
Atmel - ATMEGA88-15MT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-QFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega88-15mt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega88-15mt-4396401
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

1. Pin Configurations

Figure 1-1. Pinout ATmega48/88/168

1.1 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR® microcontrollers
manufactured on the same process technology. Min and Max values will be available after the device is characterized.

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

GND

VCC

GND

VCC 6

7

8

5

4

3

2

1

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

19

18

17

20

21

22

23

24 PC1 (ADC1/PCINT9)

(P
C

IN
T2

1/
O

C
0B

/T
1)

 P
D

5

(P
C

IN
T0

/C
LK

O
/IC

P
1)

 P
D

5

(P
C

IN
T2

3/
A

IN
1)

 P
D

7

(P
C

IN
T1

/O
C

1A
) P

B
1

(P
C

IN
T2

/S
S

/O
C

1B
) P

B
2

(P
C

IN
T3

/O
C

2A
/M

O
S

I)
P

B
3

(P
C

IN
T4

/M
IS

O
) P

B
4

(P
C

IN
T2

2/
O

C
0A

/A
IN

0)
 P

D
6

PC0 (ADC0/PCINT8)

AVCC

PB5 (SCK/PCINT5)

ADC7

GND

AREF

ADC6

P
D

2
(IN

T0
/P

C
IN

T1
8)

P
D

1
(T

X
D

/P
C

IN
T1

7)

P
D

0
(R

X
D

/P
C

IN
T1

6)

P
C

6
(R

E
S

E
T/

P
C

IN
T1

4)

P
C

5
(A

D
C

5/
S

C
L/

P
C

IN
T1

3)

P
C

4
(A

D
C

4/
S

D
A

/P
C

IN
T1

2)

P
C

3
(A

D
C

3/
P

C
IN

T1
1)

P
C

2
(A

D
C

2/
P

C
IN

T1
0)

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

GND

VCC

GND

VCC

NOTE: Bottom pad should be soldered to ground.

6

7

8

5

4

3

2

1

32 31 30 29

MLF Top View

28 27 26 25

9 10 11 12 13 14 15 16

19

18

17

20

21

22

23

24 PC1 (ADC1/PCINT9)

(P
C

IN
T2

1/
O

C
0B

/T
1)

 P
D

5

(P
C

IN
T0

/C
LK

O
/IC

P
1)

 P
D

5

(P
C

IN
T2

3/
A

IN
1)

 P
D

7

(P
C

IN
T1

/O
C

1A
) P

B
1

(P
C

IN
T2

/S
S

/O
C

1B
) P

B
2

(P
C

IN
T3

/O
C

2A
/M

O
S

I)
P

B
3

(P
C

IN
T4

/M
IS

O
) P

B
4

(P
C

IN
T2

2/
O

C
0A

/A
IN

0)
 P

D
6

PC0 (ADC0/PCINT8)

AVCC

PB5 (SCK/PCINT5)

ADC7

GND

AREF

ADC6

P
D

2
(IN

T0
/P

C
IN

T1
8)

P
D

1
(T

X
D

/P
C

IN
T1

7)

P
D

0
(R

X
D

/P
C

IN
T1

6)

P
C

6
(R

E
S

E
T/

P
C

IN
T1

4)

P
C

5
(A

D
C

5/
S

C
L/

P
C

IN
T1

3)

P
C

4
(A

D
C

4/
S

D
A

/P
C

IN
T1

2)

P
C

3
(A

D
C

3/
P

C
IN

T1
1)

P
C

2
(A

D
C

2/
P

C
IN

T1
0)

TQFP Top View
3ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

2. Overview

The Atmel® ATmega48/88/168 is a low-power CMOS 8-bit microcontroller based on the AVR® enhanced RISC architecture.
By executing powerful instructions in a single clock cycle, the Atmel ATmega48/88/168 achieves throughputs approaching
1MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

