
Microchip Technology - ATMEGA88-15AZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega88-15az

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega88-15az-4433642
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

4.4 Status Register

The status register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the status register is
updated after all ALU operations, as specified in the instruction set reference. This will in many cases remove the need for
using the dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine and restored when returning from an
interrupt. This must be handled by software.

The AVR® status register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then
performed in separate control registers. If the global interrupt enable register is cleared, none of the interrupts are enabled
independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is
set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the
SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit
from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a
register in the register file by the BLD instruction.

• Bit 5 – H: Half Carry Flag

The half carry flag H indicates a half carry in some arithmetic operations. half carry Is useful in BCD arithmetic. See the
“Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N V

The S-bit is always an exclusive or between the negative flag N and the two’s complement overflow flag V. See the
“Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The two’s complement overflow flag V supports two’s complement arithmetics. See the “Instruction Set Description” for
detailed information.

• Bit 2 – N: Negative Flag

The negative flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

• Bit 1 – Z: Zero Flag

The zero flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

• Bit 0 – C: Carry Flag

The carry flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

10

6.8 External Clock

The device can utilize a external clock source as shown in Figure 6-4. To run the device on an external clock, the CKSEL
fuses must be programmed as shown in Table 6-12.

Figure 6-4. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT fuses as shown in Table 6-13.

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure stable
operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to unpredictable
behavior. If changes of more than 2% is required, ensure that the MCU is kept in reset during the changes.

Note that the system clock prescaler can be used to implement run-time changes of the internal clock frequency while still
ensuring stable operation. Refer to Section 6.11 “System Clock Prescaler” on page 31 for details.

6.9 Clock Output Buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT fuse has to be programmed.
This mode is suitable when the chip clock is used to drive other circuits on the system. The clock also will be output during
reset, and the normal operation of I/O pin will be overridden when the fuse is programmed. Any clock source, including the
internal RC oscillator, can be selected when the clock is output on CLKO. If the system clock prescaler is used, it is the
divided system clock that is output.

Table 6-12. Full Swing Crystal Oscillator operating modes(2)

Frequency Range(1) (MHz) CKSEL3..0 Recommended Range for Capacitors C1 and C2 (pF)

0 - 100 0000 12 - 22

Notes: 1. The frequency ranges are preliminary values. Actual values are TBD.

2. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8 fuse can be
programmed in order to divide the internal frequency by 8. It must be ensured that the resulting divided clock
meets the frequency specification of the device.

Table 6-13. Start-up Times for the External Clock Selection

Power Conditions
Start-up Time from Power-down and

Power-save Additional Delay from Reset (VCC = 5.0V) SUT1..0

BOD enabled 6CK 14CK 00

Fast rising power 6CK 14CK + 4.1ms 01

Slowly rising power 6CK 14CK + 65ms 10

Reserved 11

XTAL2

XTAL1

GND

NC

EXTERNAL
CLOCK
SIGNAL
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

30

The CKDIV8 fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, the CLKPS bits will be reset to
“0000”. If CKDIV8 is programmed, CLKPS bits are reset to “0011”, giving a division factor of 8 at start up. This feature should
be used if the selected clock source has a higher frequency than the maximum frequency of the device at the present
operating conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8 fuse setting. The
application software must ensure that a sufficient division factor is chosen if the selected clock source has a higher
frequency than the maximum frequency of the device at the present operating conditions. The device is shipped with the
CKDIV8 fuse programmed.

