

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	149
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	80K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 29x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5606bk0clu4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3 shows the MPC5606BK in the 144 LQFP package.

Figure 3. 144 LQFP pinout

MPC5606BK Microcontroller Data Sheet, Rev. 5

Figure 4 shows the MPC5606BK in the 100 LQFP package.

Figure 4. 100 LQFP pinout

2.2 Pin muxing

Table 2 defines the pin list and muxing for this device.

Each entry of Table 2 shows all the possible configurations for each pin, via the alternate functions. The default function assigned to each pin after reset is indicated by AF0.

Port	PCB	Alternate		eral	ion	pe ²	t⊒°°;	Pi	in numb	er	
pin	register	function ¹	Function	Periph	l/O direct	Pad ty	RESE config	100 LQFP	144 LQFP	176 LQFP	
Port A											
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT E0UC[13] WKUP[19] ⁴	SIUL eMIOS_0 MC_CGM eMIOS_0 WKUP	I/O I/O I/O I	М	Tristate	12	16	24	
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] NMI ⁵ — WKUP[2] ⁴	SIUL eMIOS_0 WKUP WKUP	I/O I/O I I	S	Tristate	7	11	19	
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] — MA[2] WKUP[3] ⁴	SIUL eMIOS_0 — ADC_0 WKUP	I/O I/O — 0 I	S	Tristate	5	9	17	
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 — —	GPIO[3] E0UC[3] LIN5TX CS4_1 EIRQ[0] ADC1_S[0]	SIUL eMIOS_0 LINFlex_5 DSPI_1 SIUL ADC_1	I/O I/O O I I	J	Tristate	68	90	114	
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 — —	GPIO[4] E0UC[4] — CS0_1 LIN5RX WKUP[9] ⁴	SIUL eMIOS_0 DSPI_1 LINFlex_5 WKUP	I/O I/O I/O I I	S	Tristate	29	43	51	
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] LIN4TX —	SIUL eMIOS_0 LINFlex_4 —	I/O I/O O	М	Tristate	79	118	146	
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 — —	GPIO[6] E0UC[6] — CS1_1 EIRQ[1] LIN4RX	SIUL eMIOS_0 DSPI_1 SIUL LINFlex_4	I/O I/O — 0 I I	S	Tristate	80	119	147	

Table 2. Functional port pins

Port	PCB	Alternate		eral	ion	pe ²	ет 9. ³	Pi	n numb	er
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESI	100 LQFP	144 LQFP	176 LQFP
PA[7]	PCR[7]	AF0 AF1 AF2 AF3	GPIO[7] E0UC[7] LIN3TX —	SIUL eMIOS_0 LINFlex_3	I/O I/O O	J	Tristate	71	104	128
			EIRQ[2] ADC1_S[1]	SIUL ADC_1	l					
PA[8]	PCR[8]	AF0 AF1 AF2 AF3	GPIO[8] E0UC[8] E0UC[14] —	SIUL eMIOS_0 eMIOS_0 —	I/O I/O I/O	S	Input, weak pull-up	72	105	129
		N/A ⁶	EIRQ[3] ABS[0] LIN3RX	SIUL BAM LINFlex_3	 					
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁶	GPIO[9] E0UC[9] — CS2_1 FAB	SIUL eMIOS_0 — DSPI_1 BAM	I/O I/O — 0 I	S	Pull- down	73	106	130
PA[10]	PCR[10]	AF0 AF1 AF2 AF3 —	GPIO[10] E0UC[10] SDA LIN2TX ADC1_S[2]	SIUL eMIOS_0 I ² C_0 LINFlex_2 ADC_1	I/O I/O I/O O I	J	Tristate	74	107	131
PA[11]	PCR[11]	AF0 AF1 AF2 AF3	GPIO[11] E0UC[11] SCL	SIUL eMIOS_0 I ² C_0	I/O I/O I/O	J	Tristate	75	108	132
			EIRQ[16] LIN2RX ADC1_S[3]	SIUL LINFlex_2 ADC_1	 					
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 — —	GPIO[12] CS3_1 EIRQ[17] SIN_0	SIUL eMIOS_0 DSPI_1 SIUL DSPI_0	I/O — I/O O I I	S	Tristate	31	45	53
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 E0UC[29] —	SIUL DSPI_0 eMIOS_0 —	I/O O I/O —	М	Tristate	30	44	52
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4]	SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL	I/O I/O I/O I/O I	М	Tristate	28	42	50