Power
Supervision
POR/ BOD

and
RESET

Oscillator
Circuits/

Clock
Generation

Watchdog
Timer

Watchdog
Oscillator

Program
Logic

debugWIRE

AVR CPU

EEPROM

D
AT

A
B

U
S

Flash

GND VCC

A/D Conv.16 bit T/C 18 bit T/C 0

Internal
Bandgap

Analog
Comp.8 bit T/C 2

USART 0 SPI TWI

2

6

PORT D (8) PORT B (8) PORT C (7)

SRAM

AVCC

AREF

GND

RESET

XTAL[1 to 2]

PD[0 to 7] PB[0 to 7] PC[0 to 6] ADC[6 to 7]
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

4

8.7 MCU Status Register – MCUSR

The MCU status register provides information on which reset source caused an MCU reset.

• Bit 7..4: Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 3 – WDRF: Watchdog System Reset Flag

This bit is set if a watchdog system reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a brown-out reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an external reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a power-on reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the reset flags to identify a reset condition, the user should read and then reset the MCUSR as early as
possible in the program. If the register is cleared before another reset occurs, the source of the reset can be found by
examining the reset flags.

8.8 Internal Voltage Reference

Atmel ATmega48/88/168 features an internal bandgap reference. This reference is used for brown-out detection, and it can
be used as an input to the analog comparator or the ADC.

8.8.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The start-up time is given in
Table 8-4. To save power, the reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] fuses).

2. When the bandgap reference is connected to the analog comparator (by setting the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow the
reference to start up before the output from the analog comparator or ADC is used. To reduce power consumption in
power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off before entering
power-down mode.

Bit 7 6 5 4 3 2 1 0

– – – – WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

Table 8-4. Internal Voltage Reference Characteristics(1)

Parameter Condition Symbol Min Typ Max Unit

Bandgap reference voltage TBD VBG 1.0 1.1 1.2 V

Bandgap reference start-up time TBD tBG 40 70 µs

Bandgap reference current consumption TBD IBG 10 TBD µA

Note: 1. Values are guidelines only. Actual values are TBD.
43ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

10. I/O-Ports

10.1 Introduction

All AVR® ports have true read-modify-write functionality when used as general digital I/O ports. This means that the direction
of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI
instructions. The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors
(if configured as input). Each output buffer has symmetrical drive characteristics with both high sink and source capability.
The pin driver is strong enough to drive LED displays directly. All port pins have individually selectable pull-up resistors with
a supply-voltage invariant resistance. All I/O pins have protection diodes to both VCC and ground as indicated in Figure 10-1.
Refer to Section 26. “Electrical Characteristics” on page 260 for a complete list of parameters.

Figure 10-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” represents the numbering letter for
the port, and a lower case “n” represents the bit number. However, when using the register or bit defines in a program, the
precise form must be used. For example, PORTB3 for bit no. 3 in port B, here documented generally as PORTxn. The
physical I/O registers and bit locations are listed in Section 10.4 “Register Description for I/O Ports” on page 71.

Three I/O memory address locations are allocated for each port, one each for the data register – PORTx, data direction
register – DDRx, and the port input pins – PINx. The port input pins I/O location is read only, while the data register and the
data direction register are read/write. However, writing a logic one to a bit in the PINx register, will result in a toggle in the
corresponding bit in the data register. In addition, the pull-up disable – PUD bit in MCUCR disables the pull-up function for all
pins in all ports when set.

Using the I/O port as general digital I/O is described in Section 10.2 “Ports as General Digital I/O” on page 58. Most port pins
are multiplexed with alternate functions for the peripheral features on the device. How each alternate function interferes with
the port pin is described in Section 10.3 “Alternate Port Functions” on page 62. Refer to the individual module sections for a
full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port as
general digital I/O.

Cpin

Rpu

Pxn
Logic

See Figure
”General Digital I/O”

for Details
57ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 10-4. The out
instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the
synchronizer is 1 system clock period.

Figure 10-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 7 as
input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as previously discussed,
a nop instruction is included to be able to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.