Table 6-14. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

32

The most typical and general program setup for the reset and interrupt vector addresses in Atmel® ATmega88 is:
Address Labels Code Comments
0x000 rjmp RESET ; Reset Handler
0x001 rjmp EXT_INT0 ; IRQ0 Handler
0x002 rjmp EXT_INT1 ; IRQ1 Handler
0x003 rjmp PCINT0 ; PCINT0 Handler
0x004 rjmp PCINT1 ; PCINT1 Handler
0x005 rjmp PCINT2 ; PCINT2 Handler
0x006 rjmp WDT ; Watchdog Timer Handler
0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler
0X008 rjmp TIM2_COMPB ; Timer2 Compare B Handler
0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler
0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler
0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler
0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler
0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler
0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler
0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler
0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler
0x011 rjmp SPI_STC ; SPI Transfer Complete Handler
0x012 rjmp USART_RXC ; USART, RX Complete Handler
0x013 rjmp USART_UDRE ; USART, UDR Empty Handler
0x014 rjmp USART_TXC ; USART, TX Complete Handler
0x015 rjmp ADC ; ADC Conversion Complete Handler
0x016 rjmp EE_RDY ; EEPROM Ready Handler
0x017 rjmp ANA_COMP ; Analog Comparator Handler
0x018 rjmp TWI ; 2-wire Serial Interface Handler
0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler
;
0x01A RESET: ldi r16, high(RAMEND); Main program start
0x01B out SPH,r16 ; Set Stack Pointer to top of RAM
0x01C ldi r16, low(RAMEND)
0x01D out SPL,r16
0x01E sei ; Enable interrupts
0x01F <instr> xxx

When the BOOTRST fuse is unprogrammed, the boot section size set to 2K bytes and the IVSEL bit in the MCUCR register
is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector
addresses in Atmel ATmega88 is:

Address Labels Code Comments
0x000 RESET: ldi r16,high(RAMEND); Main program start
0x001 out SPH,r16 ; Set Stack Pointer to top of RAM
0x002 ldi r16,low(RAMEND)
0x003 out SPL,r16
0x004 sei ; Enable interrupts
0x005 <instr> xxx
;
.org 0xC01
0xC01 rjmp EXT_INT0 ; IRQ0 Handler
0xC02 rjmp EXT_INT1 ; IRQ1 Handler
... ;
0xC19 rjmp SPM_RDY ; Store Program Memory Ready Handler
51ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

When the BOOTRST fuse is programmed and the boot section size set to 2Kbytes, the most typical and general program
setup for the reset and interrupt vector addresses in Atmel® ATmega168 is:

Address Labels Code Comments
.org 0x0002
0x0002 jmp EXT_INT0 ; IRQ0 Handler
0x0004 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler
;
.org 0x1C00
0x1C00 RESET: ldi r16,high(RAMEND); Main program start
0x1C01 out SPH,r16 ; Set Stack Pointer to top of RAM
0x1C02 ldi r16,low(RAMEND)
0x1C03 out SPL,r16
0x1C04 sei ; Enable interrupts
0x1C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL bit in the MCUCR Register
is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATmega168 is:

Address Labels Code Comments
;
.org 0x1C00
0x1C00 jmp RESET ; Reset handler
0x1C02 jmp EXT_INT0 ; IRQ0 Handler
0x1C04 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler
;
0x1C33 RESET: ldi r16,high(RAMEND); Main program start
0x1C34 out SPH,r16 ; Set Stack Pointer to top of RAM
0x1C35 ldi r16,low(RAMEND)
0x1C36 out SPL,r16
0x1C37 sei ; Enable interrupts
0x1C38 <instr> xxx

9.3.1 Moving Interrupts Between Application and Boot Space, ATmega88 and ATmega168

The MCU control register controls the placement of the interrupt vector table.

9.3.2 MCU Control Register – MCUCR

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the interrupt vectors are placed at the start of the flash memory. When this bit is set
(one), the interrupt vectors are moved to the beginning of the boot loader section of the flash. The actual address of the start
of the boot flash section is determined by the BOOTSZ fuses. Refer to the Section 24. “Boot Loader Support – Read-While-
Write Self-Programming, ATmega88 and ATmega168” on page 229 for details. To avoid unintentional changes of interrupt
vector tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the interrupt vector change enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Bit 7 6 5 4 3 2 1 0

– – – PUD – – IVSEL IVCE MCUCR

Read/Write R R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
55ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 12-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the output compare (OC0x) from the waveform generator if either of the
COM0x1:0 bits are set. However, the OC0x pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x
value is visible on the pin. The port override function is independent of the waveform generation mode.

The design of the output compare pin logic allows initialization of the OC0x state before the output is enabled. Note that
some COM0x1:0 bit settings are reserved for certain modes of operation. See Section 12.8 “8-bit Timer/Counter Register
Description” on page 87

12.5.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM0x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM0x1:0 = 0 tells the waveform generator that no action on the OC0x register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 12-2 on page 87. For fast PWM mode, refer to
Table 12-3 on page 87, and for phase correct PWM refer to Table 12-4 on page 87.

