

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	149
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 29x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5606bk0vlu4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Device comparison

Table 1 summarizes the functions of the blocks present on the MPC5606BK.

Feature		MPC5605BK			MPC5606BK				
Package	100 LQFP	144 LQFP	176 LQFP	100 LQFP	144 LQFP	176 LQFP			
СРИ		e200z0h							
Execution speed ²	Up to 64 MHz								
Code flash memory		768 KB			1 MB				
Data flash memory			64 (4 x	16) KB					
SRAM		64 KB			80 KB				
MPU			8-e	ntry					
eDMA			16	ch					
10-bit ADC			Ye	es					
dedicated ³	7 ch	15 ch	29 ch	7 ch	15 ch	29 ch			
shared with 12-bit ADC	19 ch								
12-bit ADC	Yes								
dedicated ⁴	5 ch								
shared with 10-bit ADC	19 ch								
Total timer I/O ⁵	37 ch,	64	ch,	37 ch,	64	ch,			
	16-bit	16	-bit	16-bit	16-	·DIt			
			10	cn					
O(I)PWM / OPWFMB / OPWMCB / ICOC/			1	ch					
O(I)PWM / ICOC ³	7 ch			14 ch					
OPWM / ICOC [®]	13 ch			33 ch	<u></u>				
SCI (LINFlex)	4	6	8	4	6	8			
SPI (DSPI)	3	5	6	3	5	6			
CAN (FlexCAN)	6								
I ² C	1								
32 KHz oscillator	Yes								
GPIO ¹⁰	77	121	149	77	121	149			
Debug		•	JT	AG					

Table 1. MPC5606BK family comparison¹

¹ Feature set dependent on selected peripheral multiplexing; table shows example.

² Based on 125 °C ambient operating temperature.

³ Not shared with 12-bit ADC, but possibly shared with other alternate functions.

⁴ Not shared with 10-bit ADC, but possibly shared with other alternate functions.

⁵ Refer to eMIOS section of device reference manual for information on the channel configuration and functions.

⁶ Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.

⁷ Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.

⁸ Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width measurement.

⁹ Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.

¹⁰ Maximum I/O count based on multiplexing with peripherals.

1.4 Block diagram

Figure 1 shows a top-level block diagram of the MPC5606BK.

Figure 1. MPC5606BK block diagram

Port	PCR Alternate		ion	pe ²	ет 9. ³	Pi	n numb	er		
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESI	100 LQFP	144 LQFP	176 LQFP
PC[5]	PCR[37]	AF0 AF1 AF2 AF3 —	GPIO[37] SOUT_1 CAN3TX DEBUG[3] EIRQ[7]	SIUL DSPI_1 FlexCAN_3 SSCM SIUL	I/O O O I	М	Tristate	91	130	158
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX E1UC[28] DEBUG[4]	SIUL LINFlex_1 eMIOS_1 SSCM	I/O O I/O O	S	Tristate	25	36	44
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — E1UC[29] DEBUG[5] LIN1RX WKUP[12] ⁴	SIUL 	I/O - /O 	S	Tristate	26	37	45
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX E0UC[3] DEBUG[6]	SIUL LINFlex_2 eMIOS_0 SSCM	I/O O I/O O	S	Tristate	99	143	175
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — E0UC[7] DEBUG[7] WKUP[13] ⁴ LIN2RX	SIUL 	I∕O	S	Tristate	2	2	2
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC_0	I/O O O O	М	Tristate	22	28	36
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — — —	GPIO[43] — MA[2] WKUP[5] ⁴ CAN1RX CAN4RX	SIUL ADC_0 WKUP FlexCAN_1 FlexCAN_4	I/O — — — — — — — — — — — — — — — — — — —	S	Tristate	21	27	35
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 — —	GPIO[44] E0UC[12] — EIRQ[19] SIN_2	SIUL eMIOS_0 — SIUL DSPI_2	I/O I/O — I I	М	Tristate	97	141	173
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate	98	142	174

 Table 2. Functional port pins (continued)