Assembly Code Example(1)

...
; Define pull-ups and set outputs high
; Define directions for port pins
ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)
ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)
out PORTB,r16
out DDRB,r17
; Insert nop for synchronization
nop
; Read port pins
in r16,PINB
...

C Code Example

unsigned char i;
...
/* Define pull-ups and set outputs high */
/* Define directions for port pins */
PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);
DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);
/* Insert nop for synchronization*/
__no_operation();
/* Read port pins */
i = PINB;
...

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r16

r17

out PORTx, r16 nop

0x00 0xFF

0xFF

in r17, PINx

tpd
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

60

• SCK/PCINT5 – Port B, Bit 5

SCK: master clock output, slave clock input pin for SPI channel. When the SPI is enabled as a slave, this pin is configured as
an input regardless of the setting of DDB5. When the SPI is enabled as a master, the data direction of this pin is controlled
by DDB5. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB5 bit.

PCINT5: pin change interrupt source 5. The PB5 pin can serve as an external interrupt source.

• MISO/PCINT4 – Port B, Bit 4

MISO: master data input, slave data output pin for SPI channel. When the SPI is enabled as a master, this pin is configured
as an input regardless of the setting of DDB4. When the SPI is enabled as a slave, the data direction of this pin is controlled
by DDB4. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

PCINT4: pin change interrupt source 4. The PB4 pin can serve as an external interrupt source.

• MOSI/OC2/PCINT3 – Port B, Bit 3

MOSI: SPI master data output, slave data input for SPI channel. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDB3. When the SPI is enabled as a master, the data direction of this pin is
controlled by DDB3. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB3 bit.

OC2, output compare match output: The PB3 pin can serve as an external output for the Timer/Counter2 compare match.
The PB3 pin has to be configured as an output (DDB3 set (one)) to serve this function. The OC2 pin is also the output pin for
the PWM mode timer function.

PCINT3: pin change interrupt source 3. The PB3 pin can serve as an external interrupt source.

• SS/OC1B/PCINT2 – Port B, Bit 2

SS: slave select input. When the SPI is enabled as a slave, this pin is configured as an input regardless of the setting of
DDB2. As a slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a master, the data direction
of this pin is controlled by DDB2. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the
PORTB2 bit.

OC1B, output compare match output: The PB2 pin can serve as an external output for the Timer/Counter1 compare match
B. The PB2 pin has to be configured as an output (DDB2 set (one)) to serve this function. The OC1B pin is also the output
pin for the PWM mode timer function.

PCINT2: pin change interrupt source 2. The PB2 pin can serve as an external interrupt source.

• OC1A/PCINT1 – Port B, Bit 1

OC1A, output compare match output: The PB1 pin can serve as an external output for the Timer/Counter1 compare match
A. The PB1 pin has to be configured as an output (DDB1 set (one)) to serve this function. The OC1A pin is also the output
pin for the PWM mode timer function.

PCINT1: pin change interrupt source 1. The PB1 pin can serve as an external interrupt source.

• ICP1/CLKO/PCINT0 – Port B, Bit 0

ICP1, input capture pin: The PB0 pin can act as an input capture pin for Timer/Counter1.

CLKO, divided system clock: The divided system clock can be output on the PB0 pin. The divided system clock will be output
if the CKOUT fuse is programmed, regardless of the PORTB0 and DDB0 settings. It will also be output during reset.

PCINT0: pin change interrupt source 0. The PB0 pin can serve as an external interrupt source.
65ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

• ADC2/PCINT10 – Port C, Bit 2

PC2 can also be used as ADC input channel 2. Note that ADC input channel 2 uses analog power.

PCINT10: pin change interrupt source 10. The PC2 pin can serve as an external interrupt source.

• ADC1/PCINT9 – Port C, Bit 1

PC1 can also be used as ADC input channel 1. Note that ADC input channel 1 uses analog power.

PCINT9: pin change interrupt source 9. The PC1 pin can serve as an external interrupt source.

• ADC0/PCINT8 – Port C, Bit 0

PC0 can also be used as ADC input channel 0. Note that ADC input channel 0 uses analog power.