 Table 2. Functional port pins (continued)

Port	PCB	Alternate		eral	ion	pe ²	е 9. ³	Pi	n numb	er
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESI	100 LQFP	144 LQFP	176 LQFP
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 E0UC[1] WKUP[10] ⁴	SIUL DSPI_0 DSPI_0 eMIOS_0 WKUP	I/O I/O I/O I	М	Tristate	27	40	48
				Port B						
PB[0]	PCR[16]	AF0 AF1 AF2 AF3	GPIO[16] CANOTX E0UC[30] LIN0TX	SIUL FlexCAN_0 eMIOS_0 LINFlex_0	I/O O I/O O	М	Tristate	23	31	39
PB[1]	PCR[17]	AF0 AF1 AF2 AF3 — — —	GPIO[17] — E0UC[31] — WKUP[4] ⁴ CAN0RX LIN0RX	SIUL eMIOS_0 WKUP FlexCAN_0 LINFlex_0	I/O I/O I I	S	Tristate	24	32	40
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LIN0TX SDA E0UC[30]	SIUL LINFlex_0 I ² C_0 eMIOS_0	I/O O I/O I/O	М	Tristate	100	144	176
PB[3]	PCR[19]	AF0 AF1 AF2 AF3 — —	GPIO[19] E0UC[31] SCL WKUP[11] ⁴ LIN0RX	SIUL eMIOS_0 I ² C_0 — WKUP LINFlex_0	/O /O /O 	S	Tristate	1	1	1
PB[4]	PCR[20]	AF0 AF1 AF2 AF3 — — —	 ADC0_P[0] ADC1_P[0] GPI0[20]			I	Tristate	50	72	88
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 — — —	 ADC0_P[1] ADC1_P[1] GPI0[21]	 ADC_0 ADC_1 SIUL		Ι	Tristate	53	75	91

 Table 2. Functional port pins (continued)

Port	PCB	Alternate		eral	ion	pe ²	е. 9.3	Pi	n numb	er
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESI	100 LQFP	144 LQFP	176 LQFP
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 — — —	 ADC0_P[2] ADC1_P[2] GPI0[22]		 	I	Tristate	54	76	92
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 — — —	— — — ADC0_P[3] ADC1_P[3] GPIO[23]			I	Tristate	55	77	93
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 	GPIO[24] — — OSC32K_XTAL ⁷ WKUP[25] ADC0_S[0] ADC1_S[4]	SIUL — — OSC32K WKUP ADC_0 ADC_1	 - 	I		39	53	61
PB[9]	PCR[25]	AF0 AF1 AF2 AF3 — — — —	GPIO[25] — — OSC32K_EXTAL ⁷ WKUP[26] ADC0_S[1] ADC1_S[5]	SIUL — — OSC32K WKUP ADC_0 ADC_1	 - 	I	_	38	52	60
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 — — —	GPIO[26] — — WKUP[8] ⁴ ADC0_S[2] ADC1_S[6]	SIUL — — WKUP ADC_0 ADC_1	I/O — — — — — — —	J	Tristate	40	54	62
PB[11]	PCR[27]	AF0 AF1 AF2 AF3 —	GPIO[27] E0UC[3] — CS0_0 ADC0_S[3]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O I/O I	J	Tristate			97
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ADC0_X[0]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O — 0 I	J	Tristate	61	83	101

 Table 2. Functional port pins (continued)

