
Atmel - ATMEGA88-15MZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-QFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega88-15mz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega88-15mz-4396407
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

5.4 I/O Memory

The I/O space definition of the Atmel® ATmega48/88/168 is shown in Section “” on page 285.

All Atmel ATmega48/88/168 I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the
LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the I/O
space. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set
section for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used.
When addressing I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
Atmel ATmega48/88/168 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in opcode for the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR® the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

5.4.1 General Purpose I/O Registers

The Atmel ATmega48/88/168 contains three general purpose I/O registers. These registers can be used for storing any
information, and they are particularly useful for storing global variables and status flags. General purpose I/O registers within
the address range 0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

5.4.2 General Purpose I/O Register 2 – GPIOR2

5.4.3 General Purpose I/O Register 1 – GPIOR1

5.4.4 General Purpose I/O Register 0 – GPIOR0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

22

7.2 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter idle mode, stopping the CPU but
allowing the SPI, USART, analog comparator, ADC, 2-wire serial interface, Timer/Counters, watchdog, and the interrupt
system to continue operating. This sleep mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow and
USART transmit complete interrupts. If wake-up from the analog comparator interrupt is not required, the analog comparator
can be powered down by setting the ACD bit in the analog comparator control and status register – ACSR. This will reduce
power consumption in idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered.

7.3 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC noise reduction mode, stopping
the CPU but allowing the ADC, the external interrupts, the 2-wire serial interface address watch, Timer/Counter2, and the
watchdog to continue operating (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a
conversion starts automatically when this mode is entered. Apart from the ADC conversion complete interrupt, only an
external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a 2-wire serial interface address match, a
Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT0 or INT1 or a pin change
interrupt can wake up the MCU from ADC noise reduction mode.

7.4 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter power-down mode. In this mode, the
external oscillator is stopped, while the external interrupts, the 2-wire serial interface address watch, and the watchdog
continue operating (if enabled). Only an external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a
2-wire serial interface address match, an external level interrupt on INT0 or INT1, or a pin change interrupt can wake up the
MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from power-down mode, the changed level must be held for some
time to wake up the MCU. Refer to Section 11. “External Interrupts” on page 73 for details.

When waking up from power-down mode, there is a delay from the wake-up condition occurs until the wake-up becomes
effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined by the
same CKSEL fuses that define the reset time-out period, as described in Section 6.2 “Clock Sources” on page 24.

7.5 Power-save Mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter power-save mode. This mode is
identical to power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from either timer overflow or output
compare event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in TIMSK2, and the
global interrupt enable bit in SREG is set.

If Timer/Counter2 is not running, power-down mode is recommended instead of power-save mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in power-save mode. If Timer/Counter2 is not
using the asynchronous clock, the Timer/Counter oscillator is stopped during sleep. If Timer/Counter2 is not using the
synchronous clock, the clock source is stopped during sleep. Note that even if the synchronous clock is running in
power-save, this clock is only available for Timer/Counter2.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

34

The most typical and general program setup for the reset and interrupt vector addresses in Atmel® ATmega48 is:
Address Labels Code Comments
0x000 rjmp RESET ; Reset Handler
0x001 rjmp EXT_INT0 ; IRQ0 Handler
0x002 rjmp EXT_INT1 ; IRQ1 Handler
0x003 rjmp PCINT0 ; PCINT0 Handler
0x004 rjmp PCINT1 ; PCINT1 Handler
0x005 rjmp PCINT2 ; PCINT2 Handler
0x006 rjmp WDT ; Watchdog Timer Handler
0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler
0x008 rjmp TIM2_COMPB ; Timer2 Compare B Handler
0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler
0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler
0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler
0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler
0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler
0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler
0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler
0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler
0x011 rjmp SPI_STC ; SPI Transfer Complete Handler
0x012 rjmp USART_RXC ; USART, RX Complete Handler
0x013 rjmp USART_UDRE ; USART, UDR Empty Handler
0x014 rjmp USART_TXC ; USART, TX Complete Handler
0x015 rjmp ADC ; ADC Conversion Complete Handler
0x016 rjmp EE_RDY ; EEPROM Ready Handler
0x017 rjmp ANA_COMP ; Analog Comparator Handler
0x018 rjmp TWI ; 2-wire Serial Interface Handler
0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler
;
0x01A RESET: ldi r16, high(RAMEND); Main program start
0x01B out SPH,r16 ; Set Stack Pointer to top of RAM
0x01C ldi r16, low(RAMEND)
0x01D out SPL,r16
0x01E sei ; Enable interrupts
0x01F <instr> xxx

