
Atmel - ATMEGA48-15MT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 4KB (2K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-QFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega48-15mt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega48-15mt-4396021
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

4.5 General Purpose Register File

The register file is optimized for the AVR® enhanced RISC instruction set. In order to achieve the required performance and
flexibility, the following input/output schemes are supported by the register file:

● One 8-bit output operand and one 8-bit result input

● Two 8-bit output operands and one 8-bit result input

● Two 8-bit output operands and one 16-bit result input

● One 16-bit output operand and one 16-bit result input

Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle
instructions.

As shown in Figure 4-2, each register is also assigned a data memory address, mapping them directly into the first
32 locations of the user data space. Although not being physically implemented as SRAM locations, this memory
organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any
register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
11ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

• Bit 2 – EEMPE: EEPROM Master Write Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written. When EEMPE is set, setting
EEPE within four clock cycles will write data to the EEPROM at the selected address If EEMPE is zero, setting EEPE will
have no effect. When EEMPE has been written to one by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM Write Enable

The EEPROM write enable signal EEPE is the write strobe to the EEPROM. When address and data are correctly set up,
the EEPE bit must be written to one to write the value into the EEPROM. The EEMPE bit must be written to one before a
logical one is written to EEPE, otherwise no EEPROM write takes place. The following procedure should be followed when
writing the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SELFPRGEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the flash memory. The software must check that the flash
programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the software contains a boot
loader allowing the CPU to program the flash. If the flash is never being updated by the CPU, step 2 can be omitted. See
Section 24. “Boot Loader Support – Read-While-Write Self-Programming, ATmega88 and ATmega168” on page 229 for
details about boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM master write enable
will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the EEAR
or EEDR register will be modified, causing the interrupted EEPROM access to fail. It is recommended to have
the global interrupt flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user software can poll this bit and wait
for a zero before writing the next byte. When EEPE has been set, the CPU is halted for two cycles before the next instruction
is executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM read enable signal EERE is the read strobe to the EEPROM. When the correct address is set up in the EEAR
register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM read access takes one
instruction, and the requested data is available immediately. When the EEPROM is read, the CPU is halted for four cycles
before the next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in progress, it is neither possible
to read the EEPROM, nor to change the EEAR register.

The calibrated oscillator is used to time the EEPROM accesses. Table 5-2 lists the typical programming time for EEPROM
access from the CPU.

Table 5-2. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typical Programming Time

EEPROM write (from
CPU)

26,368 3.3ms
19ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

5.4 I/O Memory

The I/O space definition of the Atmel® ATmega48/88/168 is shown in Section “” on page 285.

All Atmel ATmega48/88/168 I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the
LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the I/O
space. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set
section for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used.
When addressing I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
Atmel ATmega48/88/168 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in opcode for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR® the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

5.4.1 General Purpose I/O Registers

The Atmel ATmega48/88/168 contains three general purpose I/O registers. These registers can be used for storing any
information, and they are particularly useful for storing global variables and status flags. General purpose I/O registers within
the address range 0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