PCINT8: pin change interrupt source 8. The PC0 pin can serve as an external interrupt source.

Table 10-7 and Table 10-8 on page 68 relate the alternate functions of port C to the overriding signals shown in
Figure 10-5 on page 62.

Table 10-7. Overriding Signals for Alternate Functions in PC6..PC4(1)

Signal Name PC6/RESET/PCINT14 PC5/SCL/ADC5/PCINT13 PC4/SDA/ADC4/PCINT12

PUOE RSTDISBL TWEN TWEN

PUOV 1 PORTC5  PUD PORTC4  PUD

DDOE RSTDISBL TWEN TWEN

DDOV 0 SCL_OUT SDA_OUT

PVOE 0 TWEN TWEN

PVOV 0 0 0

DIEOE RSTDISBL + PCINT14  PCIE1 PCINT13  PCIE1 + ADC5D PCINT12  PCIE1 + ADC4D

DIEOV RSTDISBL PCINT13  PCIE1 PCINT12  PCIE1

DI PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO RESET INPUT ADC5 INPUT / SCL INPUT ADC4 INPUT / SDA INPUT

Note: 1. When enabled, the 2-wire serial interface enables slew-rate controls on the output pins PC4 and PC5. This is
not shown in the figure. In addition, spike filters are connected between the AIO outputs shown in the port
figure and the digital logic of the TWI module.

Table 10-8. Overriding Signals for Alternate Functions in PC3..PC0

Signal Name PC3/ADC3/PCINT11 PC2/ADC2/PCINT10 PC1/ADC1/PCINT9 PC0/ADC0/PCINT8

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT11  PCIE1 +
ADC3D

PCINT10  PCIE1 +
ADC2D

PCINT9  PCIE1 +
ADC1D

PCINT8  PCIE1 +
ADC0D

DIEOV PCINT11  PCIE1 PCINT10  PCIE1 PCINT9  PCIE1 PCINT8  PCIE1

DI PCINT11 INPUT PCINT10 INPUT PCINT9 INPUT PCINT8 INPUT

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

68

Bits 5:4 – COM0B1:0: Compare Match Output B Mode

These bits control the output compare pin (OC0B) behavior. If one or both of the COM0B1:0 bits are set, the OC0B output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OC0B pin must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the WGM02:0 bit setting.
Table 12-5 on page 88 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to a normal or CTC mode
(non-PWM).

Table 12-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM mode.

Table 12-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega48/88/168 and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 12-8. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and
two types of pulse width modulation (PWM) modes (see Section 12.6 “Modes of Operation” on page 81).

Table 12-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on compare match

1 0 Clear OC0B on compare match

1 1 Set OC0B on compare match

Table 12-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on compare match, set OC0B at TOP

1 1 Set OC0B on compare match, clear OC0B at TOP

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.3 “Fast PWM Mode” on page 83 for more
details.

Table 12-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on compare match when up-counting. Set OC0B on compare match when
down-counting.

1 1
Set OC0B on compare match when up-counting. Clear OC0B on compare match when
down-counting.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.4 “Phase Correct PWM Mode” on page 84 for
more details.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

88

The interconnection between master and slave CPUs with SPI is shown in Figure 16-2. The system consists of two shift
registers, and a master clock generator. The SPI master initiates the communication cycle when pulling low the slave select
SS pin of the desired slave. Master and slave prepare the data to be sent in their respective shift registers, and the master
generates the required clock pulses on the SCK line to interchange data. Data is always shifted from master to slave on the
master out – slave In, MOSI, line, and from slave to master on the master In – slave out, MISO, line. After each data packet,
the master will synchronize the slave by pulling high the slave select, SS, line.

When configured as a master, the SPI interface has no automatic control of the SS line. This must be handled by user
software before communication can start. When this is done, writing a byte to the SPI data register starts the SPI clock
generator, and the hardware shifts the eight bits into the slave. After shifting one byte, the SPI clock generator stops, setting
the end of transmission flag (SPIF). If the SPI interrupt enable bit (SPIE) in the SPCR register is set, an interrupt is
requested. The master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high
the slave select, SS line. The last incoming byte will be kept in the buffer register for later use.