9.2 Interrupt Vectors in ATmega88

Table 9-2. Reset and Interrupt Vectors in ATmega88

Vector No. Program Address(2) Source Interrupt Definition

1 0x000(1) RESET
External pin, power-on reset, brown-out reset and watchdog
system reset

2 0x001 INT0 External interrupt request 0

3 0x002 INT1 External interrupt request 1

4 0x003 PCINT0 Pin change interrupt request 0

5 0x004 PCINT1 Pin change interrupt request 1

6 0x005 PCINT2 Pin change interrupt request 2

7 0x006 WDT Watchdog time-out interrupt

Notes: 1. When the BOOTRST fuse is programmed, the device will jump to the boot loader address at reset, see
Section 24. “Boot Loader Support – Read-While-Write Self-Programming, ATmega88 and ATmega168” on
page 229.

2. When the IVSEL bit in MCUCR is set, interrupt vectors will be moved to the start of the boot flash section. The
address of each interrupt vector will then be the address in this table added to the start address of the boot
flash section.
49ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

10. I/O-Ports

10.1 Introduction

All AVR® ports have true read-modify-write functionality when used as general digital I/O ports. This means that the direction
of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI
instructions. The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors
(if configured as input). Each output buffer has symmetrical drive characteristics with both high sink and source capability.
The pin driver is strong enough to drive LED displays directly. All port pins have individually selectable pull-up resistors with
a supply-voltage invariant resistance. All I/O pins have protection diodes to both VCC and ground as indicated in Figure 10-1.
Refer to Section 26. “Electrical Characteristics” on page 260 for a complete list of parameters.

Figure 10-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” represents the numbering letter for
the port, and a lower case “n” represents the bit number. However, when using the register or bit defines in a program, the
precise form must be used. For example, PORTB3 for bit no. 3 in port B, here documented generally as PORTxn. The
physical I/O registers and bit locations are listed in Section 10.4 “Register Description for I/O Ports” on page 71.

Three I/O memory address locations are allocated for each port, one each for the data register – PORTx, data direction
register – DDRx, and the port input pins – PINx. The port input pins I/O location is read only, while the data register and the
data direction register are read/write. However, writing a logic one to a bit in the PINx register, will result in a toggle in the
corresponding bit in the data register. In addition, the pull-up disable – PUD bit in MCUCR disables the pull-up function for all
pins in all ports when set.

Using the I/O port as general digital I/O is described in Section 10.2 “Ports as General Digital I/O” on page 58. Most port pins
are multiplexed with alternate functions for the peripheral features on the device. How each alternate function interferes with
the port pin is described in Section 10.3 “Alternate Port Functions” on page 62. Refer to the individual module sections for a
full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port as
general digital I/O.

Cpin

Rpu

Pxn
Logic

See Figure
”General Digital I/O”

for Details
57ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

• Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT14..8 pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG and
the PCIE1 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 0 - PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set (one). If the I-bit in SREG and
the PCIE0 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

11.6 Pin Change Mask Register 2 – PCMSK2

• Bit 7..0 – PCINT23..16: Pin Change Enable Mask 23..16

Each PCINT23..16-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is set
and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is cleared,
pin change interrupt on the corresponding I/O pin is disabled.

11.7 Pin Change Mask Register 1 – PCMSK1

• Bit 7 – Res: Reserved Bit

This bit is an unused bit in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 6..0 – PCINT14..8: Pin Change Enable Mask 14..8

Each PCINT14..8-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT14..8 is set and
the PCIE1 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT14..8 is cleared, pin
change interrupt on the corresponding I/O pin is disabled.