A change of the COM0x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC0x strobe bits.

12.6 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGM02:0) and compare output mode (COM0x1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COM0x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM0x1:0 bits
control whether the output should be set, cleared, or toggled at a compare match (see Section 12.5 “Compare Match Output
Unit” on page 80).

For detailed timing information refer to Section 12.7 “Timer/Counter Timing Diagrams” on page 85.

D
AT

A
B

U
S

0

1

QD

COMnx1

COMnx0

FOCn

OCnx

Waveform
Generator

QD

PORT

QD

DDR

OCnx
Pin

clkI/O
81ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Bits 5:4 – COM0B1:0: Compare Match Output B Mode

These bits control the output compare pin (OC0B) behavior. If one or both of the COM0B1:0 bits are set, the OC0B output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OC0B pin must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the WGM02:0 bit setting.
Table 12-5 on page 88 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to a normal or CTC mode
(non-PWM).

Table 12-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM mode.

Table 12-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega48/88/168 and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 12-8. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and
two types of pulse width modulation (PWM) modes (see Section 12.6 “Modes of Operation” on page 81).

Table 12-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on compare match

1 0 Clear OC0B on compare match

1 1 Set OC0B on compare match

Table 12-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on compare match, set OC0B at TOP

1 1 Set OC0B on compare match, clear OC0B at TOP

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.3 “Fast PWM Mode” on page 83 for more
details.

Table 12-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on compare match when up-counting. Set OC0B on compare match when
down-counting.

1 1
Set OC0B on compare match when up-counting. Clear OC0B on compare match when
down-counting.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.4 “Phase Correct PWM Mode” on page 84 for
more details.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

88

14. 16-bit Timer/Counter1 with PWM

The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation, and signal
timing measurement. The main features are:

● True 16-bit Design (i.e., allows 16-bit PWM)

● Two independent output compare units

● Double buffered output compare registers

● One input capture unit

● Input capture noise canceler

● Clear timer on compare match (auto reload)

● Glitch-free, phase correct pulse width modulator (PWM)

● Variable PWM period

● Frequency generator

● External event counter

● Four independent interrupt sources (TOV1, OCF1A, OCF1B, and ICF1)

14.1 Overview

Most register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter
number, and a lower case “x” replaces the output compare unit channel. However, when using the register or bit defines in a
program, the precise form must be used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 14-1 on page 95. For the actual placement of
I/O pins, refer to Section 1-1 “Pinout ATmega48/88/168” on page 3. CPU accessible I/O registers, including I/O bits and I/O
pins, are shown in bold. The device-specific I/O register and bit locations are listed in the
Section 14.10 “16-bit Timer/Counter Register Description” on page 113.

The PRTIM1 bit in Section 7.7.1 “Power Reduction Register - PRR” on page 35 must be written to zero to enable
Timer/Counter1 module.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

94

The following code examples show how to do an atomic write of the TCNT1 register contents. Writing any of the OCR1A/B
or ICR1 registers can be done by using the same principle.

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNT1.

14.2.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only
needs to be written once. However, note that the same rule of atomic operation described previously also applies in this
case.

14.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the clock
select logic which is controlled by the clock select (CS12:0) bits located in the Timer/Counter control register B (TCCR1B).
For details on clock sources and prescaler, see Section 13. “Timer/Counter0 and Timer/Counter1 Prescalers” on page 92.

Assembly Code Example(1)

TIM16_WriteTCNT1:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Set TCNT1 to r17:r16
out TCNT1H,r17
out TCNT1L,r16
; Restore global interrupt flag
out SREG,r18
ret

C Code Example(1)

void TIM16_WriteTCNT1(unsigned int i)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Set TCNT1 to i */
TCNT1 = i;
/* Restore global interrupt flag */
SREG = sreg;

}

99ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the
COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7
(See Table 15-4 on page 129). The actual OC2x value will only be visible on the port pin if the data direction for the port pin
is set as output. The PWM waveform is generated by clearing (or setting) the OC2x register at the compare match between
OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x register at compare match between
OCR2x and TCNT2 when the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A register represent special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCR2A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values.