MPC5606BK Microcontroller Data Sheet, Rev. 5

Port	PCB	Alternate		eral	ion	pe ²	е. 9.3	Pi	in numb	ber	
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESI	100 LQFP	144 LQFP	176 LQFP	
PC[14]	PCR[46]	AF0 AF1 AF2	GPIO[46] E0UC[14] SCK_2	SIUL eMIOS_0 DSPI_2	I/O I/O I/O	S	Tristate	3	3	3	
		AF3 —	EIRQ[8]	SIUL	I						
PC[15]	PCR[47]	AF0 AF1 AF2 AF3	GPIO[47] E0UC[15] CS0_2 —	SIUL eMIOS_0 DSPI_2 	I/O I/O I/O	М	Tristate	4	4	4	
			EIRQ[20]	SIUL	Ι						
				Port D							
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 — — —	GPIO[48] — — WKUP[27] ADC0_P[4] ADC1_P[4]	SIUL — — WKUP ADC_0 ADC_1	 - 	I	Tristate	41	63	77	
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 — — —	GPIO[49] — — WKUP[28] ADC0_P[5] ADC1_P[5]	SIUL — — WKUP ADC_0 ADC_1	 - 	I	Tristate	42	64	78	
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] — — ADC0_P[6] ADC1_P[6]	SIUL — — ADC_0 ADC_1		I	Tristate	43	65	79	
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 — —	GPIO[51] — — ADC0_P[7] ADC1_P[7]	SIUL — — ADC_0 ADC_1	 	I	Tristate	44	66	80	
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 — —	GPIO[52] — — ADC0_P[8] ADC1_P[8]	SIUL — — ADC_0 ADC_1	 - 	I	Tristate	45	67	81	

 Table 2. Functional port pins (continued)

Port	PCB	Alternate		eral	ion	pe ²	g.3	Pi	n numb	er
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESI	100 LQFP	144 LQFP	176 LQFP
PF[7]	PCR[87]	AF0 AF1 AF2 AF3 —	GPIO[87] CS2_1 ADC0_S[15]	SIUL — DSPI_1 — ADC_0	I/O O I	J	Tristate		62	70
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX CS4_0 CAN2TX	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	1/0 0 0	М	Tristate	_	34	42
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 — — —	GPIO[89] E1UC[1] CS5_0 — WKUP[22] ⁴ CAN2RX CAN3RX	SIUL eMIOS_1 DSPI_0 WKUP FlexCAN_2 FlexCAN_3	½0	S	Tristate		33	41
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] CS1_0 LIN4TX E1UC[2]	SIUL DSPI_0 LINFlex_4 eMIOS_1	I/O O O I/O	М	Tristate		38	46
PF[11]	PCR[91]	AF0 AF1 AF2 AF3 —	GPIO[91] CS2_0 E1UC[3] — WKUP[15] ⁴ LIN4RX	SIUL DSPI_0 eMIOS_1 — WKUP LINFlex_4	I/O O I/O I I I	S	Tristate	_	39	47
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] LIN5TX —	SIUL eMIOS_1 LINFlex_5 —	I/O I/O O	М	Tristate	_	35	43
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] 	SIUL eMIOS_1 — WKUP LINFlex_5	I/O I/O — I I	S	Tristate		41	49
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_1	I/O O I/O O	М	Tristate	_	102	126

 Table 2. Functional port pins (continued)

