# E·XFL

#### NXP USA Inc. - SPC5606BK0VLL6 Datasheet



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                 |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | e200z0h                                                                |
| Core Size                  | 32-Bit Single-Core                                                     |
| Speed                      | 64MHz                                                                  |
| Connectivity               | CANbus, I <sup>2</sup> C, LINbus, SCI, SPI                             |
| Peripherals                | DMA, POR, PWM, WDT                                                     |
| Number of I/O              | 77                                                                     |
| Program Memory Size        | 1MB (1M x 8)                                                           |
| Program Memory Type        | FLASH                                                                  |
| EEPROM Size                | 64K x 8                                                                |
| RAM Size                   | 80K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                              |
| Data Converters            | A/D 7x10b, 5x12b                                                       |
| Oscillator Type            | Internal                                                               |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                          |
| Package / Case             | 100-LQFP                                                               |
| Supplier Device Package    | 100-LQFP (14x14)                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5606bk0vll6 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Port   | PCB      | Alternate                          |                                                             | eral                                     | ion                       | pe <sup>2</sup> | ЕТ<br>g. <sup>3</sup> | Pi          | in numb     | er          |
|--------|----------|------------------------------------|-------------------------------------------------------------|------------------------------------------|---------------------------|-----------------|-----------------------|-------------|-------------|-------------|
| pin    | register | function <sup>1</sup>              | Function                                                    | Periph                                   | I/O<br>direct             | Pad ty          | RESI<br>confi         | 100<br>LQFP | 144<br>LQFP | 176<br>LQFP |
| PD[13] | PCR[61]  | AF0<br>AF1<br>AF2<br>AF3<br>—      | GPIO[61]<br>CS0_1<br>E0UC[25]<br>—<br>ADC0_S[5]             | SIUL<br>DSPI_1<br>eMIOS_0<br>—<br>ADC_0  | I/O<br>I/O<br>I/O<br>I    | J               | Tristate              | 62          | 84          | 102         |
| PD[14] | PCR[62]  | AF0<br>AF1<br>AF2<br>AF3<br>—      | GPIO[62]<br>CS1_1<br>E0UC[26]<br>—<br>ADC0_S[6]             | SIUL<br>DSPI_1<br>eMIOS_0<br>—<br>ADC_0  | I/O<br>O<br>I/O<br><br>I  | J               | Tristate              | 64          | 86          | 104         |
| PD[15] | PCR[63]  | AF0<br>AF1<br>AF2<br>AF3<br>—      | GPIO[63]<br>CS2_1<br>E0UC[27]<br>—<br>ADC0_S[7]             | SIUL<br>DSPI_1<br>eMIOS_0<br><br>ADC_0   | I/O<br>O<br>I/O<br>I      | J               | Tristate              | 66          | 88          | 106         |
|        | <u> </u> | <u> </u>                           |                                                             | Port E                                   |                           | <u> </u>        | <u> </u>              |             | <u> </u>    | <u> </u>    |
| PE[0]  | PCR[64]  | AF0<br>AF1<br>AF2<br>AF3<br>—<br>— | GPIO[64]<br>E0UC[16]<br>—<br>WKUP[6] <sup>4</sup><br>CAN5RX | SIUL<br>eMIOS_0<br><br>WKUP<br>FlexCAN_5 | I/O<br>I/O<br>—<br>I<br>I | S               | Tristate              | 6           | 10          | 18          |
| PE[1]  | PCR[65]  | AF0<br>AF1<br>AF2<br>AF3           | GPIO[65]<br>E0UC[17]<br>CAN5TX<br>—                         | SIUL<br>eMIOS_0<br>FlexCAN_5<br>—        | I/O<br>I/O<br>O           | М               | Tristate              | 8           | 12          | 20          |
| PE[2]  | PCR[66]  | AF0<br>AF1<br>AF2<br>AF3<br>—<br>— | GPIO[66]<br>E0UC[18]<br>—<br>EIRQ[21]<br>SIN_1              | SIUL<br>eMIOS_0<br>—<br>SIUL<br>DSPI_1   | /O<br> /O<br><br> <br>    | М               | Tristate              | 89          | 128         | 156         |
| PE[3]  | PCR[67]  | AF0<br>AF1<br>AF2<br>AF3           | GPIO[67]<br>E0UC[19]<br>SOUT_1<br>—                         | SIUL<br>eMIOS_0<br>DSPI_1<br>—           | I/O<br>I/O<br>O           | М               | Tristate              | 90          | 129         | 157         |
| PE[4]  | PCR[68]  | AF0<br>AF1<br>AF2<br>AF3<br>—      | GPIO[68]<br>E0UC[20]<br>SCK_1<br>—<br>EIRQ[9]               | SIUL<br>eMIOS_0<br>DSPI_1<br>—<br>SIUL   | I/O<br>I/O<br>I/O<br>I    | М               | Tristate              | 93          | 132         | 160         |
| PE[5]  | PCR[69]  | AF0<br>AF1<br>AF2<br>AF3           | GPIO[69]<br>E0UC[21]<br>CS0_1<br>MA[2]                      | SIUL<br>eMIOS_0<br>DSPI_1<br>ADC_0       | I/O<br>I/O<br>I/O<br>O    | М               | Tristate              | 94          | 133         | 161         |

