
Microchip Technology - ATMEGA88-15AT1 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega88-15at1

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega88-15at1-4433641
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

5.2.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The internal data SRAM access is
performed in two clkCPU cycles as described in Figure 5-4.

Figure 5-4. On-chip Data SRAM Access Cycles

5.3 EEPROM Data Memory

The Atmel ATmega48/88/168 contains 256/512/512 bytes of data EEPROM memory. It is organized as a separate data
space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase
cycles. The access between the EEPROM and the CPU is described in the following, specifying the EEPROM address
registers, the EEPROM data register, and the EEPROM control register.

Section 25. “Memory Programming” on page 242 contains a detailed description on EEPROM programming in SPI or
parallel programming mode.

5.3.1 EEPROM Read/Write Access

The EEPROM access registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 5-2 on page 19. A self-timing function, however, lets the user
software detect when the next byte can be written. If the user code contains instructions that write the EEPROM, some
precautions must be taken. In heavily filtered power supplies, VCC is likely to rise or fall slowly on power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See Section 5.3.5 “Preventing EEPROM Corruption” on page 21 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the description of the
EEPROM control register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When the
EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

5.3.2 The EEPROM Address Register – EEARH and EEARL

clkCPU

T1

Data

Data

RD

WR

Address validCompute Address

Next Instruction

Write

Read

Memory Access Instruction

Address

T2 T3

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X
17ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

The most typical and general program setup for the reset and interrupt vector addresses in Atmel® ATmega168 is:
Address Labels Code Comments
0x0000 jmp RESET ; Reset Handler
0x0002 jmp EXT_INT0 ; IRQ0 Handler
0x0004 jmp EXT_INT1 ; IRQ1 Handler
0x0006 jmp PCINT0 ; PCINT0 Handler
0x0008 jmp PCINT1 ; PCINT1 Handler
0x000A jmp PCINT2 ; PCINT2 Handler
0x000C jmp WDT ; Watchdog Timer Handler
0x000E jmp TIM2_COMPA ; Timer2 Compare A Handler
0x0010 jmp TIM2_COMPB ; Timer2 Compare B Handler
0x0012 jmp TIM2_OVF ; Timer2 Overflow Handler
0x0014 jmp TIM1_CAPT ; Timer1 Capture Handler
0x0016 jmp TIM1_COMPA ; Timer1 Compare A Handler
0x0018 jmp TIM1_COMPB ; Timer1 Compare B Handler
0x001A jmp TIM1_OVF ; Timer1 Overflow Handler
0x001C jmp TIM0_COMPA ; Timer0 Compare A Handler
0x001E jmp TIM0_COMPB ; Timer0 Compare B Handler
0x0020 jmp TIM0_OVF ; Timer0 Overflow Handler
0x0022 jmp SPI_STC ; SPI Transfer Complete Handler
0x0024 jmp USART_RXC ; USART, RX Complete Handler
0x0026 jmp USART_UDRE ; USART, UDR Empty Handler
0x0028 jmp USART_TXC ; USART, TX Complete Handler
0x002A jmp ADC ; ADC Conversion Complete Handler
0x002C jmp EE_RDY ; EEPROM Ready Handler
0x002E jmp ANA_COMP ; Analog Comparator Handler
0x0030 jmp TWI ; 2-wire Serial Interface Handler
0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler
;
0x0033 RESET: ldi r16, high(RAMEND); Main program start
0x0034 r16 ; Set Stack Pointer to top of RAM
0x0035 ldi r16, low(RAMEND)
0x0036 out SPL,r16
0x0037 sei ; Enable interrupts
0x0038 <instr> xxx

When the BOOTRST fuse is unprogrammed, the boot section size set to 2K bytes and the IVSEL bit in the MCUCR register
is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector
addresses in ATmega168 is:

Address Labels Code Comments
0x0000 RESET: ldi r16,high(RAMEND); Main program start
0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM
0x0002 ldi r16,low(RAMEND)
0x0003 out SPL,r16
0x0004 sei ; Enable interrupts
0x0005 <instr> xxx
;
.org 0xC02
0x1C02 jmp EXT_INT0 ; IRQ0 Handler
0x1C04 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

54

• Bit 1 – INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in SREG
and the INT1 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG
and the INT0 bit in EIMSK are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

11.4 Pin Change Interrupt Control Register - PCICR

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIE2: Pin Change Interrupt Enable 2

When the PCIE2 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 2 is enabled. Any
change on any enabled PCINT23..16 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request
is executed from the PCI2 interrupt vector. PCINT23..16 pins are enabled individually by the PCMSK2 register.

