating in a PWM mode. 
When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on the waveform generation 
unit. The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that the FOC1A/FOC1B bits are 
implemented as strobes. Therefore it is the value present in the COM1x1:0 bits that determine the effect of the forced 
compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in clear timer on compare match (CTC) 
mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

14.10.4 Timer/Counter1 – TCNT1H and TCNT1L

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both for read and for 
write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low bytes are read and written 
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit temporary high byte register 
(TEMP). This temporary register is shared by all the other 16-bit registers. See Section 14.2 “Accessing 16-bit Registers” on 
page 96.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match between TCNT1 
and one of the OCR1x registers.

Writing to the TCNT1 register blocks (removes) the compare match on the following timer clock for all compare units.

Table 14-6. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (no prescaling)

0 1 0 clkI/O/8 (from prescaler)

0 1 1 clkI/O/64 (from prescaler)

1 0 0 clkI/O/256 (from prescaler)

1 0 1 clkI/O/1024 (from prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

FOC1A FOC1B – – – – – – TCCR1C

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TCNT1[15:8] TCNT1H

TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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14.10.5 Output Compare Register 1 A – OCR1AH and OCR1AL

14.10.6 Output Compare Register 1 B – OCR1BH and OCR1BL

The output compare registers contain a 16-bit value that is continuously compared with the counter value (TCNT1). A match 
can be used to generate an output compare interrupt, or to generate a waveform output on the OC1x pin.

The output compare registers are 16-bit in size. To ensure that both the high and low bytes are written simultaneously when 
the CPU writes to these registers, the access is performed using an 8-bit temporary high byte register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See Section 14.2 “Accessing 16-bit Registers” on page 96.

14.10.7 Input Capture Register 1 – ICR1H and ICR1L

The input capture is updated with the counter (TCNT1) value each time an event occurs on the ICP1 pin (or optionally on the 
analog comparator output for Timer/Counter1). The input capture can be used for defining the counter TOP value.

The input capture register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously when the 
CPU accesses these registers, the access is performed using an 8-bit temporary high byte register (TEMP). This temporary 
register is shared by all the other 16-bit registers. See Section 14.2 “Accessing 16-bit Registers” on page 96.

14.10.8 Timer/Counter1 Interrupt Mask Register – TIMSK1

• Bit 7, 6 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1 
input capture interrupt is enabled. The corresponding interrupt vector (see Section 9. “Interrupts” on page 48) is executed 
when the ICF1 flag, located in TIFR1, is set.

• Bit 4, 3 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

Bit 7 6 5 4 3 2 1 0

OCR1A[15:8] OCR1AH

OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1B[15:8] OCR1BH

OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H

ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1 
output compare B match interrupt is enabled. The corresponding interrupt vector (see Section 9. “Interrupts” on page 48) is 
executed when the OCF1B flag, located in TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1 
output compare A match interrupt is enabled. The corresponding interrupt vector (see Section 9. “Interrupts” on page 48) is 
executed when the OCF1A flag, located in TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1 
overflow interrupt is enabled. The corresponding interrupt vector (see Section 8.9 “Watchdog Timer” on page 44) is executed 
when the TOV1 flag, located in TIFR1, is set.

14.10.9 Timer/Counter1 Interrupt Flag Register – TIFR1

• Bit 7, 6 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the input capture register (ICR1) is set by the WGM13:0 
to be used as the TOP value, the ICF1 flag is set when the counter reaches the TOP value.

ICF1 is automatically cleared when the input capture interrupt vector is executed. Alternatively, ICF1 can be cleared by 
writing a logic one to its bit location.

• Bit 4, 3 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 2 – OCF1B: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the output compare register B (OCR1B).

Note that a forced output compare (FOC1B) strobe will not set the OCF1B flag.

OCF1B is automatically cleared when the output compare match B interrupt vector is executed. Alternatively, OCF1B can be 
cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the output compare register A (OCR1A).

Note that a forced output compare (FOC1A) strobe will not set the OCF1A flag.