 Table 2. Functional port pins (continued)

| Port   | PCB      | PCR Alternate Function                  | ion                                                                          | pe <sup>2</sup>                                             | 9.3                              | Pi     | Pin number |             |             |             |
|--------|----------|-----------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|--------|------------|-------------|-------------|-------------|
| pin    | register | function <sup>1</sup>                   | Function                                                                     | Periph                                                      | I/O<br>direct                    | Pad ty | RESE       | 100<br>LQFP | 144<br>LQFP | 176<br>LQFP |
| PE[6]  | PCR[70]  | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPIO[70]<br>E0UC[22]<br>CS3_0<br>MA[1]<br>EIRQ[22]                           | SIUL<br>eMIOS_0<br>DSPI_0<br>ADC_0<br>SIUL                  | I/O<br>I/O<br>O<br>I             | М      | Tristate   | 95          | 139         | 167         |
| PE[7]  | PCR[71]  | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPIO[71]<br>E0UC[23]<br>CS2_0<br>MA[0]<br>EIRQ[23]                           | SIUL<br>eMIOS_0<br>DSPI_0<br>ADC_0<br>SIUL                  | I/O<br>I/O<br>O<br>I             | М      | Tristate   | 96          | 140         | 168         |
| PE[8]  | PCR[72]  | AF0<br>AF1<br>AF2<br>AF3                | GPIO[72]<br>CAN2TX<br>E0UC[22]<br>CAN3TX                                     | SIUL<br>FlexCAN_2<br>eMIOS_0<br>FlexCAN_3                   | I/O<br>O<br>I/O<br>O             | М      | Tristate   | 9           | 13          | 21          |
| PE[9]  | PCR[73]  | AF0<br>AF1<br>AF2<br>AF3<br>—<br>—<br>— | GPIO[73]<br>—<br>E0UC[23]<br>—<br>WKUP[7] <sup>4</sup><br>CAN2RX<br>CAN3RX   | SIUL<br>–<br>eMIOS_0<br>–<br>WKUP<br>FlexCAN_2<br>FlexCAN_3 | I/O<br>—<br>I/O<br>—<br>I<br>I   | S      | Tristate   | 10          | 14          | 22          |
| PE[10] | PCR[74]  | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPIO[74]<br>LIN3TX<br>CS3_1<br>E1UC[30]<br>EIRQ[10]                          | SIUL<br>LINFlex_3<br>DSPI_1<br>eMIOS_1<br>SIUL              | I/O<br>O<br>I/O<br>I             | S      | Tristate   | 11          | 15          | 23          |
| PE[11] | PCR[75]  | AF0<br>AF1<br>AF2<br>AF3<br>—<br>—      | GPIO[75]<br>E0UC[24]<br>CS4_1<br>—<br>LIN3RX<br>WKUP[14] <sup>4</sup>        | SIUL<br>eMIOS_0<br>DSPI_1<br><br>LINFlex_3<br>WKUP          | I/O<br>I/O<br>O<br>I<br>I        | S      | Tristate   | 13          | 17          | 25          |
| PE[12] | PCR[76]  | AF0<br>AF1<br>AF2<br>AF3<br>—<br>—<br>— | GPIO[76]<br><br>E1UC[19] <sup>10</sup><br><br>EIRQ[11]<br>SIN_2<br>ADC1_S[7] | SIUL<br><br>eMIOS_1<br><br>SIUL<br>DSPI_2<br>ADC_1          | I/O<br><br>I/O<br><br>I<br><br>I | J      | Tristate   | 76          | 109         | 133         |
| PE[13] | PCR[77]  | AF0<br>AF1<br>AF2<br>AF3                | GPIO[77]<br>SOUT_2<br>E1UC[20]<br>—                                          | SIUL<br>DSPI_2<br>eMIOS_1<br>—                              | I/O<br>O<br>I/O<br>—             | S      | Tristate   |             | 103         | 127         |

 Table 2. Functional port pins (continued)

| Port   | PCB      | PCR Alternate Eurotion                  | ion                                                                            | pe <sup>2</sup>                                                 | g.3                            | Pi     | Pin number |             |             |             |
|--------|----------|-----------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|--------|------------|-------------|-------------|-------------|
| pin    | register | function <sup>1</sup>                   | Function                                                                       | Periph                                                          | I/O<br>direct                  | Pad ty | RESI       | 100<br>LQFP | 144<br>LQFP | 176<br>LQFP |
| PF[7]  | PCR[87]  | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPIO[87]<br><br>CS2_1<br><br>ADC0_S[15]                                        | SIUL<br>—<br>DSPI_1<br>—<br>ADC_0                               | I/O<br>  O<br>  I              | J      | Tristate   |             | 62          | 70          |
| PF[8]  | PCR[88]  | AF0<br>AF1<br>AF2<br>AF3                | GPIO[88]<br>CAN3TX<br>CS4_0<br>CAN2TX                                          | SIUL<br>FlexCAN_3<br>DSPI_0<br>FlexCAN_2                        | 1/0 0 0                        | М      | Tristate   | _           | 34          | 42          |
| PF[9]  | PCR[89]  | AF0<br>AF1<br>AF2<br>AF3<br>—<br>—<br>— | GPIO[89]<br>E1UC[1]<br>CS5_0<br>—<br>WKUP[22] <sup>4</sup><br>CAN2RX<br>CAN3RX | SIUL<br>eMIOS_1<br>DSPI_0<br><br>WKUP<br>FlexCAN_2<br>FlexCAN_3 | ½0                             | S      | Tristate   |             | 33          | 41          |
| PF[10] | PCR[90]  | AF0<br>AF1<br>AF2<br>AF3                | GPIO[90]<br>CS1_0<br>LIN4TX<br>E1UC[2]                                         | SIUL<br>DSPI_0<br>LINFlex_4<br>eMIOS_1                          | I/O<br>O O I/O                 | М      | Tristate   |             | 38          | 46          |
| PF[11] | PCR[91]  | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPIO[91]<br>CS2_0<br>E1UC[3]<br>—<br>WKUP[15] <sup>4</sup><br>LIN4RX           | SIUL<br>DSPI_0<br>eMIOS_1<br>—<br>WKUP<br>LINFlex_4             | I/O<br>O<br>I/O<br>I<br>I<br>I | S      | Tristate   | _           | 39          | 47          |
| PF[12] | PCR[92]  | AF0<br>AF1<br>AF2<br>AF3                | GPIO[92]<br>E1UC[25]<br>LIN5TX<br>—                                            | SIUL<br>eMIOS_1<br>LINFlex_5<br>—                               | I/O<br>I/O<br>O                | М      | Tristate   | _           | 35          | 43          |
| PF[13] | PCR[93]  | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPIO[93]<br>E1UC[26]<br><br>WKUP[16] <sup>4</sup><br>LIN5RX                    | SIUL<br>eMIOS_1<br>—<br>WKUP<br>LINFlex_5                       | I/O<br>I/O<br>—<br>I<br>I      | S      | Tristate   |             | 41          | 49          |
| PF[14] | PCR[94]  | AF0<br>AF1<br>AF2<br>AF3                | GPIO[94]<br>CAN4TX<br>E1UC[27]<br>CAN1TX                                       | SIUL<br>FlexCAN_4<br>eMIOS_1<br>FlexCAN_1                       | I/O<br>O<br>I/O<br>O           | М      | Tristate   | _           | 102         | 126         |