5.4.2 General Purpose I/O Register 2 – GPIOR2

5.4.3 General Purpose I/O Register 1 – GPIOR1

5.4.4 General Purpose I/O Register 0 – GPIOR0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

22

The most typical and general program setup for the reset and interrupt vector addresses in Atmel® ATmega168 is:
Address Labels Code Comments
0x0000 jmp RESET ; Reset Handler
0x0002 jmp EXT_INT0 ; IRQ0 Handler
0x0004 jmp EXT_INT1 ; IRQ1 Handler
0x0006 jmp PCINT0 ; PCINT0 Handler
0x0008 jmp PCINT1 ; PCINT1 Handler
0x000A jmp PCINT2 ; PCINT2 Handler
0x000C jmp WDT ; Watchdog Timer Handler
0x000E jmp TIM2_COMPA ; Timer2 Compare A Handler
0x0010 jmp TIM2_COMPB ; Timer2 Compare B Handler
0x0012 jmp TIM2_OVF ; Timer2 Overflow Handler
0x0014 jmp TIM1_CAPT ; Timer1 Capture Handler
0x0016 jmp TIM1_COMPA ; Timer1 Compare A Handler
0x0018 jmp TIM1_COMPB ; Timer1 Compare B Handler
0x001A jmp TIM1_OVF ; Timer1 Overflow Handler
0x001C jmp TIM0_COMPA ; Timer0 Compare A Handler
0x001E jmp TIM0_COMPB ; Timer0 Compare B Handler
0x0020 jmp TIM0_OVF ; Timer0 Overflow Handler
0x0022 jmp SPI_STC ; SPI Transfer Complete Handler
0x0024 jmp USART_RXC ; USART, RX Complete Handler
0x0026 jmp USART_UDRE ; USART, UDR Empty Handler
0x0028 jmp USART_TXC ; USART, TX Complete Handler
0x002A jmp ADC ; ADC Conversion Complete Handler
0x002C jmp EE_RDY ; EEPROM Ready Handler
0x002E jmp ANA_COMP ; Analog Comparator Handler
0x0030 jmp TWI ; 2-wire Serial Interface Handler
0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler
;
0x0033 RESET: ldi r16, high(RAMEND); Main program start
0x0034 r16 ; Set Stack Pointer to top of RAM
0x0035 ldi r16, low(RAMEND)
0x0036 out SPL,r16
0x0037 sei ; Enable interrupts
0x0038 <instr> xxx

When the BOOTRST fuse is unprogrammed, the boot section size set to 2K bytes and the IVSEL bit in the MCUCR register
is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector
addresses in ATmega168 is:

Address Labels Code Comments
0x0000 RESET: ldi r16,high(RAMEND); Main program start
0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM
0x0002 ldi r16,low(RAMEND)
0x0003 out SPL,r16
0x0004 sei ; Enable interrupts
0x0005 <instr> xxx
;
.org 0xC02
0x1C02 jmp EXT_INT0 ; IRQ0 Handler
0x1C04 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

54

• Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT14..8 pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG and
the PCIE1 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 0 - PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set (one). If the I-bit in SREG and
the PCIE0 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

11.6 Pin Change Mask Register 2 – PCMSK2

• Bit 7..0 – PCINT23..16: Pin Change Enable Mask 23..16

Each PCINT23..16-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is set
and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is cleared,
pin change interrupt on the corresponding I/O pin is disabled.

11.7 Pin Change Mask Register 1 – PCMSK1

• Bit 7 – Res: Reserved Bit

This bit is an unused bit in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 6..0 – PCINT14..8: Pin Change Enable Mask 14..8

Each PCINT14..8-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT14..8 is set and
the PCIE1 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT14..8 is cleared, pin
change interrupt on the corresponding I/O pin is disabled.

11.8 Pin Change Mask Register 0 – PCMSK0

• Bit 7..0 – PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is set and the
PCIE0 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is cleared, pin change
interrupt on the corresponding I/O pin is disabled.

Bit 7 6 5 4 3 2 1 0

PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

76

Bits 5:4 – COM0B1:0: Compare Match Output B Mode

These bits control the output compare pin (OC0B) behavior. If one or both of the COM0B1:0 bits are set, the OC0B output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OC0B pin must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the WGM02:0 bit setting.
Table 12-5 on page 88 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to a normal or CTC mode
(non-PWM).

Table 12-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM mode.

Table 12-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega48/88/168 and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 12-8. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and
two types of pulse width modulation (PWM) modes (see Section 12.6 “Modes of Operation” on page 81).

Table 12-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on compare match

1 0 Clear OC0B on compare match

1 1 Set OC0B on compare match

Table 12-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on compare match, set OC0B at TOP

1 1 Set OC0B on compare match, clear OC0B at TOP

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.3 “Fast PWM Mode” on page 83 for more
details.

Table 12-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on compare match when up-counting. Set OC0B on compare match when
down-counting.

1 1
Set OC0B on compare match when up-counting. Clear OC0B on compare match when
down-counting.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.4 “Phase Correct PWM Mode” on page 84 for
more details.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

88

14.10.5 Output Compare Register 1 A – OCR1AH and OCR1AL

14.10.6 Output Compare Register 1 B – OCR1BH and OCR1BL

The output compare registers contain a 16-bit value that is continuously compared with the counter value (TCNT1). A match
can be used to generate an output compare interrupt, or to generate a waveform output on the OC1x pin.