Port	Port PCR Alternate		ет g. ³	Pi	Pin number					
pin	register	function ¹	Function	Periph	I/O direct	Pad ty	RESI	100 LQFP	144 LQFP	176 LQFP
PD[5]	PCR[53]	AF0 AF1	GPIO[53]	SIUL		I	Tristate	46	68	82
		AF2	—	—	—					
		Ar3 —	ADC0_P[9]	ADC_0						
PD[6]	PCR[54]	AF0	GPIO[54]	SIUL		I	Tristate	47	69	83
		AF1 AF2		_	_					
		AF3		_						
		_	ADC0_P[10] ADC1_P[10]	ADC_0 ADC_1	I					
PD[7]	PCR[55]	AF0	GPIO[55]	SIUL		Ι	Tristate	48	70	84
		AF2	_	_	_					
		AF3 —	 ADC0_P[11]	ADC_0	-					
	DODICAL	-	ADC1_P[11]	ADC_1			- ···	- 40		07
PD[8]	PCR[56]	AF0 AF1	GPI0[56] —		- -	1	Iristate	49	71	87
		AF2 AF3	—	_	_					
		_	ADC0_P[12] ADC1_P[12]	ADC_0 ADC_1	l					
PD[9]	PCR[57]	AF0	GPIO[57]	SIUL	I	I	Tristate	56	78	94
		AF1 AF2	—	_	_					
		AF3 —	 ADC0_P[13]	ADC_0						
		_	ADC1_P[13]	ADC_1	I					
PD[10]	PCR[58]	AF0 AF1	GPIO[58] —	SIUL	 	ļ	Tristate	57	79	95
		AF2 AF3	_	_	_					
		_	ADC0_P[14] ADC1_P[14]	ADC_0 ADC_1	l					
PD[11]	PCR[59]	AF0	GPIO[59]	SIUL	I	I	Tristate	58	80	96
		AF1 AF2	—	_	_					
		AF3 —	— ADC0 P[15]	ADC 0	— I					
		_	ADC1_P[15]	ADC_1	Ι					
PD[12]	PCR[60]	AF0 AF1	GPIO[60] CS5_0	SIUL DSPI_0	I/O O	J	Tristate	—		100
		AF2 AF3	E0UC[24]	eMIOS_0	I/O					
		—	ADC0_S[4]	ADC_0	I					

Table 2. Functional port pins (continued)

3.2.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 7 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Value ²	Description
0	Disable after reset
1	Enable after reset

Table 7. WATCHDOG_EN field description¹

¹ See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.

² The default manufacturing value is '1'. This value can be programmed by the customer in Shadow Flash.

3.3 Absolute maximum ratings

Table 8. Absolute maximum ratings

Symbo		Parameter	Conditiono	Va	lue	Unit
Symbo	1	Falameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD}	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	_	-0.3	6.0	V
V _{SS_LV}	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V_{SS})		V _{SS} – 0.1	V _{SS} + 0.1	V
V _{DD_BV}	SR	Voltage on VDD_BV pin (regulator supply) with	—	-0.3	6.0	V
		respect to ground (V _{SS})	Relative to V _{DD}	-0.3	V _{DD} + 0.3	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} – 0.1	V _{SS} + 0.1	V
V _{DD_ADC}	SR	Voltage on VDD_HV_ADC0, VDD_HV_ADC1	—	-0.3	6.0	V
		(ADC reference) with respect to ground (V_{SS})	Relative to V _{DD}	$V_{DD} - 0.3$	V _{DD} + 0.3	
V _{IN}	SR	Voltage on any GPIO pin with respect to	—	-0.3	6.0	V
		ground (v _{SS})	Relative to V _{DD}	—	V _{DD} + 0.3	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	
I _{AVGSEG}	SR	Sum of all the static I/O current within a supply segment	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	70	mA
			V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	64	
T _{STORAGE}	SR	Storage temperature	—	-55	150	°C

Symbo		Parameter	Conditions	Va	lue	Unit
Symbo		Falameter	Conditions	Min	Max	Unit
$V_{DD_ADC}^5$	SR	Voltage on VDD_HV_ADC0, VDD_HV_ADC1	—	4.5	5.5	V
		(ADC reference) with respect to ground (V _{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	V _{DD} – 0.1	V _{DD} + 0.1	
V _{IN}	SR	Voltage on any GPIO pin with respect to ground	—	V _{SS} -0.1	—	V
		(V _{SS})	Relative to V _{DD}	—	V _{DD} + 0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	—	3.0 ⁷	0.25 V/µs	V/s
T _{A C-Grade} Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁸	-40	85	°C
T _{J C-Grade} Part	SR	Junction temperature under bias	—	-40	110	
T _{A V-Grade} Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁸	-40	105	
T _{J V-Grade} Part	SR	Junction temperature under bias	—	-40	130	
T _{A M} -Grade Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁸	-40	125	
T _{J M} -Grade Part	SR	Junction temperature under bias	—	-40	150	

Table 10. Recommended operating conditions (5.0 V) (continued)

¹ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

² Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.