 Table 2. Functional port pins (continued)

| Port                | PCB      | Alternate Function Page 1     | g.3                                     | Pi                                 | Pin number             |        |                           |             |             |             |
|---------------------|----------|-------------------------------|-----------------------------------------|------------------------------------|------------------------|--------|---------------------------|-------------|-------------|-------------|
| pin                 | register | function <sup>1</sup>         | Function                                | Periph                             | I/O<br>direct          | Pad ty | RESE<br>config            | 100<br>LQFP | 144<br>LQFP | 176<br>LQFP |
| PH[0]               | PCR[112] | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[112]<br>E1UC[2]<br>—<br>SIN_1      | SIUL<br>eMIOS_1<br><br>DSPI_1      | I/O<br>I/O<br>—<br>I   | М      | Tristate                  | _           | 93          | 117         |
| PH[1]               | PCR[113] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[113]<br>E1UC[3]<br>SOUT_1<br>—     | SIUL<br>eMIOS_1<br>DSPI_1<br>—     | I/O<br>I/O<br>O        | М      | Tristate                  | _           | 94          | 118         |
| PH[2]               | PCR[114] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[114]<br>E1UC[4]<br>SCK_1<br>—      | SIUL<br>eMIOS_1<br>DSPI_1<br>—     | I/O<br>I/O<br>I/O<br>— | М      | Tristate                  | _           | 95          | 119         |
| PH[3]               | PCR[115] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[115]<br>E1UC[5]<br>CS0_1<br>—      | SIUL<br>eMIOS_1<br>DSPI_1<br>—     | I/O<br>I/O<br>I/O<br>— | М      | Tristate                  | _           | 96          | 120         |
| PH[4]               | PCR[116] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[116]<br>E1UC[6]<br>—<br>—          | SIUL<br>eMIOS_1<br>—               | I/O<br>I/O<br>—        | М      | Tristate                  | _           | 134         | 162         |
| PH[5]               | PCR[117] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[117]<br>E1UC[7]<br>—<br>—          | SIUL<br>eMIOS_1<br>—               | I/O<br>I/O<br>         | S      | Tristate                  | _           | 135         | 163         |
| PH[6]               | PCR[118] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[118]<br>E1UC[8]<br>—<br>MA[2]      | SIUL<br>eMIOS_1<br><br>ADC_0       | I/O<br>I/O<br>—<br>O   | М      | Tristate                  |             | 136         | 164         |
| PH[7]               | PCR[119] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[119]<br>E1UC[9]<br>CS3_2<br>MA[1]  | SIUL<br>eMIOS_1<br>DSPI_2<br>ADC_0 | I/O<br>I/O<br>O<br>O   | М      | Tristate                  | _           | 137         | 165         |
| PH[8]               | PCR[120] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[120]<br>E1UC[10]<br>CS2_2<br>MA[0] | SIUL<br>eMIOS_1<br>DSPI_2<br>ADC_0 | I/O<br>I/O<br>O<br>O   | М      | Tristate                  | _           | 138         | 166         |
| PH[9] <sup>8</sup>  | PCR[121] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[121]<br>—<br>TCK<br>—              | SIUL<br>—<br>JTAGC<br>—            | I/O<br>—<br>I<br>—     | S      | Input,<br>weak<br>pull-up | 88          | 127         | 155         |
| PH[10] <sup>8</sup> | PCR[122] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[122]<br>—<br>TMS<br>—              | SIUL<br>—<br>JTAGC<br>—            | I/O<br>—<br>I<br>—     | М      | Input,<br>weak<br>pull-up | 81          | 120         | 148         |

 Table 2. Functional port pins (continued)

| Port   | PCR Alternate Euroction | ion                           | pe <sup>2</sup>                                 | ET<br>g. <sup>3</sup>             | Pi                           | Pin number |          |             |             |             |
|--------|-------------------------|-------------------------------|-------------------------------------------------|-----------------------------------|------------------------------|------------|----------|-------------|-------------|-------------|
| pin    | register                | function <sup>1</sup>         | Function                                        | Periph                            | I/O<br>direct                | Pad ty     | RESI     | 100<br>LQFP | 144<br>LQFP | 176<br>LQFP |
| PI[14] | PCR[142]                | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[142]<br>—<br>—<br>—<br>ADC0_S[22]<br>SIN_4 | SIUL<br>—<br>—<br>ADC_0<br>DSPI_4 | ⊻                            | J          | Tristate | _           | _           | 76          |
| PI[15] | PCR[143]                | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[143]<br>CS0_4<br>—<br>ADC0_S[23]           | SIUL<br>DSPI_4<br>—<br>ADC_0      | <u> </u>                     | J          | Tristate |             |             | 75          |
|        |                         |                               |                                                 | Port J                            |                              |            |          |             |             |             |
| PJ[0]  | PCR[144]                | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[144]<br>CS1_4<br>—<br>—<br>ADC0_S[24]      | SIUL<br>DSPI_4<br>—<br>ADC_0      | I/O<br>I/O<br>—<br>I         | J          | Tristate |             | _           | 74          |
| PJ[1]  | PCR[145]                | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[145]<br>—<br>—<br>ADC0_S[25]<br>SIN_5      | SIUL<br>—<br>—<br>ADC_0<br>DSPI_5 | I/O<br>—<br>—<br>—<br>—<br>— | J          | Tristate |             |             | 73          |
| PJ[2]  | PCR[146]                | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[146]<br>CS0_5<br>—<br>ADC0_S[26]           | SIUL<br>DSPI_5<br>—<br>ADC_0      | I/O<br>I/O<br>—<br>I         | J          | Tristate |             |             | 72          |
| PJ[3]  | PCR[147]                | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[147]<br>CS1_5<br>—<br>ADC0_S[27]           | SIUL<br>DSPI_5<br>—<br>ADC_0      | I/O<br>I/O<br>—<br>I         | J          | Tristate |             |             | 71          |
| PJ[4]  | PCR[148]                | AF0<br>AF1<br>AF2<br>AF3      | GPIO[148]<br>SCK_5<br>E1UC[18]<br>—             | SIUL<br>DSPI_5<br>eMIOS_1<br>—    | I/O<br>I/O<br>—              | М          | Tristate |             |             | 5           |