Port	PCB	Alternate		eral	ion	pe ²	g.3	Pi	n numb	er
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESI	100 LQFP	144 LQFP	176 LQFP
PG[7]	PCR[103]	AF0 AF1 AF2 AF3 —	GPIO[103] E1UC[16] E1UC[30] WKUP[20] ⁴ LIN6RX	SIUL eMIOS_1 eMIOS_1 WKUP LINFlex_6	1/0 /0 1/0 /	S	Tristate		29	37
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] LIN7TX CS0_2 EIRQ[15]	SIUL eMIOS_1 LINFlex_7 DSPI_2 SIUL	I/O I/O I/O I	S	Tristate		26	34
PG[9]	PCR[105]	AF0 AF1 AF2 AF3 —	GPIO[105] E1UC[18] SCK_2 WKUP[21] ⁴ LIN7RX	SIUL eMIOS_1 DSPI_2 WKUP LINFlex_7	I/O I/O I/O I I	S	Tristate		25	33
PG[10]	PCR[106]	AF0 AF1 AF2 AF3 —	GPIO[106] E0UC[24] E1UC[31] SIN_4	SIUL eMIOS_0 eMIOS_1 DSPI_4	I/O I/O I/O I	S	Tristate	_	114	138
PG[11]	PCR[107]	AF0 AF1 AF2 AF3	GPIO[107] E0UC[25] CS0_4 —	SIUL eMIOS_0 DSPI_4 —	I/O I/O O	М	Tristate		115	139
PG[12]	PCR[108]	AF0 AF1 AF2 AF3	GPIO[108] E0UC[26] SOUT_4 —	SIUL eMIOS_0 DSPI_4 	I/O I/O O	М	Tristate		92	116
PG[13]	PCR[109]	AF0 AF1 AF2 AF3	GPIO[109] E0UC[27] SCK_4 —	SIUL eMIOS_0 DSPI_4 —	I/O I/O I/O	М	Tristate		91	115
PG[14]	PCR[110]	AF0 AF1 AF2 AF3	GPIO[110] E1UC[0] — —	SIUL eMIOS_1 —	I/O I/O —	S	Tristate		110	134
PG[15]	PCR[111]	AF0 AF1 AF2 AF3 —	GPIO[111] E1UC[1] — — —	SIUL eMIOS_1 	I/O I/O — —	М	Tristate		111	135
				Port H						

 Table 2. Functional port pins (continued)

K is a constant for the particular part, which may be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J may be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.6 I/O pad electrical characteristics

3.6.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads provide maximum speed. These are used for improved debugging capability.
- Input only pads are associated with ADC channels and 32 kHz low power external crystal oscillator providing low input leakage.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

3.6.2 I/O input DC characteristics

Table 12 provides input DC electrical characteristics as described in Figure 5.

Figure 5. I/O input DC electrical characteristics definition

Symbol		6	Paramotor	Conditional		Valu	9	Unit
Symb	UI	C	Falameter	Conditions	Min	Тур	Max	Unit
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.4	—	0.35V _{DD}	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	—	_	V
V _{OL}	СС	Ρ	Output low level	Push Pull, $I_{OL} = 2 \text{ mA}$, V _{DD} = 5.0 V \pm 10%, PAD3V5V = 0 (recommended)		_	0.1V _{DD}	V
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	_	0.1V _{DD}	
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_		0.5	
T _{tr}	СС	D	Output transition time output pin ³ MEDIUM configuration	C _L = 25 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	10	ns
				C _L = 50 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	20	
				C _L = 100 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	40	
				C _L = 25 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	12	
				C _L = 50 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	25	
				C _L = 100 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	40	
W _{FRST}	SR	Ρ	RESET input filtered pulse	—			40	ns
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	—	1000	—		ns
I _{WPU}	СС	Ρ	Weak pull-up current absolute	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10	—	150	μA
			value	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	10	—	150	
				$V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 1 ⁴	10	—	250	

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the MC_RGM chapter of the MPC5606BK Microcontroller Reference Manual).

³ C_L includes device and package capacitance (C_{PKG} < 5 pF). ⁴ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Symbol	Ratings	Conditions	Class	Max value ³	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	Electrostatic discharge voltage	$T_A = 25 \ ^{\circ}C$	C3A	500	
	(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	

 Table 31. ESD absolute maximum ratings^{1,2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

³ Data based on characterization results, not tested in production

3.11.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 32. Latch-up results

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 12 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 33 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

Figure 16. Slow external crystal oscillator (32 kHz) electrical characteristics

Symbol		C	C Parameter Conditions ¹			Value			
Symbol			runneer	Conditions	Min	Тур	Мах	onic	
f _{SXOSC}	SR	_	Slow external crystal oscillator frequency	_	32	32.768	40	kHz	
V _{SXOSC}	СС	Т	Oscillation amplitude	—	_	2.1		V	
I _{SXOSCBIAS}	СС	Т	Oscillation bias current — 2.5					μA	
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	—	_	—	8	μA	
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	—	—	_	2 ²	S	

V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
 Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

FMPLL electrical characteristics 3.14

The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the FXOSC or FIRC sources.