11.8 Pin Change Mask Register 0 – PCMSK0

• Bit 7..0 – PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is set and the
PCIE0 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is cleared, pin change
interrupt on the corresponding I/O pin is disabled.

Bit 7 6 5 4 3 2 1 0

PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

76

Figure 12-9 shows the same timing data, but with the prescaler enabled.

Figure 12-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 12-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC mode and PWM mode, where
OCR0A is TOP.

Figure 12-10.Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

Figure 12-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast PWM mode where OCR0A is
TOP.

Figure 12-11.Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Prescaler (fclk_I/O/8)

MAX - 1

clkI/O

(clkI/O/8)

TCNTn

TOVn

clkTn

MAX BOTTOM BOTTOM + 1

OCRnx - 1

clkI/O

(clkI/O/8)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx OCRnx + 1

OCRnx Value

OCRnx + 2

TOP - 1

clkI/O

(clkI/O/8)

TCNTn
(CTC)

OCRnx

OCFnx

clkTn

TOP BOTTOM

TOP

BOTTOM + 1
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

86

14.5 Input Capture Unit

The Timer/Counter incorporates an input capture unit that can capture external events and give them a time-stamp
indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via the ICP1 pin or
alternatively, via the analog-comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle, and
other features of the signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The input capture unit is illustrated by the block diagram shown in Figure 14-3. The elements of the block diagram that are
not directly a part of the input capture unit are gray shaded. The small “n” in register and bit names indicates the
Timer/Counter number.

Figure 14-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the input capture pin (ICP1), alternatively on the analog comparator
output (ACO), and this change confirms to the setting of the edge detector, a capture will be triggered. When a capture is
triggered, the 16-bit value of the counter (TCNT1) is written to the input capture register (ICR1). The input capture flag (ICF1)
is set at the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1), the Input Capture
flag generates an input capture interrupt. The ICF1 flag is automatically cleared when the interrupt is executed. Alternatively
the ICF1 flag can be cleared by software by writing a logical one to its I/O bit location.

Reading the 16-bit value in the input capture register (ICR1) is done by first reading the low byte (ICR1L) and then the high
byte (ICR1H). When the low byte is read the high byte is copied into the high byte temporary register (TEMP). When the
CPU reads the ICR1H I/O location it will access the TEMP register.

The ICR1 register can only be written when using a waveform generation mode that utilizes the ICR1 register for defining the
counter’s TOP value. In these cases the waveform generation mode (WGM13:0) bits must be set before the TOP value can
be written to the ICR1 register. When writing the ICR1 register the high byte must be written to the ICR1H I/O location before
the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to Section 14.2 “Accessing 16-bit Registers” on page 96.

ICFn (Int. Req.)

ICRnL (8-bit)ICRnH (8-bit)

ICRn (16-bit Register)

TEMP (8-bit)

TCNTnL (8-bit)TCNTnH (8-bit)

TCNTn (16-bit Counter)

DATA BUS (8-bit)

Noise
Canceler

Analog
Comparator Edge

Detector

ICNCACIC*ACO*

WRITE

+

-

ICES

ICPn
101ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

14.10.5 Output Compare Register 1 A – OCR1AH and OCR1AL

14.10.6 Output Compare Register 1 B – OCR1BH and OCR1BL

The output compare registers contain a 16-bit value that is continuously compared with the counter value (TCNT1). A match
can be used to generate an output compare interrupt, or to generate a waveform output on the OC1x pin.

The output compare registers are 16-bit in size. To ensure that both the high and low bytes are written simultaneously when
the CPU writes to these registers, the access is performed using an 8-bit temporary high byte register (TEMP). This
temporary register is shared by all the other 16-bit registers. See Section 14.2 “Accessing 16-bit Registers” on page 96.

14.10.7 Input Capture Register 1 – ICR1H and ICR1L

The input capture is updated with the counter (TCNT1) value each time an event occurs on the ICP1 pin (or optionally on the
analog comparator output for Timer/Counter1). The input capture can be used for defining the counter TOP value.

The input capture register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously when the
CPU accesses these registers, the access is performed using an 8-bit temporary high byte register (TEMP). This temporary
register is shared by all the other 16-bit registers. See Section 14.2 “Accessing 16-bit Registers” on page 96.