The output compare registers are 16-bit in size. To ensure that both the high and low bytes are written simultaneously when
the CPU writes to these registers, the access is performed using an 8-bit temporary high byte register (TEMP). This
temporary register is shared by all the other 16-bit registers. See Section 14.2 “Accessing 16-bit Registers” on page 96.

14.10.7 Input Capture Register 1 – ICR1H and ICR1L

The input capture is updated with the counter (TCNT1) value each time an event occurs on the ICP1 pin (or optionally on the
analog comparator output for Timer/Counter1). The input capture can be used for defining the counter TOP value.

The input capture register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously when the
CPU accesses these registers, the access is performed using an 8-bit temporary high byte register (TEMP). This temporary
register is shared by all the other 16-bit registers. See Section 14.2 “Accessing 16-bit Registers” on page 96.

14.10.8 Timer/Counter1 Interrupt Mask Register – TIMSK1

• Bit 7, 6 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
input capture interrupt is enabled. The corresponding interrupt vector (see Section 9. “Interrupts” on page 48) is executed
when the ICF1 flag, located in TIFR1, is set.

• Bit 4, 3 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

Bit 7 6 5 4 3 2 1 0

OCR1A[15:8] OCR1AH

OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1B[15:8] OCR1BH

OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H

ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
117ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2x to toggle its logical
level on each compare match (COM2x1:0 = 1). The waveform generated will have a maximum frequency of foc2 = fclk_I/O/2
when OCR2A is set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double buffer feature of the
output compare unit is enabled in the fast PWM mode.

15.6.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to
TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In
non-inverting compare output mode, the output compare (OC2x) is cleared on the compare match between TCNT2 and
OCR2x while upcounting, and set on the compare match while downcounting. In inverting output compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation.
However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches
TOP, it changes the count direction. The TCNT2 value will be equal to TOP for one timer clock cycle. The timing diagram for
the phase correct PWM mode is shown on Figure 15-7. The TCNT2 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line
marks on the TCNT2 slopes represent compare matches between OCR2x and TCNT2.

Figure 15-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV2) is set each time the counter reaches BOTTOM. The interrupt flag can be used to
generate an interrupt each time the counter reaches the BOTTOM value.

1 2 3

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

TOVn Interrupt
Flag Set

OCRnx Update

OCnx Interrupt
Flag Set
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

126

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

15.8.3 Timer/Counter Register – TCNT2

The Timer/Counter register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter.
Writing to the TCNT2 register blocks (removes) the compare match on the following timer clock. Modifying the counter
(TCNT2) while the counter is running, introduces a risk of missing a compare match between TCNT2 and the OCR2x
registers.

15.8.4 Output Compare Register A – OCR2A

The output compare register A contains an 8-bit value that is continuously compared with the counter value (TCNT2). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC2A pin.

15.8.5 Output Compare Register B – OCR2B

The output compare register B contains an 8-bit value that is continuously compared with the counter value (TCNT2). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC2B pin.

Table 15-9. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(no prescaling)

0 1 0 clkT2S/8 (from prescaler)

0 1 1 clkT2S/32 (from prescaler)

1 0 0 clkT2S/64 (from prescaler)

1 0 1 clkT2S/128 (from prescaler)

1 1 0 clkT2S/256 (from prescaler)

1 1 1 clkT2S/1024 (from prescaler)

Bit 7 6 5 4 3 2 1 0

TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR2A[7:0] OCR2A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR2B[7:0] OCR2B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

132

More advanced initialization routines can be made that include frame format as parameters, disable interrupts and so on.
However, many applications use a fixed setting of the baud and control registers, and for these types of applications the
initialization code can be placed directly in the main routine, or be combined with initialization code for other I/O modules.

17.5 Data Transmission – The USART Transmitter

The USART transmitter is enabled by setting the transmit enable (TXEN) bit in the UCSRnB register. When the transmitter is
enabled, the normal port operation of the TxDn pin is overridden by the USART and given the function as the transmitter’s
serial output. The baud rate, mode of operation and frame format must be set up once before doing any transmissions. If
synchronous operation is used, the clock on the XCKn pin will be overridden and used as transmission clock.