 Table 2. Functional port pins (continued)

<sup>1</sup> Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

<sup>2</sup> See Table 3.

<sup>3</sup> The RESET configuration applies during and after reset.

K is a constant for the particular part, which may be determined from Equation 3 by measuring  $P_D$  (at equilibrium) for a known  $T_A$ . Using this value of K, the values of  $P_D$  and  $T_J$  may be obtained by solving equations 1 and 2 iteratively for any value of  $T_A$ .

# 3.6 I/O pad electrical characteristics

# 3.6.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads provide maximum speed. These are used for improved debugging capability.
- Input only pads are associated with ADC channels and 32 kHz low power external crystal oscillator providing low input leakage.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

## 3.6.2 I/O input DC characteristics

Table 12 provides input DC electrical characteristics as described in Figure 5.



Figure 5. I/O input DC electrical characteristics definition

<sup>2</sup> The configuration PAD3V5 = 1 when  $V_{DD}$  = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

### 3.6.4 Output pin transition times

| Symbol          | ~   | Devementer | Ca                                                        | nditional               | Value                                         |     |     | Unit |      |
|-----------------|-----|------------|-----------------------------------------------------------|-------------------------|-----------------------------------------------|-----|-----|------|------|
| Synn            | 100 | C          | Falameter                                                 |                         |                                               | Min | Тур | Max  | Unit |
| T <sub>tr</sub> | СС  | D          | Output transition time output pin <sup>2</sup>            | C <sub>L</sub> = 25 pF  | $V_{DD} = 5.0 V \pm 10\%$ ,                   |     | —   | 50   | ns   |
|                 |     | Т          | SLOW configuration                                        | C <sub>L</sub> = 50 pF  | PAD3V5V = 0                                   |     | —   | 100  | 1    |
|                 |     | D          |                                                           | C <sub>L</sub> = 100 pF |                                               |     | —   | 125  | l    |
|                 |     | D          |                                                           | C <sub>L</sub> = 25 pF  | $V_{DD} = 3.3 V \pm 10\%$ ,                   | _   | —   | 50   | 1    |
|                 |     | Т          | $C_L = 50 \text{ pF}$                                     |                         |                                               | —   | 100 | 1    |      |
|                 |     | D          |                                                           | C <sub>L</sub> = 100 pF |                                               |     | —   | 125  | l    |
| T <sub>tr</sub> | СС  | D          | Output transition time output pin <sup>2</sup>            | C <sub>L</sub> = 25 pF  | $V_{DD} = 5.0 V \pm 10\%$ ,                   | _   | —   | 10   | ns   |
|                 |     | Т          | $C_{L} = 50 \text{ pF}$ $PAD3V5V = 0$ $SIUL.PCRx.SRC = 1$ |                         | _                                             | —   | 20  | 1    |      |
|                 |     | D          |                                                           | C <sub>L</sub> = 100 pF |                                               | _   | —   | 40   | 1    |
|                 |     | D          |                                                           | C <sub>L</sub> = 25 pF  | $V_{DD} = 3.3 V \pm 10\%$ ,                   | _   | —   | 12   | l    |
|                 |     | Т          |                                                           | C <sub>L</sub> = 50 pF  | $\frac{1}{1}$                                 |     | —   | 25   | l    |
|                 |     | D          |                                                           | C <sub>L</sub> = 100 pF |                                               |     | —   | 40   | l    |
| T <sub>tr</sub> | СС  | D          | Output transition time output pin <sup>2</sup>            | C <sub>L</sub> = 25 pF  | $V_{DD} = 5.0 V \pm 10\%$ ,                   | _   | —   | 4    | ns   |
|                 |     |            | FAST configuration                                        | C <sub>L</sub> = 50 pF  | PAD3V5V = 0                                   |     | —   | 6    | l    |
|                 |     |            |                                                           | C <sub>L</sub> = 100 pF |                                               | _   | —   | 12   | 1    |
|                 |     |            |                                                           | C <sub>L</sub> = 25 pF  | V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1 |     | —   | 4    | l    |
|                 |     |            |                                                           | C <sub>L</sub> = 50 pF  |                                               |     |     | 7    | l    |
|                 |     |            |                                                           | C <sub>L</sub> = 100 pF | ]                                             | _   |     | 12   | I    |

Table 17. Output pin transition times

 $^{1}$  V<sub>DD</sub> = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%, T<sub>A</sub> = -40 to 125 °C, unless otherwise specified

 $^2~$  CL includes device and package capacitances (C\_{PKG} < 5 pF).