 $^3\,$ 330 nF capacitance needs to be provided between each V_{DD_LV}/V_{SS_LV} supply pair.

⁴ 470 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics). While the supply voltage ramps up, the slope on V_{DD_BV} should be less than 0.9V_{DD_HV} in order to ensure the device does not enter regulator bypass mode.

 $^5\,$ 100 nF capacitance needs to be provided between V_DD_ADC/V_{SS_ADC} pair.

⁶ Guaranteed by device validation. Please refer to Section 3.5.1, External ballast resistor recommendations for minimum V_{DD} slope to be guaranteed to ensure correct power up in case of external resistor usage.

⁷ Minimum value of TV_{DD} must be guaranteed until V_{DD} reaches 2.6 V (maximum value of V_{PORH}).

⁸ This frequency includes the 4% frequency modulation guard band.

NOTE

RAM data retention is guaranteed with $V_{DD LV}$ not below 1.08 V.

Svm	bol	C	Parameter		Conditions ¹	V	alue		Unit
Cym	001	ľ	i di dineter		Conditions	Min	Тур	Max	onne
V _{OL}	СС	С	Output low level MEDIUM configuration	Push Pull	I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	0.2V _{DD}	V
		Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_	_	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	_	—	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	—	—	0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	0.1V _{DD}	

Table 15. MEDIUM configuration output buffer electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Symt		<u>ر</u>	Parameter		Conditions ¹		Value		Unit
Synn	101	C	Falametei		Conditions	Min	Тур	Мах	Unit
V _{OH}	CC	Ρ	Output high level FAST configuration	Push Pull	Push Pull $I_{OH} = -14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)		_		V
		С			$I_{OH} = -7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	0.8V _{DD}	_		
		С			$I_{OH} = -11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	V _{DD} – 0.8			
V _{OL}	CC	Ρ	Output low level FAST configuration	Push Pull	$I_{OL} = 14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)	_		0.1V _{DD}	V
		С			$I_{OL} = 7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	—	_	0.1V _{DD}	
		С			$I_{OL} = 11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	—		0.5	

Table 16. FAST configuration output buffer electrical characteristics

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

		ont			176 L	QFP			144/10	0 LQFP			
	ppiy segui		Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V		
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1		
1	—	—	PH[15]	2%	3%	3%	3%	_		_	_		
	—	—	PH[13]	3%	4%	3%	4%	—	—	—	_		
	_	—	PH[14]	3%	4%	4%	4%	—	—	—	_		
	—	—	PI[6]	4%	—	4%	—	—	—	—	_		
	—	—	PI[7]	4%	—	4%	—	—	—	—	_		
	4	—	PG[5]	4%	—	5%	—	10%	—	12%	_		
		—	PG[4]	4%	6%	5%	5%	9%	13%	11%	12%		
		—	PG[3]	4%	—	5%	—	9%	—	11%	_		
		—	PG[2]	4%	6%	5%	5%	9%	12%	10%	11%		
		4	PA[2]	4%	—	5%	—	8%	—	10%	_		
			PE[0]	4%	—	5%	—	8%	—	9%	_		
			PA[1]	4%	—	5%	—	8%	—	9%	_		
			PE[1]	4%	6%	5%	6%	7%	10%	9%	9%		
			PE[8]	4%	6%	5%	6%	7%	10%	8%	9%		
			PE[9]	4%	—	5%	—	6%	—	8%	_		
			PE[10]	4%	_	5%	_	6%		7%	_		
					PA[0]	4%	6%	5%	5%	6%	8%	7%	7%
			PE[11]	4%	—	5%	—	5%	_	6%	_		

Table 20. I/O weight¹ (continued)