• Bit 1 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 1 is enabled. Any
change on any enabled PCINT14..8 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI1 interrupt vector. PCINT14..8 pins are enabled individually by the PCMSK1 register.

• Bit 0 - PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 0 is enabled. Any
change on any enabled PCINT7..0 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI0 interrupt vector. PCINT7..0 pins are enabled individually by the PCMSK0 register.

11.5 Pin Change Interrupt Flag Register - PCIFR

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set (one). If the I-bit in SREG
and the PCIE2 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

– – – – – PCIE2 PCIE1 PCIE0 PCICR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
75ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

12.8.3 Timer/Counter Register – TCNT0

The Timer/Counter register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter.
Writing to the TCNT0 register blocks (removes) the compare match on the following timer clock. Modifying the counter
(TCNT0) while the counter is running, introduces a risk of missing a compare match between TCNT0 and the OCR0x
registers.

12.8.4 Output Compare Register A – OCR0A

The output compare register A contains an 8-bit value that is continuously compared with the counter value (TCNT0). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC0A pin.

12.8.5 Output Compare Register B – OCR0B

The output compare register B contains an 8-bit value that is continuously compared with the counter value (TCNT0). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OC0B pin.

Table 12-9. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(no prescaling)

0 1 0 clkI/O/8 (from prescaler)

0 1 1 clkI/O/64 (from prescaler)

1 0 0 clkI/O/256 (from prescaler)

1 0 1 clkI/O/1024 (from prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR0B[7:0] OCR0B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

90

Figure 14-4 shows a block diagram of the output compare unit. The small “n” in the register and bit names indicates the
device number (n = 1 for Timer/Counter 1), and the “x” indicates output compare unit (A/B). The elements of the block
diagram that are not directly a part of the output compare unit are gray shaded.

Figure 14-4. Output Compare Unit, Block Diagram

The OCR1x register is double buffered when using any of the twelve pulse width modulation (PWM) modes. For the normal
and clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes
the update of the OCR1x compare register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR1x register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCR1x buffer register, and if double buffering is disabled the CPU will access the OCR1x directly. The content
of the OCR1x (buffer or compare) register is only changed by a write operation (the Timer/Counter does not update this
register automatically as the TCNT1 and ICR1 register). Therefore OCR1x is not read via the high byte temporary register
(TEMP). However, it is a good practice to read the low byte first as when accessing other 16-bit registers. Writing the OCR1x
registers must be done via the TEMP register since the compare of all 16 bits is done continuously. The high byte (OCR1xH)
has to be written first. When the high byte I/O location is written by the CPU, the TEMP register will be updated by the value
written. Then when the low byte (OCR1xL) is written to the lower eight bits, the high byte will be copied into the upper 8-bits
of either the OCR1x buffer or OCR1x compare register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to Section 14.2 “Accessing 16-bit Registers” on page 96.

14.6.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOC1x) bit. Forcing compare match will not set the OCF1x flag or reload/clear the timer, but the OC1x pin
will be updated as if a real compare match had occurred (the COM11:0 bits settings define whether the OC1x pin is set,
cleared or toggled).

OCRnxL Buf. (8-bit)OCRnxH Buf. (8-bit)

OCRnx Buffer (16-bit Register)

TEMP (8-bit)

OCRnxL (8-bit)

OCFnx (Int. Req.)

OCRnxH (8-bit)

OCRnx (16-bit Register)

= (16-bitComparator)

WGMn3:0 COMnx1:0

Waveform Generator

TCNTnL (8-bit)TCNTnH (8-bit)

TCNTn (16-bit Counter)

DATA BUS (8-bit)