Table 37.	FMPLL	electrical	characteristics
-----------	-------	------------	-----------------

Symbol		al	C	Parameter	Conditions ¹		Value		Unit
		Ŭ	i didiliciti	Conditions	Min	Тур	Max	Onic	
f _{PL}	LIN	SR	—	FMPLL reference clock ²	—	4		64	MHz
Δ_{P}	LLIN	SR		FMPLL reference clock duty cycle ²	_	40	—	60	%

possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_S being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc \times C_S)$, where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S) and the sum of $R_S + R_F + R_L + R_{SW} + R_{AD}$, the external circuit must be designed to respect the Equation 4:

$$V_A \bullet \frac{\mathbf{R}_{S} + \mathbf{R}_{F} + \mathbf{R}_{L} + \mathbf{R}_{SW} + \mathbf{R}_{AD}}{\mathbf{R}_{EO}} < \frac{1}{2} LSB$$

and R_{AD}) can be neglected with respect to external resistances.

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R_{SW})

Figure 18. Input equivalent circuit (precise channels)

Eqn. 4

3.17.3 ADC electrical characteristics

Symbol		6	Parameter		Conditions		Unit		
Symbol			Farameter					Max	•
I _{LKG}	СС	С	Input leakage current	$T_A = -40 \ ^\circ C$	No current injection on adjacent pin	_	1		nA
		С		T _A = 25 °C			1		
		D		$T_A = 85^{\circ}C$			3	100	
		С		T _A = 105 °C			8	200	
		Ρ		T _A = 125 °C		—	45	400	

Table 40. ADC input leakage current

Table 41. ADC_0 conversion characteristics (10-bit ADC_0)

Symbol		<u>ر</u>	Parameter	Conditions ¹		Unit		
Symbo		C	Falameter	Conditions	Min	Тур Мах		onne
V _{SS_ADC0}	SR		Voltage on VSS_HV_ADC0 (ADC_0 reference) pin with respect to ground (V _{SS}) ²	_	-0.1	_	0.1	V
V _{DD_ADC0}	SR		Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (V _{SS})	_	V _{DD} – 0.1	_	V _{DD} + 0.1	V
V _{AINx}	SR	_	Analog input voltage ³	_	V _{SS_ADC0} - 0.1	_	V _{DD_ADC0} + 0.1	V
I _{ADC0pwd}	SR		ADC_0 consumption in power down mode	_	_		50	μA
I _{ADC0run}	SR		ADC_0 consumption in running mode	_	_		5	mA
f _{ADC0}	SR		ADC_0 analog frequency	—	6	—	32 + 4%	MHz
Δ_{ADC0_SYS}	SR	_	ADC_0 digital clock duty cycle (ipg_clk)	ADCLKSEL = 1 ⁴	45		55	%
t _{ADC0_PU}	SR	—	ADC_0 power up delay	_	_	—	1.5	μs
t _{ADC0_S}	СС	Т	Sample time ⁵	f _{ADC} = 32 MHz, ADC0_conf_sample_input = 17	0.5			μs
				f _{ADC} = 6 MHz, INPSAMP = 255	_		42	
t _{ADC0_C}	СС	Ρ	Conversion time ⁶	f _{ADC} = 32 MHz, ADC_conf_comp = 2	0.625		_	μs
C _S	СС	D	ADC_0 input sampling capacitance	_	_		3	pF
C _{P1}	СС	D	ADC_0 input pin capacitance 1	—	_	—	3	pF
C _{P2}	СС	D	ADC_0 input pin capacitance 2	—		—	1	pF
C _{P3}	сс	D	ADC_0 input pin capacitance 3	—	_	—	1	pF