17.5.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU can load the transmit
buffer by writing to the UDRn I/O location. The buffered data in the transmit buffer will be moved to the shift register when the
shift register is ready to send a new frame. The shift register is loaded with new data if it is in idle state (no ongoing
transmission) or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with
new data, it will transfer one complete frame at the rate given by the baud register, U2Xn bit or by XCKn depending on mode
of operation.

The following code examples show a simple USART transmit function based on polling of the data register empty (UDREn)
flag. When using frames with less than eight bits, the most significant bits written to the UDRn are ignored. The USART has
to be initialized before the function can be used. For the assembly code, the data to be sent is assumed to be stored in
register R16.

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The function simply waits for the transmit buffer to be empty by checking the UDREn flag, before loading it with new data to
be transmitted. If the data register empty interrupt is utilized, the interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA,UDREn
rjmp USART_Transmit
; Put data (r16) into buffer, sends the data
out UDRn,r16
ret

C Code Example(1)

void USART_Transmit(unsigned char data)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn)))

;
/* Put data into buffer, sends the data */
UDRn = data;

}

ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

152

Figure 19-17. Formats and States in the Slave Receiver Mode

0xA0 A STOP condition or
repeated START condition
has been received while still
addressed as Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized; GCA will be
recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when
the bus becomes free
Switched to the not addressed slave mode;
own SLA will be recognized; GCA will be
recognized if TWGCE = “1”;a START
condition will be transmitted when the bus
becomes free

Table 19-6. Status Codes for Slave Receiver Mode (Continued)

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire Serial
Bus and 2-wire Serial
Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

S
Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Arbitration lost as master
and as slave by general call

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

SLA W A DATAA P or S

A

DATA

ADATA

$60

$68

$80 $80 $A0

$88

A

P or SA

n

$90 $90 $A0

$98

P or SA

Reception of the general call
address and one or more
data bytes

A

$70

General Call DATAA P or S

A

DATA

$78

A

197ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 19-19. Formats and States in the Slave Transmitter Mode

19.8.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table 19-8.

Status 0xF8 indicates that no relevant information is available because the TWINT flag is not set. This occurs between other
states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire serial bus transfer. A bus error occurs when a START or
STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are during the serial
transfer of an address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a
bus error, the TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the TWI to enter the
not addressed slave mode and to clear the TWSTO flag (no other bits in TWCR are affected). The SDA and SCL lines are
released, and no STOP condition is transmitted.

S
Reception of the own
slave address and one
or more data bytes

Last data byte transmitted.
Switched to not adressed
slave (TWEA = “0”

Arbitration lost as master
and addressed as slave

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

SLA R A DATAA P or S

A

DATA

All 1’s

ADATA

$A8

$B0

$B8 $C0

$C8

A

P or SA

n

Table 19-8. Miscellaneous States

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0xF8 No relevant state
information available;
TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no
STOP condition is sent on the bus. In all
cases, the bus is released and TWSTO is
cleared.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

200

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC conversion complete interrupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the system clock frequency and the input clock to the ADC.

21.6.3 The ADC Data Register – ADCL and ADCH

21.6.3.1 ADLAR = 0

21.6.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC data register is not updated until ADCH is read. Consequently, if the result is left adjusted and
no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from the registers. If ADLAR is set,
the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.

• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in Section 21.6 “ADC Conversion Result” on page 217.

Table 21-4. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
219ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB);init loop variable
ldi loophi, high(PAGESIZEB);not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not

ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
239ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 25-3. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

25.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 25-13 on page 247. When programming the EEPROM, the program data is
latched into a page buffer. This allows one page of data to be programmed simultaneously. The programming algorithm for
the EEPROM data memory is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248 for details on
command, address and data loading):

1. A: Load command “0001 0001”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. C: Load data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 25-4 for signal waveforms).