OCnx
TOP

BOTTOM
103ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 14-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV1) is set each time the counter reaches BOTTOM. When either OCR1A or ICR1 is
used for defining the TOP value, the OC1A or ICF1 flag is set accordingly at the same timer clock cycle as the OCR1x
registers are updated with the double buffer value (at TOP). The interrupt flags can be used to generate an interrupt each
time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x registers are written. As the third period shown in Figure 14-8 illustrates, changing the TOP actively while the
Timer/Counter is running in the phase correct mode can result in an unsymmetrical output. The reason for this can be found
in the time of update of the OCR1x register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at
TOP. This implies that the length of the falling slope is determined by the previous TOP value, while the length of the rising
slope is determined by the new TOP value. When these two values differ the two slopes of the period will differ in length. The
difference in length gives the unsymmetrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when changing the TOP
value while the Timer/Counter is running. When using a static TOP value there are practically no differences between the
two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the
COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the
COM1x1:0 to three (See Table on page 114). The actual OC1x value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x register at
the compare match between OCR1x and TCNT1 when the counter increments, and clearing (or setting) the OC1x register at
compare match between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the output when using
phase correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x register represent special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set equal to TOP the
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output will toggle with a
50% duty cycle.

1 2 3 4

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCRnx/ TOP Update and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

fOCnxPCPWM

fclk_I/O

2 N TOP
----------------------------=
109ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

The TXCn flag is useful in half-duplex communication interfaces (like the RS-485 standard), where a transmitting application
must enter receive mode and free the communication bus immediately after completing the transmission.

When the transmit compete interrupt enable (TXCIEn) bit in UCSRnB is set, the USART transmit complete interrupt will be
executed when the TXCn flag becomes set (provided that global interrupts are enabled). When the transmit complete
interrupt is used, the interrupt handling routine does not have to clear the TXCn flag, this is done automatically when the
interrupt is executed.

17.5.4 Parity Generator

The parity generator calculates the parity bit for the serial frame data. When parity bit is enabled (UPMn1 = 1), the
transmitter control logic inserts the parity bit between the last data bit and the first stop bit of the frame that is sent.

17.5.5 Disabling the Transmitter

The disabling of the transmitter (setting the TXEN to zero) will not become effective until ongoing and pending transmissions
are completed, i.e., when the transmit shift register and transmit buffer register do not contain data to be transmitted. When
disabled, the transmitter will no longer override the TxDn pin.

17.6 Data Reception – The USART Receiver

The USART receiver is enabled by writing the receive enable (RXENn) bit in the UCSRnB register to one. When the receiver
is enabled, the normal pin operation of the RxDn pin is overridden by the USART and given the function as the receiver’s
serial input. The baud rate, mode of operation and frame format must be set up once before any serial reception can be
done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer clock.

17.6.1 Receiving Frames with 5 to 8 Data Bits

The receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be sampled at the
baud rate or XCKn clock, and shifted into the receive shift register until the first stop bit of a frame is received. A second stop
bit will be ignored by the receiver. When the first stop bit is received, i.e., a complete serial frame is present in the receive
shift register, the contents of the shift register will be moved into the receive buffer. The receive buffer can then be read by
reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the receive complete (RXCn) flag.
When using frames with less than eight bits the most significant bits of the data read from the UDRn will be masked to zero.
The USART has to be initialized before the function can be used.

Assembly Code Example(1)

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get and return received data from buffer
in r16, UDRn
ret

C Code Example(1)

unsigned char USART_Receive(void)
{

/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)))
;
/* Get and return received data from buffer */
return UDRn;

}

Note: 1. The example code assumes that the part specific header file is included. For I/O registers
located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions
must be replaced with instructions that allow access to extended I/O. Typically “LDS” and
“STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

154

19. 2-wire Serial Interface

19.1 Features
● Simple yet powerful and flexible communication interface, only two bus lines needed

● Both master and slave operation supported

● Device can operate as transmitter or receiver

● 7-bit address space allows up to 128 different slave addresses

● Multi-master arbitration support

● Up to 400kHz data transfer speed

● Slew-rate limited output drivers

● Noise suppression circuitry rejects spikes on bus lines

● Fully programmable slave address with general call support

● Address recognition causes wake-up when AVR® is in sleep mode

19.2 2-wire Serial Interface Bus Definition

The 2-wire serial interface (TWI) is ideally suited for typical microcontroller applications. The TWI protocol allows the
systems designer to interconnect up to 128 different devices using only two bi-directional bus lines, one for clock (SCL) and
one for data (SDA). The only external hardware needed to implement the bus is a single pull-up resistor for each of the TWI
bus lines. All devices connected to the bus have individual addresses, and mechanisms for resolving bus contention are
inherent in the TWI protocol.

Figure 19-1. TWI Bus Interconnection

19.2.1 TWI Terminology

The following definitions are frequently encountered in this section.

The PRTWI bit in Section 7.7.1 “Power Reduction Register - PRR” on page 35 must be written to zero to enable the 2-wire
serial interface.