When configured as a slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high.
In this state, software may update the contents of the SPI data register, SPDR, but the data will not be shifted out by
incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been completely shifted, the end of
transmission flag, SPIF is set. If the SPI interrupt enable bit, SPIE, in the SPCR register is set, an interrupt is requested. The
slave may continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be
kept in the buffer register for later use.

Figure 16-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to
be transmitted cannot be written to the SPI data register before the entire shift cycle is completed. When receiving data,
however, a received character must be read from the SPI data register before the next character has been completely
shifted in. Otherwise, the first byte is lost.

In SPI slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock
signal, the frequency of the SPI clock should never exceed fosc/4.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to
Table 16-1 on page 139. For more details on automatic port overrides, refer to Section 10.3 “Alternate Port Functions” on
page 62.

Table 16-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User defined Input

MISO Input User defined

SCK User defined Input

SS User defined Input

Note: 1. See Section 10.3.2 “Alternate Functions of Port B” on page 64 for a detailed description of how to define the
direction of the user defined SPI pins.

LSBSLAVEMSB
8 Bit Shift Register

LSB

Shift
Enable

MASTERMSB

SS

SCK

SS

SCK

MOSIMOSI

MISOMISO
8 Bit Shift Register

SPI
Clock Generator
139ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

• Bit 5..1 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega48/88/168 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK frequency) will be doubled when the SPI is in master mode
(see Table 16-4 on page 143). This means that the minimum SCK period will be two CPU clock periods. When the SPI is
configured as Slave, the SPI is only guaranteed to work at fosc/4 or lower.

The SPI interface on the Atmel ATmega48/88/168 is also used for program memory and EEPROM downloading or
uploading. See Section 25.8 “Serial Downloading” on page 256 for serial programming and verification.

16.1.5 SPI Data Register – SPDR

The SPI data register is a read/write register used for data transfer between the register file and the SPI shift register. Writing
to the register initiates data transmission. Reading the register causes the shift register receive buffer to be read.

16.2 Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits
CPHA and CPOL. The SPI data transfer formats are shown in Figure 16-3 on page 145 and Figure 16-4 on page 145. Data
bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize.
This is clearly seen by summarizing Figure 16-2 on page 142 and Table 16-3 on page 143, as done below.

Bit 7 6 5 4 3 2 1 0

MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

Table 16-5. CPOL Functionality

Leading Edge Trailing eDge SPI Mode

CPOL=0, CPHA=0 Sample (rising) Setup (falling) 0

CPOL=0, CPHA=1 Setup (rising) Sample (falling) 1

CPOL=1, CPHA=0 Sample (falling) Setup (rising) 2

CPOL=1, CPHA=1 Setup (falling) Sample (rising) 3
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

144

Figure 16-3. SPI Transfer Format with CPHA = 0

Figure 16-4. SPI Transfer Format with CPHA = 1

LSB
MSB

Bit 1
Bit 6

Bit 2
Bit 5

Bit 3
Bit 4

Bit 4
Bit 3

Bit 5
Bit 2

Bit 6
Bit 1

MSB
LSB

MSB first (DORD = 0)
LSB first (DORD =1)

SCK (CPOL = 0)
mode 0

SCK (CPOL = 1)
mode 2

SS

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

LSB
MSB

Bit 1
Bit 6

Bit 2
Bit 5

Bit 3
Bit 4

Bit 4
Bit 3

Bit 5
Bit 2

Bit 6
Bit 1

MSB
LSB

MSB first (DORD = 0)
LSB first (DORD =1)

SCK (CPOL = 0)
mode 1

SCK (CPOL = 1)
mode 3

SS

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN
145ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Note that arbitration is not allowed between:

● A REPEATED START condition and a data bit.

● A STOP condition and a data bit.