14.10.8 Timer/Counter1 Interrupt Mask Register – TIMSK1

• Bit 7, 6 – Res: Reserved Bits

These bits are unused bits in the Atmel® ATmega48/88/168, and will always read as zero.

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
input capture interrupt is enabled. The corresponding interrupt vector (see Section 9. “Interrupts” on page 48) is executed
when the ICF1 flag, located in TIFR1, is set.

• Bit 4, 3 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega48/88/168, and will always read as zero.

Bit 7 6 5 4 3 2 1 0

OCR1A[15:8] OCR1AH

OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1B[15:8] OCR1BH

OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H

ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
117ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

The OCR2x register is double buffered when using any of the pulse width modulation (PWM) modes. For the normal and
clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCR2x compare register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2x register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCR2x buffer register, and if double buffering is disabled the CPU will access the OCR2x directly.

15.4.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOC2x) bit. Forcing compare match will not set the OCF2x flag or reload/clear the timer, but the OC2x pin
will be updated as if a real compare match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set,
cleared or toggled).

15.4.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 register will block any compare match that occurs in the next timer clock cycle, even
when the timer is stopped. This feature allows OCR2x to be initialized to the same value as TCNT2 without triggering an
interrupt when the Timer/Counter clock is enabled.

15.4.3 Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNT2 when using the output compare channel, independently of whether the Timer/Counter is
running or not. If the value written to TCNT2 equals the OCR2x value, the compare match will be missed, resulting in
incorrect waveform generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC2x should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OC2x value is to use the force output compare (FOC2x) strobe bit in normal mode. The OC2x register
keeps its value even when changing between waveform generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare value. Changing the COM2x1:0 bits will
take effect immediately.

15.5 Compare Match Output Unit

The compare output mode (COM2x1:0) bits have two functions. The waveform generator uses the COM2x1:0 bits for
defining the output compare (OC2x) state at the next compare match. Also, the COM2x1:0 bits control the OC2x pin output
source. Figure 15-4 on page 123 shows a simplified schematic of the logic affected by the COM2x1:0 bit setting.
The I/O registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers
(DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to the OC2x state, the reference is for
the internal OC2x register, not the OC2x pin.
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

122

Figure 15-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the output compare (OC2x) from the waveform generator if either of the
COM2x1:0 bits are set. However, the OC2x pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x
value is visible on the pin. The port override function is independent of the waveform generation mode.

The design of the output compare pin logic allows initialization of the OC2x state before the output is enabled. Note that
some COM2x1:0 bit settings are reserved for certain modes of operation. See Section 15.8 “8-bit Timer/Counter Register
Description” on page 129

15.5.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM2x1:0 = 0 tells the waveform generator that no action on the OC2x register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 15-5 on page 130. For fast PWM mode, refer to
Table 15-6 on page 130, and for phase correct PWM refer to Table 15-7 on page 130.

A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC2x strobe bits.

15.6 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGM22:0) and compare output mode (COM2x1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COM2x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM2x1:0 bits
control whether the output should be set, cleared, or toggled at a compare match (see Section 15.5 “Compare Match Output
Unit” on page 122).

For detailed timing information refer to Section 15.7 “Timer/Counter Timing Diagrams” on page 127.

D
AT

A
B

U
S

0

1

QD

COMnx1

COMnx0

FOCn

OCnx

Waveform
Generator

QD

PORT

QD

DDR

OCnx
Pin

clkI/O
123ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

16. Serial Peripheral Interface – SPI

The serial peripheral interface (SPI) allows high-speed synchronous data transfer between the Atmel® ATmega48/88/168
and peripheral devices or between several AVR® devices. The Atmel ATmega48/88/168 SPI includes the following features:

● Full-duplex, three-wire synchronous data transfer

● Master or slave operation

● LSB first or MSB first data transfer

● Seven programmable bit rates

● End of transmission interrupt flag

● Write collision flag protection

● Wake-up from idle mode

● Double speed (CK/2) master SPI mode

The USART can also be used in master SPI mode, see Section 18. “USART in SPI Mode” on page 168. The PRSPI bit in
Section 7.7.1 “Power Reduction Register - PRR” on page 35 must be written to zero to enable SPI module.