Device 1

SDA

SCL

VCC

Device 2 Device 3 Device n........ R1 R2

Table 19-1. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The Master also generates the SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.
175ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

19.5.2 Bit Rate Generator Unit

This unit controls the period of SCL when operating in a master mode. The SCL period is controlled by settings in the TWI bit
rate register (TWBR) and the prescaler bits in the TWI status register (TWSR). Slave operation does not depend on bit rate
or prescaler settings, but the CPU clock frequency in the slave must be at least 16 times higher than the SCL frequency.
Note that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock period. The SCL frequency is
generated according to the following equation:

● TWBR = value of the TWI bit rate register.

● Prescaler value = value of the prescaler, see Table 19-2 on page 184.

Note: TWBR should be 10 or higher if the TWI operates in master mode. If TWBR is lower than 10, the master may
produce an incorrect output on SDA and SCL for the reminder of the byte. The problem occurs when operating
the TWI in master mode, sending start + SLA + R/W to a slave (a slave does not need to be connected to the
bus for the condition to happen).

19.5.3 Bus Interface Unit

This unit contains the data and address shift register (TWDR), a START/STOP controller and arbitration detection hardware.
The TWDR contains the address or data bytes to be transmitted, or the address or data bytes received. In addition to the
8-bit TWDR, the bus interface unit also contains a register containing the (N)ACK bit to be transmitted or received. This
(N)ACK register is not directly accessible by the application software. However, when receiving, it can be set or cleared by
manipulating the TWI control register (TWCR). When in transmitter mode, the value of the received (N)ACK bit can be
determined by the value in the TWSR.

The START/STOP controller is responsible for generation and detection of START, REPEATED START, and STOP
conditions. The START/STOP controller is able to detect START and STOP conditions even when the AVR MCU is in one of
the sleep modes, enabling the MCU to wake up if addressed by a master.

If the TWI has initiated a transmission as master, the arbitration detection hardware continuously monitors the transmission
trying to determine if arbitration is in process. If the TWI has lost an arbitration, the control unit is informed. Correct action
can then be taken and appropriate status codes generated.

19.5.4 Address Match Unit

The address match unit checks if received address bytes match the seven-bit address in the TWI address register (TWAR).
If the TWI general call recognition enable (TWGCE) bit in the TWAR is written to one, all incoming address bits will also be
compared against the general call address. Upon an address match, the control unit is informed, allowing correct action to
be taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR. The address match unit is
able to compare addresses even when the AVR® MCU is in sleep mode, enabling the MCU to wake up if addressed by a
master. If another interrupt (e.g., INT0) occurs during TWI power-down address match and wakes up the CPU, the TWI
aborts operation and return to it’s idle state. If this cause any problems, ensure that TWI address match is the only enabled
interrupt when entering power-down.

19.5.5 Control Unit

The control unit monitors the TWI bus and generates responses corresponding to settings in the TWI control register
(TWCR). When an event requiring the attention of the application occurs on the TWI bus, the TWI interrupt flag (TWINT) is
asserted. In the next clock cycle, the TWI status register (TWSR) is updated with a status code identifying the event. The
TWSR only contains relevant status information when the TWI interrupt flag is asserted. At all other times, the TWSR
contains a special status code indicating that no relevant status information is available. As long as the TWINT flag is set, the
SCL line is held low. This allows the application software to complete its tasks before allowing the TWI transmission to
continue.

SCL frequency
CPU Clock frequency

16 2(TWBR) PrescalerValue +
--=
181ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

To initiate the slave receiver mode, TWAR and TWCR must be initialized as follows:

The upper 7 bits are the address to which the 2-wire serial interface will respond when addressed by a master. If the LSB is
set, the TWI will respond to the general call address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledgement of
the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the general
call address if enabled) followed by the data direction bit. If the direction bit is “0” (write), the TWI will operate in SR mode,
otherwise ST mode is entered. After its own slave address and the write bit have been received, the TWINT flag is set and a
valid status code can be read from TWSR. The status code is used to determine the appropriate software action. The
appropriate action to be taken for each status code is detailed in Table 19-6 on page 196. The slave receiver mode may also
be entered if arbitration is lost while the TWI is in the master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA after the next received data
byte. This can be used to indicate that the slave is not able to receive any more bytes. While TWEA is zero, the TWI does not
acknowledge its own slave address. However, the 2-wire serial bus is still monitored and address recognition may resume at
any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire serial
bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the interface can
still acknowledge its own slave address or the general call address by using the 2-wire serial bus clock as a clock source.
The part will then wake up from sleep and the TWI will hold the SCL clock low during the wake up and until the TWINT flag is
cleared (by writing it to one). Further data reception will be carried out as normal, with the AVR clocks running as normal.
Observe that if the AVR® is set up with a long start-up time, the SCL line may be held low for a long time, blocking other data
transmissions.