At the very start of period 2 in Figure 15-7 on page 126 OCnx has a transition from high to low even though there is no
compare match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a
transition without compare match.

● OCR2A changes its value from MAX, like in Figure 15-7 on page 126. When the OCR2A value is MAX the OCn pin
value is the same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCn
value at MAX must correspond to the result of an up-counting compare match.

● The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the compare match
and hence the OCn change that would have happened on the way up.

15.7 Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2) is therefore shown as a clock
enable signal. In asynchronous mode, clkI/O should be replaced by the Timer/Counter oscillator clock. The figures include
information on when interrupt flags are set. Figure 15-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 15-8. Timer/Counter Timing Diagram, no Prescaling

fOCnxPCPWM

fclk_I/O

N 510
-----------------=

MAX - 1

clkI/O

(clkI/O/1)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1
127ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

17.2 Clock Generation

The clock generation logic generates the base clock for the transmitter and receiver. The USART supports four modes of
clock operation: normal asynchronous, double speed asynchronous, master synchronous and slave synchronous mode.
The UMSELn bit in USART control and status register C (UCSRnC) selects between asynchronous and synchronous
operation. Double speed (asynchronous mode only) is controlled by the U2Xn found in the UCSRnA register. When using
synchronous mode (UMSELn = 1), the data direction register for the XCKn pin (DDR_XCKn) controls whether the clock
source is internal (master mode) or external (slave mode). The XCKn pin is only active when using synchronous mode.

Figure 17-2 shows a block diagram of the clock generation logic.

Figure 17-2. Clock Generation Logic, Block Diagram

Signal description:
txclk Transmitter clock (internal signal).

rxclk Receiver base clock (internal signal).

xcki Input from XCK pin (internal signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (internal signal). Used for synchronous master operation.

fosc XTAL pin frequency (system clock).

17.2.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of operation. The description in
this section refers to Figure 17-2.

The USART baud rate register (UBRRn) and the down-counter connected to it function as a programmable prescaler or
baud rate generator. The down-counter, running at system clock (fosc), is loaded with the UBRRn value each time the
counter has counted down to zero or when the UBRRnL register is written. A clock is generated each time the counter
reaches zero. This clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The transmitter divides the baud rate
generator clock output by 2, 8 or 16 depending on mode. The baud rate generator output is used directly by the receiver’s
clock and data recovery units. However, the recovery units use a state machine that uses 2, 8 or 16 states depending on
mode set by the state of the UMSELn, U2Xn and DDR_XCKn bits.

Sync
Register

Edge
Detector

Prescaling
Down-Counter /2

XCKn
Pin

/4
0

0
1

1

0
1

0
1

/2

UBRRn

DDR_XCKn UCPOLn

U2Xn

DDR_XCKn

UBRRn+1

txclk

rxclk

UMSELn

fosc

OSC

xcki
xcko
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

148

17.6.3 Receive Compete Flag and Interrupt

The USART receiver has one flag that indicates the receiver state.

The receive complete (RXCn) flag indicates if there are unread data present in the receive buffer. This flag is one when
unread data exist in the receive buffer, and zero when the receive buffer is empty (i.e., does not contain any unread data). If
the receiver is disabled (RXENn = 0), the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the receive complete interrupt enable (RXCIEn) in UCSRnB is set, the USART receive complete interrupt will be
executed as long as the RXCn flag is set (provided that global interrupts are enabled). When interrupt-driven data reception
is used, the receive complete routine must read the received data from UDRn in order to clear the RXCn flag, otherwise a
new interrupt will occur once the interrupt routine terminates.

17.6.4 Receiver Error Flags

The USART receiver has three error flags: frame error (FEn), data overrun (DORn) and parity arror (UPEn). All can be
accessed by reading UCSRnA. Common for the error flags is that they are located in the receive buffer together with the
frame for which they indicate the error status. Due to the buffering of the error flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location. Another equality for the error
flags is that they can not be altered by software doing a write to the flag location. However, all flags must be set to zero when
the UCSRnA is written for upward compatibility of future USART implementations. None of the error flags can generate
interrupts.