C 11					176 L	QFP			144/10	0 LQFP	
Su	ppiy segm	ent	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
6	4	4	PC[0]	6%	9%	7%	8%	7%	10%	8%	8%
			PH[9]	7%		8%	_	7%		9%	
			PE[2]	7%	10%	8%	9%	8%	11%	9%	10%
			PE[3]	7%	10%	9%	9%	8%	12%	10%	10%
			PC[5]	7%	11%	9%	9%	8%	12%	10%	11%
			PC[4]	8%	11%	9%	10%	9%	13%	10%	11%
			PE[4]	8%	11%	9%	10%	9%	13%	11%	12%
			PE[5]	8%	11%	10%	10%	9%	14%	11%	12%
			PH[4]	8%	12%	10%	10%	10%	14%	12%	12%
			PH[5]	8%	_	10%	_	10%	_	12%	—
		_	PH[6]	8%	12%	10%	11%	10%	15%	12%	13%
			PH[7]	9%	12%	10%	11%	11%	15%	13%	13%
			PH[8]	9%	12%	10%	11%	11%	16%	13%	14%
		4	PE[6]	9%	12%	10%	11%	11%	16%	13%	14%
			PE[7]	9%	12%	10%	11%	11%	16%	14%	14%
	_	_	PI[3]	9%	_	10%	_	_	_	—	_
	_	_	PI[2]	9%	—	10%	_	—	—	—	—
	_	_	PI[1]	9%	—	10%	_	—	—	—	—
	_	_	PI[0]	9%	—	10%	_	—	—	—	—
	4	4	PC[12]	8%	12%	10%	11%	12%	18%	15%	16%
			PC[13]	8%	—	10%	_	13%	—	15%	—
			PC[8]	8%	—	10%	_	13%	—	15%	—
			PB[2]	8%	11%	9%	10%	13%	18%	15%	16%

Table 20. I/O weight¹ (continued)

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified ² SRC is the Slew Rate Control bit in SIU_PCR*x*

RESET electrical characteristics 3.7

The device implements a dedicated bidirectional $\overline{\text{RESET}}$ pin.

Cumbal		_	Devenator	Conditions1		Value		11
Symbol		C	Parameter	Conditions	Min	Тур	Max	Unit
IMREGINT	СС	D	Main regulator module current	I _{MREG} = 200 mA		—	2	mA
			consumption	I _{MREG} = 0 mA	_	—	1	-
V _{LPREG}	СС	Ρ	Low power regulator output voltage	After trimming	1.15	1.23	1.32	V
I _{LPREG}	SR	—	Low power regulator current provided to $V_{DD_{LV}}$ domain	_	—	—	15	mA
I _{LPREGINT}	СС	D	Low power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	—	—	600	μA
		—		I _{LPREG} = 0 mA; T _A = 55 °C	—	5		-
V _{ULPREG}	СС	Ρ	Ultra low power regulator output voltage	After trimming	1.15	1.23	1.32	V
I _{ULPREG}	SR	—	Ultra low power regulator current provided to V _{DD_LV} domain	_	—	_	5	mA
IULPREGINT	СС	D	Ultra low power regulator module current consumption	I _{ULPREG} = 5 mA; T _A = 55 °C	—	—	100	μA
				I _{ULPREG} = 0 mA; T _A = 55 °C	—	2	—	-
I _{DD_BV}	СС	D	Inrush average current on V _{DD_BV} during power-up ⁵	_	—	_	300 ⁶	mA
$\frac{\mathrm{d}}{\mathrm{d}t}VDD$	SR		Maximum slope on VDD	_	_		250	mV/µs
$\Delta_{VDD(STDBY))}$	SR	—	Maximum instant variation on VDD during STANDBY exit	_	-		30	mV
$\left \frac{\mathrm{d}}{\mathrm{d}t}VDD(STDBY)\right $	SR		Maximum slope on VDD during STANDBY exit	_	_		15	mV/µs

Table 22. Voltage regulator electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.

- $^{3}\,$ This value is acceptable to guarantee operation from 4.5 V to 5.5 V
- ⁴ External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.
- ⁵ Inrush current is seen only for short time during power-up and on standby exit (max 20 μs, depending on external capacitances to be load).
- ⁶ The duration of the inrush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

3.8.2 Voltage monitor electrical characteristics

The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors to monitor the V_{DD} and the V_{DD} LV voltage while device is supplied:

Figure 16. Slow external crystal oscillator (32 kHz) electrical characteristics

Symbol		C	Parameter	Conditions ¹		Unit		
		Ŭ	runneer	Conditions	Min	Тур	Мах	0.111
f _{SXOSC}	SR	_	Slow external crystal oscillator frequency	_	32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	—	_	2.1		V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	—		2.5		μA
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	—	_	—	8	μA
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	—	—	_	2 ²	S

V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
 Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

FMPLL electrical characteristics 3.14

The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the FXOSC or FIRC sources.