Symbol		~	Devenuetev	O a m ditt	1		11		
		C	Parameter	Condit	Min	Тур	yp Max		
R _{SW1}	СС	D	Internal resistance of analog source	_		_	-	3	kΩ
R _{SW2}	СС	D	Internal resistance of analog source	_			—	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source		—		—	2	kΩ
I _{INJ}	SR		Input current Injection	Current injection $V_{DD} =$ on one ADC_0 3.3 V ± 10%		-5	—	5	mA
				from the converted one	V _{DD} = 5.0 V ± 10%	-5	—	5	
INL	СС	Т	Absolute value for integral nonlinearity	No overload	1	_	0.5	1.5	LSB
DNL	СС	Т	Absolute differential nonlinearity	No overload			0.5	1.0	LSB
OFS	СС	Т	Absolute offset error			_	0.5	—	LSB
GNE	СС	Т	Absolute gain error			_	0.6		LSB
TUEP	СС	Ρ	Total unadjusted error ⁷ for	Without current in	njection	-2	0.6	2	LSB
			precise channels, input only pins	With current injection		-3	—	3	
TUEX	СС	Т	Total unadjusted error ⁷ for	Without current in	njection	-3	1	3	LSB
		Т	extended channel	With current injection		-4		4	

Fable 41. ADC 0 conversion characteristics	(10-bit ADC 0) (continued))
	(,

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 $^2\,$ Analog and digital $V_{SS}\,\text{must}$ be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC0} and V_{DD_ADC0} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

⁵ During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC0_S} . After the end of the sample time t_{ADC0_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC0_S} depend on programming.

⁶ This parameter does not include the sample time t_{ADC0_S}, but only the time for determining the digital result and the time to load the result's register with the conversion result.

⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

Note: Numbers shown reference Table 44.

Figure 24. DSPI classic SPI timing — master, CPHA = 1

Note: Numbers shown reference Table 44.

Figure 25. DSPI classic SPI timing — slave, CPHA = 0

MPC5606BK Microcontroller Data Sheet, Rev. 5

	NOTES:										
	1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25MM PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE DATUM H.										
	2. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THEN 0.08MM. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07MM FOR 0.4MM AND 0.5MM PITCH PACKAGES.										
DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX	DIM	MIN	NOM	МАХ
A			1.6	L1		1 REF					
A1	0.05		0.15	R1	0.08						
A2	1.35	1.4	1.45	R2	0.08		0.2				
b	0.17	0.22	0.27	S	C).2 REF					
b1	0.17	0.2	0.23	θ	0°	3.5°	7°				
с	0.09		0.2	θ1	0°						
c1	0.09		0.16	θ2	11°	12 °	13°				
D		26 BSC		θ3	11°	12°	13°				
D1		24 BSC									
e		0.5 BSC	>								
E		26 BSC									
E1		24 BSC				D	IMENSION	I I AND	DE		
L	0.45	0.6	0.75		UNII		TOLERANC	ES	KEFER	ANCE D	
					MM		ASME Y14.	5M	64-	-06-28	0-1392

Figure 35. 176 LQFP package mechanical drawing (Part 3 of 3)