## 3.6.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a  $V_{DD}/V_{SS}$  supply pair as described in Table 18.

Table 19 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the  $I_{AVGSEG}$  maximum value.

| <b>C</b> 11 | Supply seament |          |        |                      | 176 L   | QFP     |         |         | 144/100 | 0 LQFP  |         |
|-------------|----------------|----------|--------|----------------------|---------|---------|---------|---------|---------|---------|---------|
| 50          | ppiy segm      | ent      | Pad    | Weigh                | nt 5 V  | Weigh   | t 3.3 V | Weig    | ht 5 V  | Weigh   | t 3.3 V |
| 176 LQFP    | 144 LQFP       | 100 LQFP |        | SRC <sup>2</sup> = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 |
| 5           | 3              | —        | PF[15] | 4%                   | _       | 4%      | —       | 4%      | —       | 4%      |         |
|             |                | —        | PF[14] | 4%                   | 6%      | 5%      | 5%      | 4%      | 6%      | 5%      | 5%      |
|             |                | —        | PE[13] | 4%                   | _       | 5%      | —       | 4%      | _       | 5%      | _       |
|             |                | 3        | PA[7]  | 5%                   | _       | 6%      | —       | 5%      | _       | 6%      | _       |
|             |                |          | PA[8]  | 5%                   | _       | 6%      |         | 5%      |         | 6%      | _       |
|             |                |          | PA[9]  | 6%                   | _       | 7%      | —       | 6%      | _       | 7%      | _       |
|             |                |          | PA[10] | 6%                   | _       | 8%      | —       | 6%      | _       | 8%      | _       |
|             |                |          | PA[11] | 8%                   | _       | 9%      |         | 8%      |         | 9%      | _       |
|             |                |          | PE[12] | 8%                   | _       | 9%      | —       | 8%      | _       | 9%      | _       |
|             |                | _        | PG[14] | 8%                   | _       | 9%      | —       | 8%      | —       | 9%      | _       |
|             |                |          | PG[15] | 8%                   | 11%     | 9%      | 10%     | 8%      | 11%     | 9%      | 10%     |
|             |                | —        | PE[14] | 8%                   | _       | 9%      | —       | 8%      | _       | 9%      | _       |
|             |                | _        | PE[15] | 8%                   | 11%     | 9%      | 10%     | 8%      | 11%     | 9%      | 10%     |
|             |                | _        | PG[10] | 8%                   |         | 9%      | —       | 8%      | _       | 9%      |         |
|             |                | _        | PG[11] | 7%                   | 11%     | 9%      | 9%      | 7%      | 11%     | 9%      | 9%      |
|             | _              | —        | PH[11] | 7%                   | 10%     | 9%      | 9%      | _       | —       | —       | _       |
|             | _              | —        | PH[12] | 7%                   | 10%     | 8%      | 9%      | _       | —       | —       | _       |
|             | _              | —        | PI[5]  | 7%                   | _       | 8%      | —       | _       | —       | —       | _       |
|             | _              | —        | PI[4]  | 7%                   |         | 8%      | —       | _       | —       | —       | _       |
|             | 3              | 3        | PC[3]  | 6%                   | _       | 8%      | —       | 6%      | —       | 8%      | _       |
|             |                |          | PC[2]  | 6%                   | 8%      | 7%      | 7%      | 6%      | 8%      | 7%      | 7%      |
|             |                |          | PA[5]  | 6%                   | 8%      | 7%      | 7%      | 6%      | 8%      | 7%      | 7%      |
|             |                |          | PA[6]  | 5%                   |         | 6%      |         | 5%      |         | 6%      |         |
|             |                |          | PH[10] | 5%                   | 7%      | 6%      | 6%      | 5%      | 7%      | 6%      | 6%      |
|             |                |          | PC[1]  | 5%                   | 19%     | 5%      | 13%     | 5%      | 19%     | 5%      | 13%     |

# Table 20. I/O weight<sup>1</sup> (continued)

| <b>C</b> 11 | Supply seament |          |        |                      | 176 L   | QFP     |         |         | 144/10  | 0 LQFP  |         |
|-------------|----------------|----------|--------|----------------------|---------|---------|---------|---------|---------|---------|---------|
| Su          | ppiy segm      | ent      | Pad    | Weigh                | nt 5 V  | Weigh   | t 3.3 V | Weig    | ht 5 V  | Weigh   | t 3.3 V |
| 176 LQFP    | 144 LQFP       | 100 LQFP |        | SRC <sup>2</sup> = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 |
| 6           | 4              | 4        | PC[0]  | 6%                   | 9%      | 7%      | 8%      | 7%      | 10%     | 8%      | 8%      |
|             |                |          | PH[9]  | 7%                   |         | 8%      | _       | 7%      |         | 9%      |         |
|             |                |          | PE[2]  | 7%                   | 10%     | 8%      | 9%      | 8%      | 11%     | 9%      | 10%     |
|             |                |          | PE[3]  | 7%                   | 10%     | 9%      | 9%      | 8%      | 12%     | 10%     | 10%     |
|             |                |          | PC[5]  | 7%                   | 11%     | 9%      | 9%      | 8%      | 12%     | 10%     | 11%     |
|             |                |          | PC[4]  | 8%                   | 11%     | 9%      | 10%     | 9%      | 13%     | 10%     | 11%     |
|             |                |          | PE[4]  | 8%                   | 11%     | 9%      | 10%     | 9%      | 13%     | 11%     | 12%     |
|             |                |          | PE[5]  | 8%                   | 11%     | 10%     | 10%     | 9%      | 14%     | 11%     | 12%     |
|             |                |          | PH[4]  | 8%                   | 12%     | 10%     | 10%     | 10%     | 14%     | 12%     | 12%     |
|             |                |          | PH[5]  | 8%                   | _       | 10%     | _       | 10%     | _       | 12%     | —       |
|             |                | _        | PH[6]  | 8%                   | 12%     | 10%     | 11%     | 10%     | 15%     | 12%     | 13%     |
|             |                |          | PH[7]  | 9%                   | 12%     | 10%     | 11%     | 11%     | 15%     | 13%     | 13%     |
|             |                |          | PH[8]  | 9%                   | 12%     | 10%     | 11%     | 11%     | 16%     | 13%     | 14%     |
|             |                | 4        | PE[6]  | 9%                   | 12%     | 10%     | 11%     | 11%     | 16%     | 13%     | 14%     |
|             |                |          | PE[7]  | 9%                   | 12%     | 10%     | 11%     | 11%     | 16%     | 14%     | 14%     |
|             | _              | _        | PI[3]  | 9%                   | _       | 10%     | _       | _       | _       | —       | _       |
|             | _              | _        | PI[2]  | 9%                   | —       | 10%     | _       | —       | —       | —       | —       |
|             | _              | _        | PI[1]  | 9%                   | —       | 10%     | _       | —       | —       | —       | —       |
|             | _              | _        | PI[0]  | 9%                   | —       | 10%     | _       | —       | —       | —       | —       |
|             | 4              | 4        | PC[12] | 8%                   | 12%     | 10%     | 11%     | 12%     | 18%     | 15%     | 16%     |
|             |                |          | PC[13] | 8%                   | —       | 10%     | _       | 13%     | —       | 15%     | —       |
|             |                |          | PC[8]  | 8%                   | —       | 10%     | _       | 13%     | —       | 15%     | —       |
|             |                |          | PB[2]  | 8%                   | 11%     | 9%      | 10%     | 13%     | 18%     | 15%     | 16%     |