Note that the 2-wire serial interface data register – TWDR does not reflect the last byte present on the bus when waking up
from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X
195ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

21.6 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC result registers (ADCL,
ADCH).

For single ended conversion, the result is:

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see Table 21-2 and
Table 21-3 on page 218). 0x000 represents analog ground, and 0x3FF represents the selected reference voltage minus one
LSB.

21.6.1 ADC Multiplexer Selection Register – ADMUX

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 21-2. If these bits are changed during a conversion,
the change will not go in effect until this conversion is complete (ADIF in ADCSRA is set). The internal voltage reference
options may not be used if an external reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC data register. Write one to ADLAR to left
adjust the result. Otherwise, the result is right adjusted. Changing the ADLAR bit will affect the ADC data register
immediately, regardless of any ongoing conversions. For a complete description of this bit, see Section 21.6.3 “The ADC
Data Register – ADCL and ADCH” on page 219.

• Bit 4 – Res: Reserved Bit

This bit is an unused bit in the Atmel® ATmega48/88/168, and will always read as zero.

• Bits 3:0 – MUX3:0: Analog Channel Selection Bits

The value of these bits selects which analog inputs are connected to the ADC. See Table 21-3 on page 218 for details. If
these bits are changed during a conversion, the change will not go in effect until this conversion is complete (ADIF in
ADCSRA is set).

ADC
VIN 1024

VREF
-------------------------=

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 21-2. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin
217ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 24-1. Read-While-Write versus No Read-While-Write

Figure 24-2. Memory Sections

Note: 1. The parameters in the figure above are given in Table 24-6 on page 240.

Z-pointer
Addresses RWW
Section

Code located in
NRWW Section
can be Read During
the Operation

Z-pointer
Addresses NRWW
Section

CPU is Halted During
the Operation

Read While Write
(RWW) Section

No Read While Write
(NRWW) Section

Program Memory
BOOTSZ = ’11’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW
Start NRWW

End Application
Start Boot Loader

Program Memory
BOOTSZ = ’10’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW
Start NRWW

End Application
Start Boot Loader

Program Memory
BOOTSZ = ’01’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW
Start NRWW

End Application
Start Boot Loader

Program Memory
BOOTSZ = ’00’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW, End
Application
Start NRWW,
Start Boot Loader

Application Flash Section

Application Flash Section

Boot Loader Flash Section Boot Loader Flash Section

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Application Flash Section
231ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

24.5 “Entering the Boot Loader Program

Entering the boot loader takes place by a jump or call from the application program. This may be initiated by a trigger such
as a command received via USART, or SPI interface. Alternatively, the boot reset fuse can be programmed so that the reset
vector is pointing to the boot flash start address after a reset. In this case, the boot loader is started after a reset. After the
application code is loaded, the program can start executing the application code. Note that the fuses cannot be changed by
the MCU itself. This means that once the boot reset fuse is programmed, the reset vector will always point to the boot loader
reset and the fuse can only be changed through the serial or parallel programming interface.

24.5.1 Store Program Memory Control and Status Register – SPMCSR

The store program memory control and status register contains the control bits needed to control the boot loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the status register is set (one), the SPM ready interrupt will be enabled.
The SPM ready interrupt will be executed as long as the SELFPRGEN bit in the SPMCSR register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a self-programming (page erase or page write) operation to the RWW section is initiated, the RWWSB will be set
(one) by hardware. When the RWWSB bit is set, the RWW section cannot be accessed. The RWWSB bit will be cleared if
the RWWSRE bit is written to one after a self-programming operation is completed. Alternatively the RWWSB bit will
automatically be cleared if a page load operation is initiated.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the Atmel® ATmega48/88/168 and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (page erase or page write) to the RWW section, the RWW section is blocked for reading (the RWWSB
will be set by hardware). To re-enable the RWW section, the user software must wait until the programming is completed
(SELFPRGEN will be cleared). Then, if the RWWSRE bit is written to one at the same time as SELFPRGEN, the next SPM
instruction within four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while the flash is
busy with a page erase or a page write (SELFPRGEN is set). If the RWWSRE bit is written while the flash is being loaded,
the flash load operation will abort and the data loaded will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four clock cycles sets boot lock
bits and memory lock bits, according to the data in R0. The data in R1 and the address in the Z-pointer are ignored. The
BLBSET bit will automatically be cleared upon completion of the lock bit set, or if no SPM instruction is executed within four
clock cycles.