The frame error (FEn) flag indicates the state of the first stop bit of the next readable frame stored in the receive buffer. The
FEn flag is zero when the stop bit was correctly read (as one), and the FEn flag will be one when the stop bit was incorrect
(zero). This flag can be used for detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
flag is not affected by the setting of the USBSn bit in UCSRnC since the receiver ignores all, except for the first, stop bits. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA.

The data overrun (DORn) flag indicates data loss due to a receiver buffer full condition. A data overrun occurs when the
receive buffer is full (two characters), it is a new character waiting in the receive shift register, and a new start bit is detected.
If the DORn flag is set there was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRn. For compatibility with future devices, always write this bit to zero when writing to UCSRnA. The DORn flag
is cleared when the frame received was successfully moved from the shift register to the receive buffer.

The parity error (UPEn) flag indicates that the next frame in the receive buffer had a parity error when received. If parity
check is not enabled the UPEn bit will always be read zero. For compatibility with future devices, always set this bit to zero
when writing to UCSRnA. For more details see Section 17.3.1 “Parity Bit Calculation” on page 151 and Section 17.6.5 “Parity
Checker” on page 156.

17.6.5 Parity Checker

The parity checker is active when the high USART parity mode (UPMn1) bit is set. Type of parity check to be performed (odd
or even) is selected by the UPMn0 bit. When enabled, the parity checker calculates the parity of the data bits in incoming
frames and compares the result with the parity bit from the serial frame. The result of the check is stored in the receive buffer
together with the received data and stop bits. The parity error (UPEn) flag can then be read by software to check if the frame
had a parity error.

The UPEn bit is set if the next character that can be read from the receive buffer had a parity error when received and the
parity checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer (UDRn) is read.

17.6.6 Disabling the Receiver

In contrast to the transmitter, disabling of the receiver will be immediate. Data from ongoing receptions will therefore be lost.
When disabled (i.e., the RXENn is set to zero) the receiver will no longer override the normal function of the RxDn port pin.
The receiver buffer FIFO will be flushed when the receiver is disabled. Remaining data in the buffer will be lost.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

156

• Bit 3 – USBSn: Stop Bit Select

This bit selects the number of stop bits to be inserted by the transmitter. The receiver ignores this setting.

• Bit 2:1 – UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits (character size) in a frame the
receiver and transmitter use.

• Bit 0 – UCPOLn: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is used. The UCPOLn bit sets
the relationship between data output change and data input sample, and the synchronous clock (XCKn).

17.9.5 USART Baud Rate Registers – UBRRnL and UBRRnH

Table 17-6. USBS Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit

Table 17-7. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 17-8. UCPOLn Bit Settings

UCPOLn Transmitted Data Changed (Output of TxDn Pin) Received Data Sampled (Input on RxDn Pin)

0 Rising XCKn edge Falling XCKn edge

1 Falling XCKn edge Rising XCKn edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRRn[11:8] UBRRnH

UBRRn[7:0] UBRRnL

7 6 5 4 3 2 1 0

Read/Write
R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

164

Figure 19-19. Formats and States in the Slave Transmitter Mode

19.8.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table 19-8.

Status 0xF8 indicates that no relevant information is available because the TWINT flag is not set. This occurs between other
states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire serial bus transfer. A bus error occurs when a START or
STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are during the serial
transfer of an address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a
bus error, the TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the TWI to enter the
not addressed slave mode and to clear the TWSTO flag (no other bits in TWCR are affected). The SDA and SCL lines are
released, and no STOP condition is transmitted.

S
Reception of the own
slave address and one
or more data bytes

Last data byte transmitted.
Switched to not adressed
slave (TWEA = “0”

Arbitration lost as master
and addressed as slave

From master to slave Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus.
The prescaler bits are zero or masked to zero

From slave to master

SLA R A DATAA P or S

A

DATA

All 1’s

ADATA

$A8

$B0

$B8 $C0

$C8

A

P or SA

n

Table 19-8. Miscellaneous States

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0xF8 No relevant state
information available;
TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no
STOP condition is sent on the bus. In all
cases, the bus is released and TWSTO is
cleared.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

200

25.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient programming, the following
should be considered.

● The command needs only be loaded once when writing or reading multiple memory locations.

● Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the EESAVE fuse is programmed)
and flash after a chip erase.