● A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never occur. This implies that in
multi-master systems, all data transfers must use the same composition of SLA+R/W and data packets. In other words: All
transmissions must contain the same number of data packets, otherwise the result of the arbitration is undefined.

19.5 Overview of the TWI Module

The TWI module is comprised of several submodules, as shown in Figure 19-9. All registers drawn in a thick line are
accessible through the AVR® data bus.

Figure 19-9. Overview of the TWI Module

19.5.1 SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a slew-rate limiter in order to
conform to the TWI specification. The input stages contain a spike suppression unit removing spikes shorter than 50ns. Note
that the internal pull-ups in the AVR pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins,
as explained in the I/O port section. The internal pull-ups can in some systems eliminate the need for external ones.

START/ STOP
Control

Spike
Filter

Slew-rate
Control

Address/ Data Shift
Register (TWDR)Arbitration detection

Spike Suppression

Bit Rate Register
(TWBR)

Prescaler

Ack

Bus Interface Unit

SCL

Spike
Filter

Slew-rate
Control

SDA

Bit Rate Generator

Address Register
(TWAR)

Address Comparator

Address Match Unit

Status Register
(TWSR)

Control Register
(TWCR)

State Machine and
Status control

Control Unit

TW
I U

ni
t

ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

180

19.6.6 TWI (Slave) Address Mask Register – TWAMR

• Bits 7..1 – TWAM: TWI Address Mask

The TWAMR can be loaded with a 7-bit salve address mask. Each of the bits in TWAMR can mask (disable) the
corresponding address bits in the TWI address register (TWAR). If the mask bit is set to one then the address match logic
ignores the compare between the incoming address bit and the corresponding bit in TWAR. Figure 19-10 shown the address
match logic in detail.

Figure 19-10. TWI Address Match Logic, Block Diagram

• Bit 0 – Res: Reserved Bit

This bit is an unused bit in the Atmel® ATmega48/88/168, and will always read as zero.

19.7 Using the TWI

The AVR® TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like reception of a byte or
transmission of a START condition. Because the TWI is interrupt-based, the application software is free to carry on other
operations during a TWI byte transfer. Note that the TWI interrupt enable (TWIE) bit in TWCR together with the global
interrupt enable bit in SREG allow the application to decide whether or not assertion of the TWINT flag should generate an
interrupt request. If the TWIE bit is cleared, the application must poll the TWINT flag in order to detect actions on the TWI
bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits application response. In this case, the TWI
status register (TWSR) contains a value indicating the current state of the TWI bus. The application software can then
decide how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and TWDR registers.

Figure 19-11 on page 186 is a simple example of how the application can interface to the TWI hardware. In this example, a
Master wishes to transmit a single data byte to a slave. This description is quite abstract, a more detailed explanation follows
later in this section. A simple code example implementing the desired behavior is also presented.

Bit 7 6 5 4 3 2 1 0

TWAM[6:0] – TWAMR

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0

TWAR0
Address
Match

TWAMR0

Address Bit Comparator 6 to 1

Address Bit Comparator 0

Address
Bit 0
185ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

After a repeated START condition (state 0x10) the 2-wire serial interface can access the same slave again, or a new slave
without transmitting a STOP condition. Repeated START enables the master to switch between slaves, master transmitter
mode and master receiver mode without losing control over the bus.

Table 19-5. Status Codes for Master Receiver Mode

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0x08 A START condition has
been transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

0x10 A repeated START
condition has been
transmitted

Load SLA+R
or

Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted Logic will switch
to master transmitter mode

0x38 Arbitration lost in SLA+R
or NOT ACK bit

No TWDR action
or

No TWDR action

0

0

0

0

1

1

X

X

2-wire serial bus will be released and not
addressed Slave mode will be entered
A START condition will be transmitted
when the bus becomes free

0x40 SLA+R has been
transmitted;
ACK has been received

No TWDR action
or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

0x48 SLA+R has been
transmitted;
NOT ACK has been
received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset

0x50 Data byte has been
received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK
will be returned
Data byte will be received and ACK will be
returned