Table 37.	FMPLL	electrical	characteristics
-----------	-------	------------	-----------------

Symbol		al	C	Parameter	Conditions ¹		Unit		
		01	Ŭ	i didineter	Conditions	Min	Тур	Max	U
f _{PL}	LLIN	SR	—	FMPLL reference clock ²	—	4		64	MHz
Δ_{P}	LLIN	SR		FMPLL reference clock duty cycle ²	_	40	—	60	%

possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_S being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc \times C_S)$, where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S) and the sum of $R_S + R_F + R_L + R_{SW} + R_{AD}$, the external circuit must be designed to respect the Equation 4:

$$V_A \bullet \frac{\mathbf{R}_{S} + \mathbf{R}_{F} + \mathbf{R}_{L} + \mathbf{R}_{SW} + \mathbf{R}_{AD}}{\mathbf{R}_{EO}} < \frac{1}{2} LSB$$

and R_{AD}) can be neglected with respect to external resistances.

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R_{SW})

Figure 18. Input equivalent circuit (precise channels)

Eqn. 4

Eqn. 5

Ean 6

Ean 7

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_S is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$
 Eqn. 8

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_s , a constraints on R_L sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < T_S$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

Egn. 9

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (T_S). The filter is typically designed to act as antialiasing.

Cumba	Symbol		Devenuetev	O a m ditt									
Symbo			Parameter	Conditions		Min	Тур	Max					
R _{SW1}	СС	D	D Internal resistance of analog — —		_	-	3	kΩ					
R _{SW2}	СС	D	Internal resistance of analog source	_			—	2	kΩ				
R _{AD}	СС	D	Internal resistance of analog source	_		_	—	2	kΩ				
I _{INJ}	SR		Input current Injection	Current injection on one ADC_0	V _{DD} = 3.3 V ± 10%	-5	—	5	mA				
								from the converted one	V _{DD} = 5.0 V ± 10%	-5	—	5	
INL	СС	Т	Absolute value for integral nonlinearity	No overload	1	_	0.5	1.5	LSB				
DNL	СС	Т	Absolute differential nonlinearity	No overload			0.5	1.0	LSB				
OFS	СС	Т	Absolute offset error			_	0.5	—	LSB				
GNE	СС	Т	Absolute gain error			_	0.6		LSB				
TUEP	СС	Ρ	Total unadjusted error ⁷ for	Without current injection		-2	0.6	2	LSB				
			precise channels, input only pins	With current injection		-3	—	3					
TUEX	СС	Т	Total unadjusted error ⁷ for	Without current in	njection	-3	1	3	LSB				
			extended channel	With current injection		-4		4					

Fable 41. ADC 0 conversion characteristics	(10-bit ADC 0) (continued))
	(,

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 $^2\,$ Analog and digital $V_{SS}\,\text{must}$ be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC0} and V_{DD_ADC0} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

⁵ During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC0_S} . After the end of the sample time t_{ADC0_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC0_S} depend on programming.

⁶ This parameter does not include the sample time t_{ADC0_S}, but only the time for determining the digital result and the time to load the result's register with the conversion result.

⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

3.18.2 DSPI characteristics

DSPI0/DSPI1/DSPI5/DSPI6 DSPI2/DSPI4 No. Symbol С Parameter Unit Min Тур Max Min Тур Max SR D SCK cycle time 333^{2} 1 Master mode 125 ns t_{SCK} _ ____ _ (MTFE = 0)D Slave mode 125 ____ 333 ___ _ _ (MTFE = 0)D Master mode 83 145 _ _ _ _ (MTFE = 1)D Slave mode 83 145 ____ _ (MTFE = 1)SR D DSPI digital controller frequency MHz _ f_{DSPI} ____ _ f_{CPU} _ _ f_{CPU} t_{CSCext}³ 2 SR D CS to SCK delay Slave mode 32 32 _ _ _ _ ns 3 t_{ASCext}⁴ SR D After SCK delay Slave mode 1/f_{DSPI} + 5 1/f_{DSPI} + 5 ns _ _ _ _ CC D SCK duty cycle 4 Master mode t_{SCK}/2 t_{SCK}/2 t_{SDC} ____ _ ____ ns _ SR D Slave mode t_{SCK}/2 t_{SCK}/2 ____ ____ _ SR D Slave access time 5 Slave mode 1/f_{DSPI} + 70 1/f_{DSPI} + 130 t_A _ _ ___ _ ns SR 6 D Slave SOUT disable time Slave mode 7 7 t_{DI} ___ ns ____ _ _ 13⁵ 13⁵ D PCSx to PCSS time CC 7 t_{PCSC} ____ _ _ _ CC D PCSS to PCSx time 13⁵ 13⁵ 8 t_{PASC} _ ____ _ _ ____ SR D Data setup time for 9 Master mode 43 145 t_{SUI} ____ _ ns _ _ inputs Slave mode 5 5 _ _ _ _ SR D Data hold time for inputs 10 Master mode 0 0 ns t_{HI} ____ _ ____ _ 2⁶ 2⁶ Slave mode _ _ _ _ t_{SUO}7 11 CC D Data valid after SCK Master mode 32 50 ns _ ____ _ _ edge Slave mode 52 160 _ ____ ____ _ CC D Data hold time for 12 t_{HO}⁷ Master mode 0 0 ____ _ _ ____ ns outputs Slave mode 8 13 _ _ _ _