Figure 16-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 3, and Table 10-3 on page 64 for SPI pin placement.

8-Bit Shift Register
Read Data Buffer

SPI Control RegisterSPI Status Register

MSTR

SPI Clock (Master)

SPESPI Control

SPI Interrupt
Request

Select Clock
Logic

MISO

Clock

8

8 8

S

M

S

M

M

S

MSB LSB

S
P

IE

S
P

E

W
C

O
L

S
P

IF

S
P

I2
X

S
P

I2
X

S
P

R
1

M
S

TR

S
P

E

D
O

R
D

S
P

R
0

D
O

R
D

M
S

TR

C
P

O
L

C
P

H
A

S
P

R
1

S
P

R
0

MOSI

SCK

SS

Divider
/2/4/8/16/32/64/128

XTAL

Internal
Data Bus

Pin
Control
Logic
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

138

Figure 16-3. SPI Transfer Format with CPHA = 0

Figure 16-4. SPI Transfer Format with CPHA = 1

LSB
MSB

Bit 1
Bit 6

Bit 2
Bit 5

Bit 3
Bit 4

Bit 4
Bit 3

Bit 5
Bit 2

Bit 6
Bit 1

MSB
LSB

MSB first (DORD = 0)
LSB first (DORD =1)

SCK (CPOL = 0)
mode 0

SCK (CPOL = 1)
mode 2

SS

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

LSB
MSB

Bit 1
Bit 6

Bit 2
Bit 5

Bit 3
Bit 4

Bit 4
Bit 3

Bit 5
Bit 2

Bit 6
Bit 1

MSB
LSB

MSB first (DORD = 0)
LSB first (DORD =1)

SCK (CPOL = 0)
mode 1

SCK (CPOL = 1)
mode 3

SS

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN
145ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

The function simply waits for data to be present in the receive buffer by checking the RXCn flag, before reading the buffer
and returning the value.

17.6.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCSRnB before reading the low bits
from the UDRn. This rule applies to the FEn, DORn and UPEn status flags as well. Read status from UCSRnA, then data
from UDRn. Reading the UDRn I/O location will change the state of the receive buffer FIFO and consequently the TXB8n,
FEn, DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit characters and the status
bits.

Note: 1. The example code assumes that the part specific header file is included. For I/O registers located in extended
I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow
access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The receive function example reads all the I/O registers into the register file before any computation is done. This gives an
optimal receive buffer utilization since the buffer location read will be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get status and 9th bit, then data from buffer
in r18, UCSRnA
in r17, UCSRnB
in r16, UDRn
; If error, return -1
andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)
breq USART_ReceiveNoError
ldi r17, HIGH(-1)
ldi r16, LOW(-1)

USART_ReceiveNoError:
; Filter the 9th bit, then return
lsr r17
andi r17, 0x01
ret

C Code Example(1)

unsigned int USART_Receive(void)
{

unsigned char status, resh, resl;
/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)))
;
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRnA;
resh = UCSRnB;
resl = UDRn;
/* If error, return -1 */
if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;
return ((resh << 8) | resl);

}

155ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

Figure 19-5. Data Packet Format

19.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP condition. An
empty message, consisting of a START followed by a STOP condition, is illegal. Note that the Wired-ANDing of the SCL line
can be used to implement handshaking between the master and the slave. The slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the master is too fast for the slave, or the slave needs
extra time for processing between the data transmissions. The slave extending the SCL low period will not affect the SCL
high period, which is determined by the master. As a consequence, the slave can reduce the TWI data transfer speed by
prolonging the SCL duty cycle.

Figure 19-6 shows a typical data transmission. Note that several data bytes can be transmitted between the SLA+R/W and
the STOP condition, depending on the software protocol implemented by the application software.