0x58 Data byte has been
received;
NOT ACK has been
returned

Read data byte or
Read data byte

or
Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset
193ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

19.8.4 Slave Transmitter Mode

In the slave transmitter mode, a number of data bytes are transmitted to a master receiver (see Figure 19-18). All the status
codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 19-18. Data Transfer in Slave Transmitter Mode

To initiate the slave transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the 2-wire serial interface will respond when addressed by a master. If the
LSB is set, the TWI will respond to the general call address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledgement of
the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the general
call address if enabled) followed by the data direction bit. If the direction bit is “1” (read), the TWI will operate in ST mode,
otherwise SR mode is entered. After its own slave address and the write bit have been received, the TWINT flag is set and a
valid status code can be read from TWSR. The status code is used to determine the appropriate software action. The
appropriate action to be taken for each status code is detailed in Table 19-7 on page 199. The slave transmitter mode may
also be entered if arbitration is lost while the TWI is in the master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the transfer. State 0xC0 or state 0xC8
will be entered, depending on whether the master receiver transmits a NACK or ACK after the final byte. The TWI is
switched to the not addressed slave mode, and will ignore the master if it continues the transfer. Thus the master receiver
receives all “1” as serial data. State 0xC8 is entered if the master demands additional data bytes (by transmitting ACK), even
though the Slave has transmitted the last byte (TWEA zero and expecting NACK from the master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire serial bus is still monitored
and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit may be used to
temporarily isolate the TWI from the 2-wire serial bus.

In all sleep modes other than idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the interface can still
acknowledge its own slave address or the general call address by using the 2-wire serial bus clock as a clock source. The
part will then wake up from sleep and the TWI will hold the SCL clock will low during the wake up and until the TWINT flag is
cleared (by writing it to one). Further data transmission will be carried out as normal, with the AVR® clocks running as
normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.

Note that the 2-wire serial interface data register – TWDR does not reflect the last byte present on the bus when waking up
from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X

Device 1
Slave

Transmitter

SDA

VCC

SCL

Device 3 Device n........ R1 R2
Device 2

Master
Receiver
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

198

19.8.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action. Consider for example reading
data from a serial EEPROM. Typically, such a transfer involves the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

3. The reading must be performed.

4. The transfer must be finished.

Note that data is transmitted both from master to slave and vice versa. The master must instruct the slave what location it
wants to read, requiring the use of the MT mode. Subsequently, data must be read from the slave, implying the use of the
MR mode. Thus, the transfer direction must be changed. The master must keep control of the bus during all these steps, and
the steps should be carried out as an atomical operation. If this principle is violated in a multi master system, another master
can alter the data pointer in the EEPROM between steps 2 and 3, and the master will read the wrong data location. Such a
change in transfer direction is accomplished by transmitting a REPEATED START between the transmission of the address
byte and reception of the data. After a REPEATED START, the master keeps ownership of the bus. The following figure
shows the flow in this transfer.

Figure 19-20. Combining Several TWI Modes to Access a Serial EEPROM

19.9 Multi-master Systems and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simultaneously by one or more of them.
The TWI standard ensures that such situations are handled in such a way that one of the masters will be allowed to proceed
with the transfer, and that no data will be lost in the process. An example of an arbitration situation is depicted below, where
two masters are trying to transmit data to a slave receiver.

Figure 19-21. An Arbitration Example

S

S = START P = STOPRS = REPEATED START

PRSASLA + W A A AADDRESS

Master Transmitter

Transmitted from master to slave Transmitted from slave to master

Master Receiver

DATASLA + R

Device 1
Master

Transmitter

SDA

SCL

VCC

Device n........ R1 R2
Device 2

Master
Transmitter

Device 3
Slave

Receiver
201ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

24.7.14 ATmega168 Boot Loader Parameters

In Table 24-9 through Table 24-11, the parameters used in the description of the self programming are given.

For details about these two section, see Section 24.3.2 “NRWW – No Read-While-Write Section” on page 230 and
Section 24.3.1 “RWW – Read-While-Write Section” on page 230.