0x10 ADDR. LOW

A B

DATA

XA1

XA0

BS1

BS2

XTAL1

WR

PAGEL

RDY/BSY

OE

RESET +12V

DATA LOW DATA HIGH

C D
ADDR. LOW

B
DATA LOW DATA HIGH

C D

F

XX

E
XX

E
XXADDR. HIGH

G H
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

250

28.1.1 Power-Down Supply Current

Figure 28-3. Power-Down Supply Current versus VCC (Watchdog Timer Disabled)

Figure 28-4. Power-Down Supply Current versus VCC (Watchdog Timer Enabled)

0 3.5 4 4.5 5 5.5
VCC (V)

5

4

3

2

1

8

7

6

0

I C
C
 (µ

A
)

125

85

25

-40

2.5 3.53 4 4.5 5 5.5
VCC (V)

5

4

3

2

1

8

7

6

0

I C
C
 (µ

A
)

125

85

25

-40
271ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

28.1.4 Pin Thresholds and Hysteresis

Figure 28-15. I/O Pin Input Threshold versus VCC (VIH, I/O Pin Read as ‘1

Figure 28-16. I/O Pin Input Threshold versus VCC (VIL, I/O Pin Read as ‘0’)

2 32.5 3.5 4 4.5 5 5.5
VCC (V)

3.5

3

2.5

2

1.5

1

I IH
 (V

)

125

85

25

-40

2 32.5 3.5 4 4.5 5 5.5 6
VCC (V)

2.5

2

1.5

1

0.5

3

0

V I
L

(V
)

125°C
-40°C
277ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 28-21. Calibrated 8MHz RC Oscillator Frequency versus VCC

Figure 28-22. Calibrated 8MHz RC Oscillator Frequency versus OSCCAL Value (for ATmega48-15AZ and
ATmega168-15AZ)

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

8

7.8

7.6

7.4

7.2

8.2

8.4

7

F R
C
 (M

H
z)

125°C
85°C
25°C

-40°C

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL (X1)

12

10

8

6

4

14

16

2

F R
C
 (M

H
z)

125°C
85°C
25°C

-40°C
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

280

(0xB8) TWBR 2-wire serial interface bit rate register 182

(0xB7) Reserved – – – – – – – –

(0xB6) ASSR – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 135

(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 output compare register B 132

(0xB3) OCR2A Timer/Counter2 output compare register A 132

(0xB2) TCNT2 Timer/Counter2 (8-bit) 132

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20 131

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 129

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

5. Only valid for Atmel® ATmega88/168
287ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

37. Table of Contents

Features . 1

1. Pin Configurations . 3
1.1 Disclaimer . 3

2. Overview . 4
2.1 Block Diagram . 4
2.2 Automotive Quality Grade . 5
2.3 Comparison Between ATmega48, ATmega88, and ATmega168 . 6
2.4 Pin Descriptions . 6

3. About Code Examples . 8

4. AVR CPU Core . 8
4.1 Introduction . 8
4.2 Architectural Overview. 8
4.3 ALU – Arithmetic Logic Unit . 9
4.4 Status Register . 10
4.5 General Purpose Register File. 10
4.6 Stack Pointer . 12
4.7 Instruction Execution Timing . 13
4.8 Reset and Interrupt Handling . 13

5. AVR ATmega48/88/168 Memories . 15
5.1 In-System Reprogrammable Flash Program Memory . 15
5.2 SRAM Data Memory . 16
5.3 EEPROM Data Memory. 17
5.4 I/O Memory . 22

6. System Clock and Clock Options . 23
6.1 Clock Systems and their Distribution . 23
6.2 Clock Sources . 24
6.3 Low Power Crystal Oscillator . 25
6.4 Full Swing Crystal Oscillator . 26
6.5 Low Frequency Crystal Oscillator . 28
6.6 Calibrated Internal RC Oscillator . 28
6.7 128 kHz Internal Oscillator. 29
6.8 External Clock . 30
6.9 Clock Output Buffer . 30
6.10 Timer/Counter Oscillator . 31
6.11 System Clock Prescaler. 31

7. Power Management and Sleep Modes . 33
7.1 Sleep Mode Control Register – SMCR . 33
7.2 Idle Mode . 34
7.3 ADC Noise Reduction Mode . 34
7.4 Power-down Mode. 34
7.5 Power-save Mode . 34
7.6 Standby Mode . 35
7.7 Power Reduction Register . 35
303ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