● Address high byte needs only be loaded before programming or reading a new 256 word window in flash or 256 byte
EEPROM. This consideration also applies to signature bytes reading.

25.7.3 Chip Erase

The chip erase will erase the flash and EEPROM(1) memories plus lock bits. The lock bits are not reset until the program
memory has been completely erased. The fuse bits are not changed. A chip erase must be performed before the flash
and/or EEPROM are reprogrammed.

Note: 1. The EEPRPOM memory is preserved during chip erase if the EESAVE fuse is programmed.

Load command “chip erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for chip erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the chip erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

25.7.4 Programming the Flash

The flash is organized in pages, see Table 25-12 on page 247. When programming the flash, the program data is latched
into a page buffer. This allows one page of program data to be programmed simultaneously. The following procedure
describes how to program the entire flash memory:

A. Load command “write flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for write flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load address low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load data low byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load data high byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch data

1. Set BS1 to “1”. This selects high data byte.

2. Give pAGEL a positive pulse. This latches the data bytes. (See Figure 25-3 on page 250 for signal waveforms)
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

248

Figure 25-4. Programming the EEPROM Waveforms

25.7.6 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248 for
details on command and address loading):

1. A: Load command “0000 0010”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The flash word high byte can now be read at DATA.

6. Set OE to “1”.

25.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248
for details on command and address loading):

1. A: Load command “0000 0011”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM data byte can now be read at DATA.

5. Set OE to “1”.

25.7.8 Programming the Fuse Low Bits

The algorithm for programming the fuse low bits is as follows (refer to Section 25.7.4 “Programming the Flash” on page 248
for details on command and data loading):

1. A: Load command “0100 0000”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

0x11

A G

DATA

XA1

XA0

BS1

BS2

XTAL1

WR

PAGEL

RDY/BSY

OE

RESET +12V

B C

ADDR. LOW ADDR. LOW

B

DATA XX

C E

K

XXDATA

E L

ADDR. HIGH
251ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

28.1.2 Pin Pull-up

Figure 28-5. I/O Pin Pull-up Resistor Current versus Input Voltage (VCC = 5V)

Figure 28-6. Output Low Voltage versus Output Low Current (VCC = 5V)

0 21 3 4 5 6
VOP (V)

100

80

60

40

20

160

140

120

0

I O
P

(µ
A

)

125

-40

0 42 6 8 10 12 14 16 18 20
IOL (mA)

0.5

0.4

0.3

0.2

0.1

0.8

0.7

0.6

0

V O
L

(V
)

125°C

85°C

25°C

-40°C
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

272

Figure 28-9. Output High Voltage versus Output High Current (VCC = 3V)

Figure 28-10. Reset Pull-up Resistor Current versus Reset Pin Voltage (VCC = 5V)

0 42 6 8 10 12 14 16 18 20

IOH (mA)

2.5

2

1.5

1

0.5

3

3.5

0

C
ur

re
nt

 (V
)

125°C
85°C
25°C

-40°C

0 21 3 4 5 6
VOP (V)

100

80

60

40

20

160

140

120

0

I O
P

(µ
A

)

125

-40
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

274

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART I/O data register 161

(0xC5) UBRR0H – – – – USART baud rate register high 164

(0xC4) UBRR0L USART Baud Rate Register Low 164

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0
UCSZ01

/UDORD0
UCSZ00 /
UCPHA0

UCPOL0 163/173

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 162

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 161

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 – 185

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 182

(0xBB) TWDR 2-wire serial interface data register 184

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 184

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 183

29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

5. Only valid for Atmel® ATmega88/168
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

286

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2 133

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 117

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 91

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 76

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 76

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 76

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 73

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator calibration register 29

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC 35

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 31

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 46

0x3F (0x5F) SREG I T H S V N Z C 10

0x3E (0x5E) SPH – – – – – (SP10)(5) SP9 SP8 12

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE (RWWSB)(5) – (RWWSRE)(5) BLBSET PGWRT PGERS SELFPRGEN 233

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR – – – PUD – – IVSEL IVCE

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 33

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) Reserved – – – – – – – –

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 204

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR SPI Data Register 144

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 143

29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168
is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode
for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

5. Only valid for Atmel® ATmega88/168
289ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