Figure 19-6. Typical Data Transmission

19.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken in order to ensure that
transmissions will proceed as normal, even if two or more masters initiate a transmission at the same time. Two problems
arise in multi-master systems:

● An algorithm must be implemented allowing only one of the masters to complete the transmission. All other masters
should cease transmission when they discover that they have lost the selection process. This selection process is
called arbitration. When a contending master discovers that it has lost the arbitration process, it should immediately
switch to slave mode to check whether it is being addressed by the winning master. The fact that multiple masters
have started transmission at the same time should not be detectable to the slaves, i.e. the data being transferred on
the bus must not be corrupted.

● Different masters may use different SCL frequencies. A scheme must be devised to synchronize the serial clocks
from all masters, in order to let the transmission proceed in a lockstep fashion. This will facilitate the arbitration
process.

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

Data MSB Data LSB ACK

1 2 7

Data Byte STOP, REPEATED
START or next

Data Byte

SLA + R/W

8 9

SDA

SCL

STOPSTART SLA + R/W Data Byte

Addr MSB Addr LSB Data MSB Data LSB ACKR/W ACK

1 2 7 8 9 1 2 7 8 9
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

178

22.4 Software Break Points

debugWIRE supports program memory break points by the AVR® break instruction. Setting a break point in AVR Studio® will
insert a BREAK instruction in the program memory. The instruction replaced by the BREAK instruction will be stored. When
program execution is continued, the stored instruction will be executed before continuing from the program memory. A break
can be inserted manually by putting the BREAK instruction in the program.

The flash must be re-programmed each time a break point is changed. This is automatically handled by AVR Studio through
the debugWIRE interface. The use of break points will therefore reduce the flash data retention. Devices used for debugging
purposes should not be shipped to end customers.

22.5 Limitations of debugWIRE

The debugWIRE communication pin (dW) is physically located on the same pin as external reset (RESET). An external reset
source is therefore not supported when the debugWIRE is enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e., when the program in the CPU
is running. When the CPU is stopped, care must be taken while accessing some of the I/O registers via the debugger
(AVR Studio).

A programmed DWEN fuse enables some parts of the clock system to be running in all sleep modes. This will increase the
power consumption while in sleep. Thus, the DWEN fuse should be disabled when debugWire is not used.

22.6 debugWIRE Related Register in I/O Memory

The following section describes the registers used with the debugWire.

22.6.1 debugWire Data Register – DWDR

The DWDR register provides a communication channel from the running program in the MCU to the debugger. This register
is only accessible by the debugWIRE and can therefore not be used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

222

24. Boot Loader Support – Read-While-Write Self-Programming, ATmega88 and
ATmega168

In Atmel® ATmega88 and Atmel ATmega168, the boot loader support provides a real read-while-write self-programming
mechanism for downloading and uploading program code by the MCU itself. This feature allows flexible application software
updates controlled by the MCU using a flash-resident boot loader program. The boot loader program can use any available
data interface and associated protocol to read code and write (program) that code into the flash memory, or read the code
from the program memory. The program code within the boot loader section has the capability to write into the entire flash,
including the boot loader memory. The boot loader can thus even modify itself, and it can also erase itself from the code if
the feature is not needed anymore. The size of the boot loader memory is configurable with fuses and the boot loader has
two separate sets of boot lock bits which can be set independently. This gives the user a unique flexibility to select different
levels of protection.

24.1 Boot Loader Features
● Read-while-write self-programming

● Flexible boot memory size

● High security (separate boot lock bits for a flexible protection)

● Separate fuse to select reset vector

● Optimized page(1) size

● Code efficient algorithm

● Efficient read-modify-write support

Note: 1. A page is a section in the flash consisting of several bytes (see Table 25-12 on page 247) used during
programming. The page organization does not affect normal operation.

24.2 Application and Boot Loader Flash Sections

The flash memory is organized in two main sections, the application section and the boot loader section
(see Figure 24-2 on page 231). The size of the different sections is configured by the BOOTSZ fuses as shown in
Table 24-6 on page 240 and Figure 24-2 on page 231. These two sections can have different level of protection since they
have different sets of lock bits.

24.2.1 Application Section

The application section is the section of the flash that is used for storing the application code. The protection level for the
application section can be selected by the application boot lock bits (boot lock bits 0), see Table 24-2 on page 232. The
application section can never store any boot loader code since the SPM instruction is disabled when executed from the
application section.