An LPM instruction within three cycles after BLBSET and SELFPRGEN are set in the SPMCSR register, will read either the
lock bits or the fuse bits (depending on Z0 in the Z-pointer) into the destination register. See Section 24.7.9 “Reading the
Fuse and Lock Bits from Software” on page 237 for details.

Table 24-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset vector = application reset (address 0x0000)

0 Reset vector = boot loader reset (see Table 24-6 on page 240)

Note: 1. “1” means unprogrammed, “0” means programmed

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
233ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Power supply current(6)

Active 4MHz, VCC = 3V
(ATmega48/88/168L)

ICC

1.8 3.0 mA

Active 8MHz, VCC = 5V
(ATmega48/88/168)

6.0 10 mA

Active 15MHz, VCC = 5V
(ATmega48/88/168)

10.0 16 mA

Idle 4MHz, VCC = 3V
(ATmega48/88/168V)

0.4 1 mA

Idle 8MHz, VCC = 5V
(ATmega48/88/168L)

1.4 2.4 mA

Idle 15MHz, VCC = 5V
(ATmega48/88/168)

2.8 4 mA

Power-down mode

WDT enabled, VCC = 3V 8 30 µA

WDT enabled, VCC = 5V 12.6 50 µA

WDT disabled, VCC = 3V 5 24 µA

WDT disabled, VCC = 5V 6.6 36 µA

Analog comparator
input offset voltage

VCC = 5V Vin = VCC/2 VACIO 10 40 mV

Analog comparator
input leakage current

VCC = 5V Vin = VCC/2 IACLK –50 50 nA

Analog comparator
propagation delay

VCC = 4.5V tACID 140 ns

26.2 DC Characteristics (Continued)
TA = –40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min.(5) Typ. Max.(5) Unit

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
Atmel ATmega48:
1] The sum of all IOL, for ports C0 - C5, should not exceed 70mA.
2] The sum of all IOL, for ports C6, D0 - D4, should not exceed 70mA.
3] The sum of all IOL, for ports B0 - B7, D5 - D7, should not exceed 70mA.
ATmega88/168:
1] The sum of all IOL, for ports C0 - C5, should not exceed 100mA.
2] The sum of all IOL, for ports C6, D0 - D4, should not exceed 100mA.
3] The sum of all IOL, for ports B0 - B7, D5 - D7, should not exceed 100mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
ATmega48:
1] The sum of all IOH, for ports C0 - C5, should not exceed 70mA.
2] The sum of all IOH, for ports C6, D0 - D4, should not exceed 70mA.
3] The sum of all IOH, for ports B0 - B7, D5 - D7, should not exceed 70mA.
ATmega88/168:
1] The sum of all IOH, for ports C0 - C5, should not exceed 100mA.
2] The sum of all IOH, for ports C6, D0 - D4, should not exceed 100mA.
3] The sum of all IOH, for ports B0 - B7, D5 - D7, should not exceed 100mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. All DC characteristics contained in this datasheet are based on actual ATmega88 microcontrollers characterization.

6. Values with Section 7.7.1 “Power Reduction Register - PRR” on page 35 enabled (0xEF).
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

262

26.3 External Clock Drive Waveforms

Figure 26-1. External Clock Drive Waveforms

26.4 External Clock Drive

26.5 Maximum Speed versus VCC

Maximum frequency is dependent on VCC. As shown in Figure 26-2, the maximum frequency versus VCC curve is linear
between 2.7V < VCC < 4.5V.

Figure 26-2. Maximum Frequency versus VCC, ATmega48/88/168

tCHCX

VIH1

VIL1

tCHCX
tCLCH tCHCL

tCLCX

tCLCL

Table 26-1. External Clock Drive

Parameter Symbol

VCC=2.7 to 5.5V VCC=4.5 to 5.5V

UnitMin. Max. Min. Max.