6 Revision history

Table 46. Revision history

Revision	Date	Description of changes
1 22	2 Apr 2011	Initial release.
2 15	May 2013	 Changed device number to MPC5606BK. In Table 2 (Functional port pins), updated PA[11] AF2, PD[13] AF2, and PH[11] AF3 I/O direction to "I/O". In Table 3 (Pad types), corrected "Fast" in the "S" row to "Slow." In Table 5 (PAD3V5V field description), updated footnote 2. In Table 6 (OSCILLATOR_MARGIN field description), updated footnote 2. Inserted Section 3.2.3, NVUSRO[WATCHDOG_EN] field description. In Table 8 (Absolute maximum ratings), Table 9 (Recommended operating conditions (3.3 V)), and Table 10 (Recommended operating conditions (5.0 V)), corrected the parameter description for V_{DD_ADC} to "Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with respect to ground (V_{SS})" In Section 3.6.1, I/O pad types bullet item, removed Nexus reference. In Table 13 (I/O pull-up/pull-down DC electrical characteristics), Table 14 (SLOW configuration output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer electrical characteristics), Table 16 (FAST configuration output buffer electrical characteristics), Table 16 (FAST configuration output buffer electrical characteristics), and Table 16 (FAST configuration output buffer electrical characteristics), changed sentence in footnote 2 to "All pads but RESET are configured in input or in high impedance state." In Table 15 (MEDIUM configuration output buffer electrical characteristics), corrected the maximum value for I_{DD_BV} in Table 22 (Voltage regulator electrical characteristics), corrected the maximum value for I_{DD_BV} in Table 22 (Voltage regulator electrical characteristics), changed V_{PORUP} classification tag from "P" (Production testing guaranteed) to "T" (Design characterization). In Table 23 (Low voltage monitor electrical characteristics), changed V_{LVDHV3BL}

Revision	Date	Description of changes
2 (cont.)	15 May 2013	In Table 24 (Electrical characteristics in different application modes), — Changed I _{DDMAX} Typ to 81 mA and I _{DDMAX} Typ to 130 mA. — Changed I _{DDRUN} Typ for ICPU = 32 MHz to 54 mA. Added I _{DDRUN} Max of 96 mA. — Changed I _{DDRUN} Typ for ICPU = 48 MHz to 57 mA. Added I _{DDRUN} Max of 120 mA. — Changed I _{DDHALT} at T _A = 25 °C Typ to 10 mA and I _{DDHALT} Max to 15 mA. — Changed I _{DDHALT} at T _A = 25 °C Typ to 15 mA and I _{DDHALT} Max to 500 µA. — Changed I _{DDSTOP} T _A temperature from -40 °C to 25 °C. — Changed I _{DDSTOP} at T _A = 25 °C Typ to 130 µA and I _{DDSTOP} Max to 500 µA. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 180 µA. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 1 mA and I _{DDSTOP} Max to 5 mA. — Changed I _{DDSTOP} at T _A = 25 °C Typ to 5 mA and I _{DDSTOP} Max to 14 mA. — Changed I _{DDSTOP} at T _A = 25 °C Typ to 5 mA and I _{DDSTOP} Max to 14 mA. — Changed I _{DDSTOP} at T _A = 25 °C Typ to 17 µA and Max to 80 µA. — Changed I _{DDSTDP2} at T _A = 25 °C Typ to 100 µA. — Changed I _{DDSTDP2} at T _A = 105 °C Typ to 100 µA. — Changed I _{DDSTDP2} at T _A = 105 °C Typ to 100 µA. — Changed I _{DDSTDP2} at T _A = 105 °C Typ to 120 µA and Max to 950 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 120 µA and Max to 1700 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 120 µA and Max to 500 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 120 µA and Max to 500 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 150 µA and Max to 500 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 240 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 240 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 150 µA and Max to 500 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP3} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP3} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP3}
3	11 Sep 2013	Updated the temperature in table note 2 in Table 1 (MPC5606BK family comparison) from 105 °C to 125 °C.
4	25 Nov2015	Updated the Max value current for I _{ADC0run} from 40 mA to 5 mA in Table 41 (ADC_0 conversion characteristics (10-bit ADC_0)).
5	7 Nov 2017	In Table 9 (Recommended operating conditions (3.3 V)) added Min value for TV _{DD.} In Table 10 (Recommended operating conditions (5.0 V)) added Min value for TV _{DD.} In Table 44 (DSPI characteristics) changed the for DSPI 2 and 4, in MTFE=1 mode from 125 to 145.