Table 24-9. Boot Size Configuration, ATmega168

BOOTSZ1 BOOTSZ0 Boot Size Pages
Application

Flash Section
Boot Loader

Flash Section
End Application

Section

Boot Reset
Address (Start
Boot Loader

Section)

1 1 128 words 2 0x0000 - 0x1F7F 0x1F80 - 0x1FFF 0x1F7F 0x1F80

1 0 256 words 4
0x0000 -
0x1EFF

0x1F00 - 0x1FFF 0x1EFF 0x1F00

0 1 512 words 8
0x0000 -
0x1DFF

0x1E00 -
0x1FFF

0x1DFF 0x1E00

0 0 1024 words 16
0x0000 -
0x1BFF

0x1C00 -
0x1FFF

0x1BFF 0x1C00

Note: The different BOOTSZ fuse configurations are shown in Figure 24-2 on page 231.

Table 24-10. Read-While-Write Limit, ATmega168

Section Pages Address

Read-while-write section (RWW) 112 0x0000 - 0x1BFF

No read-while-rite section (NRWW) 16 0x1C00 - 0x1FFF

Table 24-11. Explanation of Different Variables used in Figure 24-3 and the Mapping to the Z-pointer, ATmega168

Variable Corresponding Z-value(1) Description

PCMSB 12
Most significant bit in the program counter. (The program
counter is 12 bits PC[11:0])

PAGEMSB 5
Most significant bit which is used to address the words within
one page (64 words in a page requires 6 bits PC [5:0])

ZPCMSB Z13
Bit in Z-register that is mapped to PCMSB. Because Z0 is not
used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is
not used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[12:6] Z13:Z7
Program counter page address: page select, for page erase
and page write

PCWORD PC[5:0] Z6:Z1
Program counter word address: Word select, for filling
temporary buffer (must be zero during page write operation)

Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction. See Section 24.6 “Addressing
the Flash During Self-Programming” on page 234 for details about the use of Z-pointer during
self-Programming.
241ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

26.3 External Clock Drive Waveforms

Figure 26-1. External Clock Drive Waveforms

26.4 External Clock Drive

26.5 Maximum Speed versus VCC

Maximum frequency is dependent on VCC. As shown in Figure 26-2, the maximum frequency versus VCC curve is linear
between 2.7V < VCC < 4.5V.

Figure 26-2. Maximum Frequency versus VCC, ATmega48/88/168

tCHCX

VIH1

VIL1

tCHCX
tCLCH tCHCL

tCLCX

tCLCL

Table 26-1. External Clock Drive

Parameter Symbol

VCC=2.7 to 5.5V VCC=4.5 to 5.5V

UnitMin. Max. Min. Max.

Oscillator frequency 1/tCLCL 0 8 0 16 MHz

Clock period tCLCL 125 62.5 ns

High time tCHCX 50 25 ns

Low time tCLCX 50 25 ns

Rise time tCLCH 1.6 0.5 µs

Fall time tCHCL 1.6 0.5 µs

Change in period from one clock
cycle to the next

DtCLCL 2 2 %

Safe Operating Area

2.7V

4MHz

16MHz

5.5V4.5V

8MHz
263ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

28.1.5 Internal Oscillator Speed

Figure 28-19. Watchdog Oscillator Frequency versus VCC

Figure 28-20. Calibrated 8MHz RC Oscillator Frequency versus Temperature

32.5 3.5 4 4.5 5 5.5
VCC (V)

120

118

116

114

112

130

128

126

124

122

110

F R
C
 (k

H
z)

-40°C

25°C

85°C
125°C

-30-40 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120
Temperature (°C)

8.1

8

7.9

7.8

7.7

8.4

8.3

8.2

7.6

F R
C
 (M

H
z)

5.0V

2.7V
279ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

XX X XX X
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2014 Atmel Corporation. / Rev.: 7530K–AVR–07/14

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, AVR Studio®, and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

https://plus.google.com/117391618085377601886/posts
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com
www.atmel.com