Oscillator frequency 1/tCLCL 0 8 0 16 MHz

Clock period tCLCL 125 62.5 ns

High time tCHCX 50 25 ns

Low time tCLCX 50 25 ns

Rise time tCLCH 1.6 0.5 µs

Fall time tCHCL 1.6 0.5 µs

Change in period from one clock
cycle to the next

DtCLCL 2 2 %

Safe Operating Area

2.7V

4MHz

16MHz

5.5V4.5V

8MHz
263ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 27-3. SPI Interface Timing Requirements (Slave Mode)

27.2 ADC Characteristics

9

MSB

SS

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(Data Input)

MISO
(Data Output)

MSB LSB X

LSB...

...

13 14

1715

10 16

11 11

12

Table 27-3. ADC Characteristics

Parameter Condition Symbol Min Typ Max Unit

Resolution 10 Bits

Absolute accuracy (including
INL, DNL, quantization error,
gain and offset error)

VREF = 4V, VCC = 4V,
ADC clock = 200kHz

2 3.5 LSB

VREF = 4V, VCC = 4V,
ADC clock = 200kHz
noise reduction mode

2 3.5 LSB

Integral non-linearity (INL)
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

0.6 2.5 LSB

Differential non-linearity (DNL)
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

0.30 1.0 LSB

Gain error
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

–3.5 –1.3 3.5 LSB

Offset error
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

1.8 3.5 LSB

Conversion time Free running conversion 13 cycles µs

Clock frequency 50 200 kHz

Analog supply voltage AVCC VCC – 0.3 VCC + 0.3 V

Reference voltage VREF 1.0 AVCC V

Input voltage VIN GND VREF V

Input bandwidth 38.5 kHz

Internal voltage reference VINT 1.0 1.1 1.2 V

Reference input resistance RREF 25.6 32 38.4 k

Analog input resistance RAIN 100 M
269ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 28-9. Output High Voltage versus Output High Current (VCC = 3V)

Figure 28-10. Reset Pull-up Resistor Current versus Reset Pin Voltage (VCC = 5V)

0 42 6 8 10 12 14 16 18 20

IOH (mA)

2.5

2

1.5

1

0.5

3

3.5

0

C
ur

re
nt

 (V
)

125°C
85°C
25°C

-40°C

0 21 3 4 5 6
VOP (V)

100

80

60

40

20

160

140

120

0

I O
P

(µ
A

)

125

-40
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

274

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART I/O data register 161

(0xC5) UBRR0H – – – – USART baud rate register high 164

(0xC4) UBRR0L USART Baud Rate Register Low 164

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0
UCSZ01

/UDORD0
UCSZ00 /
UCPHA0

UCPOL0 163/173

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 162

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 161

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 – 185

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 182

(0xBB) TWDR 2-wire serial interface data register 184

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 184

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 183

29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

5. Only valid for Atmel® ATmega88/168
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

286

CPI Rd, K Compare register with immediate Rd K Z,N,V,C,H 1

SBRC Rr, b Skip if bit in register cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if bit in register is set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3

SBIC P, b Skip if bit in I/O register cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3

SBIS P, b Skip if bit in I/O register is set if (P(b)=1) PC PC + 2 or 3 None 1/2/3