Table 20. I/O weight<sup>1</sup> (continued)

<sup>1</sup>  $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$ ,  $T_A = -40$  to 125 °C, unless otherwise specified <sup>2</sup> SRC is the Slew Rate Control bit in SIU\_PCR*x* 

#### **RESET** electrical characteristics 3.7

The device implements a dedicated bidirectional  $\overline{\text{RESET}}$  pin.



Figure 6. Start-up reset requirements



Figure 7. Noise filtering on reset signal

Table 21. Reset electrical characteristics

| Symbol          |        | 0  | Parameter                                  | Conditions <sup>1</sup> |                     | Unit |                       |   |
|-----------------|--------|----|--------------------------------------------|-------------------------|---------------------|------|-----------------------|---|
|                 | Symbol |    |                                            | Conditione              | Min                 | Тур  | Max                   | • |
| V <sub>IH</sub> | SI     | RF | Input High Level CMOS<br>(Schmitt Trigger) | _                       | 0.65V <sub>DD</sub> | —    | V <sub>DD</sub> + 0.4 | V |

# 3.8 Power management electrical characteristics

## 3.8.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply  $V_{DD_LV}$  from the high voltage ballast supply  $V_{DD_BV}$ . The regulator itself is supplied by the common I/O supply  $V_{DD}$ . The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through V<sub>DD</sub> power pin.
- BV: High voltage external power supply for internal ballast module. This must be provided externally through  $V_{DD_BV}$  power pin. Voltage values should be aligned with  $V_{DD}$ .
- LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
  - LV\_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
  - LV\_CFLA: Low voltage supply for code Flash module. It is supplied with dedicated ballast and shorted to LV\_COR through double bonding.
  - LV\_DFLA: Low voltage supply for data Flash module. It is supplied with dedicated ballast and shorted to LV\_COR through double bonding.
  - LV\_PLL: Low voltage supply for FMPLL. It is shorted to LV\_COR through double bonding.



Figure 8. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance ( $C_{REGn}$ ) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.



Figure 10.  $V_{DD}$  and  $V_{DD\_BV}$  supply constraints during STANDBY mode exit

| Symbol            | Symbol | C | Parameter                                              | Conditions <sup>1</sup>                                                                |                  | Value            |      | Unit |
|-------------------|--------|---|--------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|------------------|------|------|
| Symbol            |        | Ŭ | i arameter                                             | Conditions                                                                             | Min              | Тур              | Мах  | Onit |
| C <sub>REGn</sub> | SR     | — | Internal voltage regulator external capacitance        | _                                                                                      | 200              | —                | 500  | nF   |
| R <sub>REG</sub>  | SR     |   | Stability capacitor equivalent serial resistance       | —                                                                                      | _                | _                | 0.2  | Ω    |
| C <sub>DEC1</sub> | SR     |   | Decoupling capacitance <sup>2</sup> ballast            | V <sub>DD_BV</sub> /V <sub>SS_LV</sub> pair:<br>V <sub>DD_BV</sub> = 4.5 V to<br>5.5 V | 100 <sup>3</sup> | 470 <sup>4</sup> | _    | nF   |
|                   |        |   |                                                        | V <sub>DD_BV</sub> /V <sub>SS_LV</sub> pair:<br>V <sub>DD_BV</sub> = 3 V to 3.6 V      | 400              |                  | _    |      |
| C <sub>DEC2</sub> | SR     |   | Decoupling capacitance regulator<br>supply             | V <sub>DD</sub> /V <sub>SS</sub> pair                                                  | 10               | 100              |      | nF   |
| V <sub>MREG</sub> | СС     | Ρ | Main regulator output voltage                          | Before exiting from reset                                                              | _                | 1.32             | _    | V    |
|                   |        |   |                                                        | After trimming                                                                         | 1.15             | 1.28             | 1.32 |      |
| I <sub>MREG</sub> | SR     | — | Main regulator current provided to $V_{DD\_LV}$ domain | —                                                                                      |                  | _                | 150  | mA   |

| Table 22. Voltage re | egulator electrical | characteristics |
|----------------------|---------------------|-----------------|
|----------------------|---------------------|-----------------|

- <sup>4</sup> Higher current may be sunk by device during power-up and standby exit. Please refer to inrush current in Table 22.
- <sup>5</sup> RUN current measured with typical application with accesses on both Flash and RAM.
- <sup>6</sup> Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
- <sup>7</sup> Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1 OFF. ADC0 ON but no conversion except two analog watchdogs.
- <sup>8</sup> Only for the "P" classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- <sup>9</sup> Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
- <sup>10</sup> ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

# 3.10 Flash memory electrical characteristics

### 3.10.1 Program/erase characteristics

Table 25 shows the program and erase characteristics.