OCF1A is automatically cleared when the output compare match A interrupt vector is executed. Alternatively, OCF1A can be 
cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In normal and CTC modes, the TOV1 flag is set when the 
timer overflows. Refer to Table 14-5 on page 114 for the TOV1 flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 overflow interrupt vector is executed. Alternatively, TOV1 can be 
cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

– – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The function simply waits for data to be present in the receive buffer by checking the RXCn flag, before reading the buffer 
and returning the value.

17.6.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCSRnB before reading the low bits 
from the UDRn. This rule applies to the FEn, DORn and UPEn status flags as well. Read status from UCSRnA, then data 
from UDRn. Reading the UDRn I/O location will change the state of the receive buffer FIFO and consequently the TXB8n, 
FEn, DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit characters and the status 
bits.

Note: 1. The example code assumes that the part specific header file is included. For I/O registers located in extended 
I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow 
access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The receive function example reads all the I/O registers into the register file before any computation is done. This gives an 
optimal receive buffer utilization since the buffer location read will be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get status and 9th bit, then data from buffer
in r18, UCSRnA
in r17, UCSRnB
in r16, UDRn
; If error, return -1
andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)
breq USART_ReceiveNoError
ldi r17, HIGH(-1)
ldi r16, LOW(-1)

USART_ReceiveNoError:
; Filter the 9th bit, then return
lsr r17
andi r17, 0x01
ret

C Code Example(1)

unsigned int USART_Receive(void)
{

unsigned char status, resh, resl;
/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)))
;
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRnA;
resh = UCSRnB;
resl = UDRn;
/* If error, return -1 */
if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;
return ((resh << 8) | resl);

}
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19.2.2 Electrical Interconnection

As depicted in Figure 19-1 on page 175, both bus lines are connected to the positive supply voltage through pull-up 
resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector. This implements a wired-AND 
function which is essential to the operation of the interface. A low level on a TWI bus line is generated when one or more TWI 
devices output a zero. A high level is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull 
the line high. Note that all AVR® devices connected to the TWI bus must be powered in order to allow any bus operation. 

The number of devices that can be connected to the bus is only limited by the bus capacitance limit of 400pF and the 
7-bit slave address space. A detailed specification of the electrical characteristics of the TWI is given in Section 27. “2-wire 
Serial Interface Characteristics” on page 266. Two different sets of specifications are presented there, one relevant for bus 
speeds below 100kHz, and one valid for bus speeds up to 400kHz.

19.3 Data Transfer and Frame Format

19.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level of the data line must be 
stable when the clock line is high. The only exception to this rule is for generating start and stop conditions.

Figure 19-2. Data Validity

19.3.2 START and STOP Conditions

The master initiates and terminates a data transmission. The transmission is initiated when the master issues a START 
condition on the bus, and it is terminated when the master issues a STOP condition. Between a START and a STOP 
condition, the bus is considered busy, and no other master should try to seize control of the bus. A special case occurs when 
a new START condition is issued between a START and STOP condition. This is referred to as a REPEATED START 
condition, and is used when the master wishes to initiate a new transfer without relinquishing control of the bus. After a 
REPEATED START, the bus is considered busy until the next STOP. This is identical to the START behavior, and therefore 
START is used to describe both START and REPEATED START for the remainder of this datasheet, unless otherwise 
noted. As depicted below, START and STOP conditions are signalled by changing the level of the SDA line when the SCL 
line is high.

Figure 19-3. START, REPEATED START and STOP Conditions 
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21.5.3 ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps (LSBs). The lowest code is read 
as 0, and the highest code is read as 2n-1. 

Several parameters describe the deviation from the ideal behavior:

● Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at 0.5 LSB). Ideal value: 
0 LSB.

Figure 21-10. Offset Error

● Gain error: After adjusting for offset, the gain error is found as the deviation of the last transition (0x3FE to 0x3FF) 
compared to the ideal transition (at 1.5 LSB below maximum). Ideal value: 0 LSB

Figure 21-11. Gain Error
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Figure 24-1. Read-While-Write versus No Read-While-Write

Figure 24-2. Memory Sections

Note: 1. The parameters in the figure above are given in Table 24-6 on page 240.
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• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four clock cycles executes page 
write, with the data stored in the temporary buffer. The page address is taken from the high part of the Z-pointer. The data in 
R1 and R0 are ignored. The PGWRT bit will auto-clear upon completion of a page write, or if no SPM instruction is executed 
within four clock cycles. The CPU is halted during the entire page write operation if the NRWW section is addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four clock cycles executes page 
erase. The page address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGERS bit will 
auto-clear upon completion of a page erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted 
during the entire page write operation if the NRWW section is addressed.