BRBS s, k Branch if status flag set
if (SREG(s) = 1) then PC
PC + k + 1

None 1/2

BRBC s, k Branch if status flag cleared
if (SREG(s) = 0) then PC
PC + k + 1

None 1/2

BREQ k Branch if equal if (Z = 1) then PC PC + k + 1 None 1/2

BRNE k Branch if not equal if (Z = 0) then PC PC + k + 1 None 1/2

BRCS k Branch if carry set if (C = 1) then PC PC + k + 1 None 1/2

BRCC k Branch if carry cleared if (C = 0) then PC PC + k + 1 None 1/2

BRSH k Branch if same or higher if (C = 0) then PC PC + k + 1 None 1/2

BRLO k Branch if lower if (C = 1) then PC PC + k + 1 None 1/2

BRMI k Branch if minus if (N = 1) then PC PC + k + 1 None 1/2

BRPL k Branch if plus if (N = 0) then PC PC + k + 1 None 1/2

BRGE k Branch if greater or equal, signed
if (N V= 0) then PC
PC + k + 1

None 1/2

BRLT k Branch if less than zero, signed
if (N V= 1) then PC
PC + k + 1

None 1/2

BRHS k Branch if half carry flag set if (H = 1) then PC PC + k + 1 None 1/2

BRHC k Branch if half carry flag cleared if (H = 0) then PC PC + k + 1 None 1/2

BRTS k Branch if T flag set if (T = 1) then PC PC + k + 1 None 1/2

BRTC k Branch if T flag cleared if (T = 0) then PC PC + k + 1 None 1/2

BRVS k Branch if overflow flag is set if (V = 1) then PC PC + k + 1 None 1/2

BRVC k Branch if overflow flag is cleared if (V = 0) then PC PC + k + 1 None 1/2

BRIE k Branch if interrupt enabled if (I = 1) then PC PC + k + 1 None 1/2

BRID k Branch if interrupt disabled if (I = 0) then PC PC + k + 1 None 1/2

Bit and Bit-test Instructions

SBI P, b Set bit in I/O register I/O(P,b) 1 None 2

CBI P, b Clear Bit in I/O register I/O(P,b) 0 None 2

LSL Rd Logical shift left Rd(n+1) Rd(n), Rd(0) 0 Z,C,N,V 1

LSR Rd Logical shift right Rd(n) Rd(n+1), Rd(7) 0 Z,C,N,V 1

ROL Rd Rotate left through carry
Rd(0) C,Rd(n+1) Rd(n),
C Rd(7)

Z,C,N,V 1

ROR Rd Rotate right through carry
Rd(7) C,Rd(n) Rd(n+1),
C Rd(0)

Z,C,N,V 1

ASR Rd Arithmetic shift right Rd(n) Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap nibbles
Rd(3..0) Rd(7..4),
Rd(7..4) Rd(3..0)

None 1

BSET s Flag set SREG(s) 1 SREG(s) 1

BCLR s Flag clear SREG(s) 0 SREG(s) 1

30. Instruction Set Summary (Continued)

Mnemonics Operands Description Operation Flags #Clocks

Note: 1. These instructions are only available in Atmel® ATmega168.
293ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

8. Minimizing Power Consumption. 36
8.1 System Control and Reset . 38
8.2 Resetting the AVR . 38
8.3 Reset Sources . 38
8.4 Power-on Reset . 39
8.5 External Reset . 41
8.6 Brown-out Detection . 41
8.7 Watchdog System Reset . 42
8.8 MCU Status Register – MCUSR . 43
8.9 Internal Voltage Reference . 43
8.10 Watchdog Timer . 44

9. Interrupts . 48
9.1 Interrupt Vectors in ATmega48 . 48
9.2 Interrupt Vectors in ATmega88 . 49
9.3 Interrupt Vectors in ATmega168 . 52

10. I/O-Ports . 57
10.1 Introduction . 57
10.2 Ports as General Digital I/O . 58
10.3 Alternate Port Functions . 62
10.4 Register Description for I/O Ports . 71

11. External Interrupts . 73
11.1 External Interrupt Control Register A – EICRA . 73
11.2 External Interrupt Mask Register – EIMSK . 74
11.3 External Interrupt Flag Register – EIFR. 74
11.4 Pin Change Interrupt Control Register - PCICR . 75
11.5 Pin Change Interrupt Flag Register - PCIFR . 75
11.6 Pin Change Mask Register 2 – PCMSK2 . 76
11.7 Pin Change Mask Register 1 – PCMSK1 . 76
11.8 Pin Change Mask Register 0 – PCMSK0 . 76

12. 8-bit Timer/Counter0 with PWM . 77
12.1 Overview . 77
12.2 Timer/Counter Clock Sources . 78
12.3 Counter Unit. 78
12.4 Output Compare Unit . 79
12.5 Compare Match Output Unit . 80
12.6 Modes of Operation . 81
12.7 Timer/Counter Timing Diagrams . 85
12.8 8-bit Timer/Counter Register Description . 87

13. Timer/Counter0 and Timer/Counter1 Prescalers . 92
13.1 Internal Clock Source. 92
13.2 Prescaler Reset . 92
13.3 External Clock Source . 92

14. 16-bit Timer/Counter1 with PWM . 94
14.1 Overview . 94
14.2 Accessing 16-bit Registers . 96
14.3 Timer/Counter Clock Sources . 99
14.4 Counter Unit . 100
14.5 Input Capture Unit . 101
14.6 Output Compare Units . 102
14.7 Compare Match Output Unit . 104
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

304