Table 44. DSPI characteristics¹

Note: Numbers shown reference Table 44.

Note: Numbers shown reference Table 44.

No	Symb	Symbol		C Parameter		Unit			
No. Symbol				i arameter	Min	Тур	Мах		
4	t _{TMSS}	CC	D	TMS setup time	15	_	—	ns	
5	t _{TMSH}	СС	D	TMS hold time	5	—	—	ns	
6	t _{TDOV}	СС	D	TCK low to TDO valid	—	—	33	ns	
7	t _{TDOI}	CC	D	TCK low to TDO invalid	6	_	_	ns	

Figure 32. Timing diagram — JTAG boundary scan

Figure 40. 100 LQFP package mechanical drawing (Part 3 of 3)

5 Ordering information

Note: Not all options are available on all devices.

Figure 41. Commercial product code structure

Revision	Date	Description of changes
2 (cont.)	15 May 2013	In Table 24 (Electrical characteristics in different application modes), — Changed I _{DDMAX} Typ to 81 mA and I _{DDMAX} Typ to 130 mA. — Changed I _{DDRUN} Typ for ICPU = 32 MHz to 54 mA. Added I _{DDRUN} Max of 96 mA. — Changed I _{DDRUN} Typ for ICPU = 48 MHz to 57 mA. Added I _{DDRUN} Max of 120 mA. — Changed I _{DDHALT} at T _A = 25 °C Typ to 10 mA and I _{DDHALT} Max to 15 mA. — Changed I _{DDHALT} at T _A = 25 °C Typ to 15 mA and I _{DDHALT} Max to 500 µA. — Changed I _{DDSTOP} T _A temperature from -40 °C to 25 °C. — Changed I _{DDSTOP} at T _A = 25 °C Typ to 130 µA and I _{DDSTOP} Max to 500 µA. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 180 µA. — Changed I _{DDSTOP} at T _A = 55 °C Typ to 1 mA and I _{DDSTOP} Max to 5 mA. — Changed I _{DDSTOP} at T _A = 25 °C Typ to 5 mA and I _{DDSTOP} Max to 14 mA. — Changed I _{DDSTOP} at T _A = 25 °C Typ to 5 mA and I _{DDSTOP} Max to 14 mA. — Changed I _{DDSTOP} at T _A = 25 °C Typ to 17 µA and Max to 80 µA. — Changed I _{DDSTDP2} at T _A = 25 °C Typ to 100 µA. — Changed I _{DDSTDP2} at T _A = 105 °C Typ to 100 µA. — Changed I _{DDSTDP2} at T _A = 105 °C Typ to 100 µA. — Changed I _{DDSTDP2} at T _A = 105 °C Typ to 120 µA and Max to 950 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 120 µA and Max to 1700 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 120 µA and Max to 500 µA. — Changed I _{DDSTDP2} at T _A = 155 °C Typ to 120 µA and Max to 500 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 240 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 240 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. — Changed I _{DDSTDP1} at T _A = 155 °C Typ to 260 µA. —
3	11 Sep 2013	Updated the temperature in table note 2 in Table 1 (MPC5606BK family comparison) from 105 °C to 125 °C.
4	25 Nov2015	Updated the Max value current for I _{ADC0run} from 40 mA to 5 mA in Table 41 (ADC_0 conversion characteristics (10-bit ADC_0)).
5	7 Nov 2017	 In Table 9 (Recommended operating conditions (3.3 V)) added Min value for TV_{DD}. In Table 10 (Recommended operating conditions (5.0 V)) added Min value for TV_{DD}. In Table 44 (DSPI characteristics) changed the for DSPI 2 and 4, in MTFE=1 mode from 125 to 145.