• Bit 0 – SELFPRGEN: Self Programming Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with either RWWSRE, BLBSET, 
PGWRT or PGERS, the following SPM instruction will have a special meaning, see description above. If only SELFPRGEN 
is written, the following SPM instruction will store the value in R1:R0 in the temporary page buffer addressed by the
Z-pointer. The LSB of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon completion of an SPM instruction, 
or if no SPM instruction is executed within four clock cycles. During page erase and page write, the SELFPRGEN bit remains 
high until the operation is completed. 

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower five bits will have no effect.

24.6 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands.

Since the flash is organized in pages (see Table 25-12 on page 247), the program counter can be treated as having two 
different sections. One section, consisting of the least significant bits, is addressing the words within a page, while the most 
significant bits are addressing the pages. This is1 shown in Figure 24-3 on page 235. Note that the page erase and page 
write operations are addressed independently. Therefore it is of major importance that the boot loader software addresses 
the same page in both the page erase and page write operation. Once a programming operation is initiated, the address is 
latched and the Z-pointer can be used for other operations. 

The only SPM operation that does not use the Z-pointer is setting the boot loader lock bits. The content of the Z-pointer is 
ignored and will have no effect on the operation. The LPM instruction does also use the Z-pointer to store the address. Since 
this instruction addresses the flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
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24.7.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to SPMCSR and 
execute SPM within four clock cycles after writing SPMCSR. The content of PCWORD in the Z-register is used to address 
the data in the temporary buffer. The temporary buffer will auto-erase after a page write operation or by writing the 
RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than one time to 
each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM page load operation, all data loaded will be lost.

24.7.3 Performing a Page Write

To execute page write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and execute SPM within four clock 
cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits 
in the Z-pointer must be written to zero during this operation.

● Page write to the RWW section: The NRWW section can be read during the page Write.

● Page write to the NRWW section: The CPU is halted during the operation.

24.7.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SELFPRGEN bit in SPMCSR is 
cleared. This means that the interrupt can be used instead of polling the SPMCSR register in software. When using the SPM 
interrupt, the interrupt vectors should be moved to the BLS section to avoid that an interrupt is accessing the RWW section 
when it is blocked for reading. How to move the interrupts is described in Section 8.9 “Watchdog Timer” on page 44.

24.7.5 Consideration While Updating BLS

Special care must be taken if the user allows the boot loader section to be updated by leaving boot lock bit11 
unprogrammed. An accidental write to the boot loader itself can corrupt the entire boot loader, and further software updates 
might be impossible. If it is not necessary to change the boot loader software itself, it is recommended to program the boot 
lock bit11 to protect the boot loader software from any internal software changes.

24.7.6 Prevent Reading the RWW Section During Self-Programming

During self-programming (either page erase or page write), the RWW section is always blocked for reading. The user 
software itself must prevent that this section is addressed during the self programming operation. The RWWSB in the 
SPMCSR will be set as long as the RWW section is busy. During self-programming the interrupt vector table should be 
moved to the BLS as described in Section 8.9 “Watchdog Timer” on page 44, or the interrupts must be disabled. Before 
addressing the RWW section after the programming is completed, the user software must clear the RWWSB by writing the 
RWWSRE. See Section 24.7.12 “Simple Assembly Code Example for a Boot Loader” on page 238 for an example.

24.7.7 Setting the Boot Loader Lock Bits by SPM

To set the boot loader lock bits, write the desired data to R0, write “X0001001” to SPMCSR and execute SPM within four 
clock cycles after writing SPMCSR. The only accessible lock bits are the boot lock bits that may prevent the application and 
boot loader section from any software update by the MCU.

See Table 24-2 on page 232 and Table 24-3 on page 232 for how the different settings of the boot loader bits affect the flash 
access.