24.2.2 BLS – Boot Loader Section

While the application section is used for storing the application code, the The boot loader software must be located in the
BLS since the SPM instruction can initiate a programming when executing from the BLS only. The SPM instruction can
access the entire flash, including the BLS itself. The protection level for the boot loader section can be selected by the boot
loader lock bits (boot lock bits 1), see Table 24-3 on page 232.
229ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

24.3 Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports read-while-write or if the CPU is halted during a boot loader software update is dependent on
which address that is being programmed. In addition to the two sections that are configurable by the BOOTSZ fuses as
described above, the flash is also divided into two fixed sections, the read-while-write (RWW) section and the no
read-while-write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 24-7 on page 240 and
Figure 24-2 on page 231. The main difference between the two sections is:

● When erasing or writing a page located inside the RWW section, the NRWW section can be read during the
operation.

● When erasing or writing a page located inside the NRWW section, the CPU is halted during the entire operation.

Note that the user software can never read any code that is located inside the RWW section during a boot loader software
operation. The syntax “read-while-write section” refers to which section that is being programmed (erased or written), not
which section that actually is being read during a boot loader software update.

24.3.1 RWW – Read-While-Write Section

If a boot loader software update is programming a page inside the RWW section, it is possible to read code from the flash,
but only code that is located in the NRWW section. During an on-going programming, the software must ensure that the
RWW section never is being read. If the user software is trying to read code that is located inside the RWW section (i.e., by
a call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown state. To avoid this, the
interrupts should either be disabled or moved to the boot loader section. The boot loader section is always located in the
NRWW section. The RWW section busy bit (RWWSB) in the store program memory control and status register (SPMCSR)
will be read as logical one as long as the RWW section is blocked for reading. After a programming is completed, the
RWWSB must be cleared by software before reading code located in the RWW section. See Section 24.5.1 “Store Program
Memory Control and Status Register – SPMCSR” on page 233 for details on how to clear RWWSB.

24.3.2 NRWW – No Read-While-Write Section

The code located in the NRWW section can be read when the boot loader software is updating a page in the RWW section.
When the boot loader code updates the NRWW section, the CPU is halted during the entire page erase or page write
operation.

Table 24-1. Read-While-Write Features

Which Section does the Z-pointer Address
During the Programming?

Which Section Can be
Read during

Programming?
Is the CPU

Halted?
Read-While-Write

Supported?

RWW section NRWW Section No Yes

NRWW section None Yes No
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

230

25.2 Fuse Bits

The Atmel® ATmega48/88/168 has three fuse bytes. Table 25-4 - Table 25-7 on page 244 describe briefly the functionality of
all the fuses and how they are mapped into the fuse bytes. Note that the fuses are read as logical zero, “0”, if they are
programmed.

Table 25-3. Lock Bit Protection Modes(1)(2). Only ATmega88/168.

BLB0 Mode BLB02 BLB01

1 1 1 No restrictions for SPM or LPM accessing the application section.

2 1 0 SPM is not allowed to write to the application section.

3 0 0

SPM is not allowed to write to the application section, and LPM executing
from the boot loader section is not allowed to read from the application
section. If interrupt vectors are placed in the boot loader section, interrupts
are disabled while executing from the application section.

4 0 1
LPM executing from the boot loader section is not allowed to read from the
application section. If interrupt vectors are placed in the boot loader section,
interrupts are disabled while executing from the application section.

BLB1 Mode BLB12 BLB11

1 1 1 No restrictions for SPM or LPM accessing the boot loader section.

2 1 0 SPM is not allowed to write to the boot loader section.

3 0 0

SPM is not allowed to write to the boot loader section, and LPM executing
from the application section is not allowed to read from the boot loader
section. If interrupt vectors are placed in the application section, interrupts
are disabled while executing from the boot loader section.

4 0 1
LPM executing from the application section is not allowed to read from the
boot loader section. If interrupt vectors are placed in the application section,
interrupts are disabled while executing from the boot loader section.