| Symbol                   |    |   |                                                       |            | Value |                  |                             |                  |      |
|--------------------------|----|---|-------------------------------------------------------|------------|-------|------------------|-----------------------------|------------------|------|
|                          |    | С | Parameter                                             | Conditions | Min   | Typ <sup>1</sup> | Initial<br>max <sup>2</sup> | Max <sup>3</sup> | Unit |
| T <sub>dwprogram</sub>   | CC | С | Double word (64 bits) program time <sup>4</sup>       | Code Flash |       | 18               | 50                          | 500              | μs   |
|                          |    |   |                                                       | Data Flash |       | 22               |                             |                  |      |
| T <sub>16Kpperase</sub>  |    |   | 16 KB block preprogram and erase time                 | Code Flash | _     | 200              | 500                         | 5000             | ms   |
|                          |    |   |                                                       | Data Flash |       | 300              |                             |                  |      |
| T <sub>32Kpperase</sub>  |    |   | 32 KB block preprogram and erase time                 | Code Flash | _     | 300              | 600                         | 5000             | ms   |
|                          |    |   |                                                       | Data Flash |       | 400              |                             |                  |      |
| T <sub>32Kpperase</sub>  |    |   | 32 KB block preprogram and erase time for sector B0F4 | Code Flash |       | 600              | 1200                        | 10000            | ms   |
| T <sub>128Kpperase</sub> |    |   | 128 KB block preprogram and erase time                | Code Flash | _     | 600              | 1300                        | 7500             | ms   |
|                          |    |   |                                                       | Data Flash |       | 800              |                             |                  |      |
| T <sub>128Kpperase</sub> |    |   | 128 KB block preprogram and erase time for            | Code Flash |       | 1200             | 2600                        | 15000            | ms   |
|                          |    |   | Sector BUF5                                           |            |       |                  |                             |                  |      |
| T <sub>eslat</sub>       |    | D | Erase Suspend Latency                                 | _          |       | _                | 30                          | 30               | μs   |
| T <sub>ESRT</sub>        |    | С | Erase Suspend Request Rate                            | Code Flash | 20    |                  | —                           | —                | ms   |
|                          |    |   |                                                       | Data Flash | 10    | _                | —                           | —                |      |

Table 25. Program and erase specifications

| Symbol                | Ratings                                               | Conditions                                         | Class | Max value <sup>3</sup> | Unit |
|-----------------------|-------------------------------------------------------|----------------------------------------------------|-------|------------------------|------|
| V <sub>ESD(HBM)</sub> | Electrostatic discharge voltage<br>(Human Body Model) | $T_A = 25 \degree C$<br>conforming to AEC-Q100-002 | H1C   | 2000                   | V    |
| V <sub>ESD(MM)</sub>  | Electrostatic discharge voltage<br>(Machine Model)    | $T_A = 25 \degree C$<br>conforming to AEC-Q100-003 | M2    | 200                    |      |
| V <sub>ESD(CDM)</sub> | Electrostatic discharge voltage                       | $T_A = 25 ^{\circ}C$                               | C3A   | 500                    |      |
|                       | (Charged Device Model)                                | conforming to AEC-Q100-011                         |       | 750 (corners)          |      |

 Table 31. ESD absolute maximum ratings<sup>1,2</sup>

<sup>1</sup> All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

<sup>2</sup> A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

<sup>3</sup> Data based on characterization results, not tested in production

### 3.11.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

#### Table 32. Latch-up results

| Symbol | Parameter             | Conditions                                       | Class      |
|--------|-----------------------|--------------------------------------------------|------------|
| LU     | Static latch-up class | $T_A = 125 \ ^{\circ}C$<br>conforming to JESD 78 | II level A |

# 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 12 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 33 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)

| Symbol               |    | C | Parameter                                         | Conditions <sup>1</sup>                             |                     | Unit |                       |      |
|----------------------|----|---|---------------------------------------------------|-----------------------------------------------------|---------------------|------|-----------------------|------|
|                      |    | Ŭ | i didineter                                       | Conditions                                          | Min                 | Тур  | Max                   | onic |
| T <sub>FXOSCSU</sub> | СС | Т | Fast external crystal<br>oscillator start-up time | f <sub>OSC</sub> = 4 MHz,<br>OSCILLATOR_MARGIN = 0  | _                   | _    | 6                     | ms   |
|                      |    |   |                                                   | f <sub>OSC</sub> = 16 MHz,<br>OSCILLATOR_MARGIN = 1 | _                   | _    | 1.8                   |      |
| V <sub>IH</sub>      | SR | Ρ | Input high level CMOS<br>(Schmitt Trigger)        | Oscillator bypass mode                              | 0.65V <sub>DD</sub> | _    | V <sub>DD</sub> + 0.4 | V    |
| V <sub>IL</sub>      | SR | Ρ | Input low level CMOS (Schmitt Trigger)            | Oscillator bypass mode                              | -0.4                | _    | 0.35V <sub>DD</sub>   | V    |

 $^{1}$  V\_{DD} = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%, T\_A = -40 to 125 °C, unless otherwise specified

<sup>2</sup> Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).

# 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.



Figure 14. Crystal oscillator and resonator connection scheme

### NOTE

OSC32K\_XTAL/OSC32K\_EXTAL must not be directly used to drive external circuits.



Figure 19. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances  $C_{F}$ ,  $C_{P1}$  and  $C_{P2}$  are initially charged at the source voltage  $V_A$  (refer to the equivalent circuit reported in Figure 18): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).