If bits 5..2 in R0 are cleared (zero), the corresponding boot lock bit will be programmed if an SPM instruction is executed 
within four cycles after BLBSET and SELFPRGEN are set in SPMCSR. The Z-pointer is don’t care during this operation, but 
for future compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For 
future compatibility it is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the lock bits. When 
programming the lock bits the entire flash can be read during the operation.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1
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25.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient programming, the following 
should be considered.

● The command needs only be loaded once when writing or reading multiple memory locations.

● Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the EESAVE fuse is programmed) 
and flash after a chip erase.

● Address high byte needs only be loaded before programming or reading a new 256 word window in flash or 256 byte 
EEPROM. This consideration also applies to signature bytes reading.

25.7.3 Chip Erase

The chip erase will erase the flash and EEPROM(1) memories plus lock bits. The lock bits are not reset until the program 
memory has been completely erased. The fuse bits are not changed. A chip erase must be performed before the flash 
and/or EEPROM are reprogrammed.

Note: 1. The EEPRPOM memory is preserved during chip erase if the EESAVE fuse is programmed.

Load command “chip erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for chip erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the chip erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

25.7.4 Programming the Flash

The flash is organized in pages, see Table 25-12 on page 247. When programming the flash, the program data is latched 
into a page buffer. This allows one page of program data to be programmed simultaneously. The following procedure 
describes how to program the entire flash memory:

A. Load command “write flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for write flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load address low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load data low byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load data high byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch data

1. Set BS1 to “1”. This selects high data byte.

2. Give pAGEL a positive pulse. This latches the data bytes. (See Figure 25-3 on page 250 for signal waveforms)
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Figure 25-3. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

25.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 25-13 on page 247. When programming the EEPROM, the program data is 
latched into a page buffer. This allows one page of data to be programmed simultaneously. The programming algorithm for 
the EEPROM data memory is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248 for details on 
command, address and data loading):

1. A: Load command “0001 0001”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. C: Load data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 25-4 for signal waveforms).
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Figure 25-4. Programming the EEPROM Waveforms

25.7.6 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248 for 
details on command and address loading):

1. A: Load command “0000 0010”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The flash word high byte can now be read at DATA.

6. Set OE to “1”.

25.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248 
for details on command and address loading):

1. A: Load command “0000 0011”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM data byte can now be read at DATA.

5. Set OE to “1”.

25.7.8 Programming the Fuse Low Bits

The algorithm for programming the fuse low bits is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248 
for details on command and data loading):

1. A: Load command “0100 0000”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.
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26.6 LIN Re-synchronization Algorithm

26.7 Synchronization Algorithm

The possibility to change the value of OSCCAL during the oscillator operation allows for in-situ calibration of the slave node 
to entering Master frames. The principle of operation is to measure the TBit during the SYNCH byte and to change the 
calibration value of OSCCAL to recover from local frequency drifts due to local voltage or temperature deviation. The 
algorithm used for the synchronization of the internal RC oscillator is depicted in Figure 26-3 on page 264.

Figure 26-3. Dichotomic Algorithm Used for LIN Slave Clock Re-synchronization 

26.8 Precaution Against OSCCAL Discontinuity

The Figure 28-23 on page 281 illustrates the on-purpose discontinuity of RC frequency versus OSCCAL value. For one 
correct re-synchronization, the frequency change must be kept on the same side of the discontinuity (no change of 
OSCCAL[7]). Since there will be no device having frequency changed by more than 10% (see Figure 28-21 on page 280), 
thus no reason to change the frequency value by more than 10%. Therefore, when calibration tries to cross the border 
because of subsequent increase (or decrease) in OSCCAL values, then the routine must be stopped. 

Example: For parts operating in the lower part of the curve, if new_OSCCAL >127 then new_OSCCAL = 127. Similar for 
parts operating on the high side of the discontinuity.

Measuring
actual TBit

Y
STOP:
Oscillator
Calibrated

N

N

Increment
OSCCAL

Decrement
OSCCAL

-2% < Delta
(TBit) < 2%

Delta(TBit) < 2%

Delta(TBit) < -2%
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

264



Figure 28-9. Output High Voltage versus Output High Current (VCC = 3V) 

Figure 28-10. Reset Pull-up Resistor Current versus Reset Pin Voltage (VCC = 5V) 
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