Notes: 1. Program the fuse bits and boot lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed

Table 25-4. Extended Fuse Byte for ATmega48

Extended Fuse Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

– 2 – 1

– 1 – 1

SELFPRGEN 0 Self programming enable 1 (unprogrammed)
243ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

25.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient programming, the following
should be considered.

● The command needs only be loaded once when writing or reading multiple memory locations.

● Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the EESAVE fuse is programmed)
and flash after a chip erase.

● Address high byte needs only be loaded before programming or reading a new 256 word window in flash or 256 byte
EEPROM. This consideration also applies to signature bytes reading.

25.7.3 Chip Erase

The chip erase will erase the flash and EEPROM(1) memories plus lock bits. The lock bits are not reset until the program
memory has been completely erased. The fuse bits are not changed. A chip erase must be performed before the flash
and/or EEPROM are reprogrammed.

Note: 1. The EEPRPOM memory is preserved during chip erase if the EESAVE fuse is programmed.

Load command “chip erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for chip erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the chip erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

25.7.4 Programming the Flash

The flash is organized in pages, see Table 25-12 on page 247. When programming the flash, the program data is latched
into a page buffer. This allows one page of program data to be programmed simultaneously. The following procedure
describes how to program the entire flash memory:

A. Load command “write flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for write flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load address low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load data low byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load data high byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch data

1. Set BS1 to “1”. This selects high data byte.

2. Give pAGEL a positive pulse. This latches the data bytes. (See Figure 25-3 on page 250 for signal waveforms)
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

248

Power supply current(6)

Active 4MHz, VCC = 3V
(ATmega48/88/168L)

ICC

1.8 3.0 mA

Active 8MHz, VCC = 5V
(ATmega48/88/168)

6.0 10 mA

Active 15MHz, VCC = 5V
(ATmega48/88/168)

10.0 16 mA

Idle 4MHz, VCC = 3V
(ATmega48/88/168V)

0.4 1 mA

Idle 8MHz, VCC = 5V
(ATmega48/88/168L)

1.4 2.4 mA

Idle 15MHz, VCC = 5V
(ATmega48/88/168)

2.8 4 mA

Power-down mode

WDT enabled, VCC = 3V 8 30 µA

WDT enabled, VCC = 5V 12.6 50 µA

WDT disabled, VCC = 3V 5 24 µA

WDT disabled, VCC = 5V 6.6 36 µA

Analog comparator
input offset voltage

VCC = 5V Vin = VCC/2 VACIO 10 40 mV

Analog comparator
input leakage current

VCC = 5V Vin = VCC/2 IACLK –50 50 nA

Analog comparator
propagation delay

VCC = 4.5V tACID 140 ns

26.2 DC Characteristics (Continued)
TA = –40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min.(5) Typ. Max.(5) Unit

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
Atmel ATmega48:
1] The sum of all IOL, for ports C0 - C5, should not exceed 70mA.
2] The sum of all IOL, for ports C6, D0 - D4, should not exceed 70mA.
3] The sum of all IOL, for ports B0 - B7, D5 - D7, should not exceed 70mA.
ATmega88/168:
1] The sum of all IOL, for ports C0 - C5, should not exceed 100mA.
2] The sum of all IOL, for ports C6, D0 - D4, should not exceed 100mA.
3] The sum of all IOL, for ports B0 - B7, D5 - D7, should not exceed 100mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
ATmega48:
1] The sum of all IOH, for ports C0 - C5, should not exceed 70mA.
2] The sum of all IOH, for ports C6, D0 - D4, should not exceed 70mA.
3] The sum of all IOH, for ports B0 - B7, D5 - D7, should not exceed 70mA.
ATmega88/168:
1] The sum of all IOH, for ports C0 - C5, should not exceed 100mA.
2] The sum of all IOH, for ports C6, D0 - D4, should not exceed 100mA.
3] The sum of all IOH, for ports B0 - B7, D5 - D7, should not exceed 100mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. All DC characteristics contained in this datasheet are based on actual ATmega88 microcontrollers characterization.

6. Values with Section 7.7.1 “Power Reduction Register - PRR” on page 35 enabled (0xEF).
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14

262