Figure 20. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance  $C_{P1}$  and  $C_{P2}$  to the sampling capacitance  $C_S$  occurs ( $C_S$  is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which  $C_{P2}$  is reported in parallel to  $C_{P1}$  (call  $C_P = C_{P1} + C_{P2}$ ), the two capacitances  $C_P$  and  $C_S$  are in series, and the time constant is



Figure 21. Spectral representation of input signal

Calling  $f_0$  the bandwidth of the source signal (and as a consequence the cut-off frequency of the antialiasing filter,  $f_F$ ), according to the Nyquist theorem the conversion rate  $f_C$  must be at least  $2f_0$ ; it means that the constant time of the filter is greater than or at least equal to twice the conversion period ( $T_C$ ). Again the conversion period  $T_C$  is longer than the sampling time  $T_S$ , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter  $R_FC_F$  is definitively much higher than the sampling time  $T_S$ , so the charge level on  $C_S$  cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on  $C_S$ ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on  $C_S$ :

$$\frac{V_{A2}}{V_A} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when  $V_A$  is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on  $C_F$  value:

ADC\_1 (12-bit)

 $C_F > 8192 \bullet C_S$ 

| ADC_0 (10-bit)           | Eqn. 12 |
|--------------------------|---------|
| $C_F > 2048 \bullet C_S$ |         |
|                          |         |

Egn. 11

Eqn. 13

| Symbol           |                                                                            | ~ | Demonstern                               | Conditions <sup>1</sup>                                          |                                  | Value |     |     | 11   |
|------------------|----------------------------------------------------------------------------|---|------------------------------------------|------------------------------------------------------------------|----------------------------------|-------|-----|-----|------|
|                  |                                                                            | C | Parameter                                |                                                                  |                                  | Min   | Тур | Max | Unit |
| R <sub>SW1</sub> | СС                                                                         | D | Internal resistance of analog source     | —                                                                |                                  | _     | -   | 3   | kΩ   |
| R <sub>SW2</sub> | СС                                                                         | D | Internal resistance of analog source     | _                                                                |                                  |       | —   | 2   | kΩ   |
| R <sub>AD</sub>  | СС                                                                         | D | Internal resistance of analog source     |                                                                  |                                  | _     | —   | 2   | kΩ   |
| I <sub>INJ</sub> | SR                                                                         |   | Input current Injection                  | jection Current injection $V_{DD} =$<br>on one ADC_0 3.3 V ± 10% | V <sub>DD</sub> =<br>3.3 V ± 10% | -5    | —   | 5   | mA   |
|                  |                                                                            |   |                                          | from the converted one                                           | V <sub>DD</sub> =<br>5.0 V ± 10% | -5    | —   | 5   |      |
| INL              | СС                                                                         | Т | Absolute value for integral nonlinearity | No overload                                                      |                                  | _     | 0.5 | 1.5 | LSB  |
| DNL              | СС                                                                         | Т | Absolute differential nonlinearity       | No overload                                                      |                                  |       | 0.5 | 1.0 | LSB  |
| OFS              | СС                                                                         | Т | Absolute offset error                    | —                                                                |                                  | _     | 0.5 | —   | LSB  |
| GNE              | СС                                                                         | Т | Absolute gain error                      | —                                                                |                                  | _     | 0.6 |     | LSB  |
| TUEP             | СС                                                                         | Ρ | Total unadjusted error <sup>7</sup> for  | Without current injection<br>With current injection              |                                  | -2    | 0.6 | 2   | LSB  |
|                  |                                                                            | Т | precise channels, input only pins        |                                                                  |                                  | -3    | —   | 3   |      |
| TUEX             | JEX CC T Total unadjusted error <sup>7</sup> for Without current injection |   | njection                                 | -3                                                               | 1                                | 3     | LSB |     |      |
|                  |                                                                            | Т | extended channel                         | With current injection                                           |                                  | -4    |     | 4   |      |

| Fable 41. ADC       0 conversion characteristics | (10-bit ADC 0) (continued) | ) |
|--------------------------------------------------|----------------------------|---|
|                                                  | (                          | , |

 $^1~V_{DD}$  = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%,  $T_A$  = –40 to 125 °C, unless otherwise specified.

 $^2\,$  Analog and digital  $V_{SS}\,\text{must}$  be common (to be tied together externally).

<sup>3</sup> V<sub>AINx</sub> may exceed V<sub>SS\_ADC0</sub> and V<sub>DD\_ADC0</sub> limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

<sup>4</sup> Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

<sup>5</sup> During the sample time the input capacitance  $C_S$  can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within  $t_{ADC0\_S}$ . After the end of the sample time  $t_{ADC0\_S}$ , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock  $t_{ADC0\_S}$  depend on programming.

<sup>6</sup> This parameter does not include the sample time t<sub>ADC0\_S</sub>, but only the time for determining the digital result and the time to load the result's register with the conversion result.

<sup>7</sup> Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

- <sup>1</sup> Operating conditions:  $C_{out} = 10$  to 50 pF,  $Slew_{IN} = 3.5$  to 15 ns.
- <sup>2</sup> For DSPI4, if SOUT is mapped to a SLOW pad while SCK is mapped to a MEDIUM pad (or vice versa), the minimum cycle time for SCK should be calculated based on the rise and fall times of the SLOW pad. For MTFE=1, SOUT must not be mapped to a SLOW pad while SCK is mapped to a MEDIUM pad.
- <sup>3</sup> The t<sub>CSC</sub> delay value is configurable through a register. When configuring t<sub>CSC</sub> (using PCSSCK and CSSCK fields in DSPI\_CTAR*x* registers), delay between internal CS and internal SCK must be higher than  $\Delta t_{CSC}$  to ensure positive t<sub>CSCext</sub>.
- <sup>4</sup> The t<sub>ASC</sub> delay value is configurable through a register. When configuring t<sub>ASC</sub> (using PASC and ASC fields in DSPI\_CTAR*x* registers), delay between internal CS and internal SCK must be higher than Δt<sub>ASC</sub> to ensure positive t<sub>ASCext</sub>.
- <sup>5</sup> For DSPI*x*\_CTAR*n*[PCSSCK] = 11.
- <sup>6</sup> This delay value corresponds to SMPL\_PT = 00b which is bit field 9 and 8 of DSPI\_MCR register.
- <sup>7</sup> SCK and SOUT are configured as MEDIUM pad.



Note: Numbers shown reference Table 44.

Figure 23. DSPI classic SPI timing — master, CPHA = 0



Note: Numbers shown reference Table 44.





Note: Numbers shown reference Table 44.



MPC5606BK Microcontroller Data Sheet, Rev. 5