E·XFL

onsemi - LC87F2416AU-EB-2E Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-LQFP
Supplier Device Package	36-QFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f2416au-eb-2e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■Ports

- Normal withstand voltage I/O ports
 - Ports I/O direction can be designated in 1 bit units Ports I/O direction can be designated in 4 bit units
- Dedicated oscillator ports/input ports
- Reset pin
- Power pins
- ■Timers
 - Timer 0: 16-bit timer/counter with a capture register.
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) \times 2 channels
 - Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) + 8-bit counter (with an 8-bit capture register)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
 - Mode 3: 16-bit counter (with a 16-bit capture register)
 - Timer 1: 16-bit timer/counter that supports PWM/toggle outputs
 - Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + with an 8-bit prescaler 8-bit timer/counter (with toggle outputs)
 - Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels
 - Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs) (toggle outputs also possible from the lower-order 8 bits)
 - Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs) (The lower-order 8 bits can be used as PWM.)
 - Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
 - Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
 - Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes
 - 3) Base timer does not operate when selecting CF Oscillation circuit.
- ■High-speed clock counter
 - 1) Capable of counting clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
 - 2) Capable of generating real-time output.
- ■SIO
 - SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle = 4/3 tCYC)
 - Automatic continuous data transmission (1 to 256 bits, specifiable in 1 bit units, suspension and resumption of data transmission possible in 1 byte units)
 - SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

.....

16 (P1n, P20, P21, P30, P31, P70 to P73)

8 (P0n)

 $1(\overline{\text{RES}})$

2 (CF1/XT1, CF2/XT2)

3 (VSS1, VSS2, VDD1)

■UART

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator
- AD converter: 12 bits/8 bits \times 10 channels
 - 12 bits/8 bits AD converter resolution selectable
- ■PWM: Multifrequency 12-bit PWM × 2 channels
- Remote control receiver circuit (sharing pins with P73, INT3, and T0IN)
 - Noise rejection function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)

■Clock output function

- Capable of outputting selected oscillation clock 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, or 1/64 as system clock.
- Capable of outputting oscillation clock of sub clock.
- ■Watchdog timer
 - External RC watchdog timer
 - Interrupt and reset signals selectable

■Interrupts

- 20 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/INT5/base timer
5	00023H	H or L	тон
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1 receive
8	0003BH	H or L	SIO1/UART1 transmit
9	00043H	H or L	ADC/T6/T7/PWM4, PWM5
10	0004BH	H or L	Port 0

• Priority levels X > H > L

• Of interrupts of the same level, the one with the smallest vector address takes precedence.

Subroutine stack levels: 256levels (the stack is allocated in RAM.)

High-speed multiplication/division instructions

- 16 bits \times 8 bits (5 tCYC execution time)
- 24 bits \times 16 bits (12 tCYC execution time)
- 16 bits \div 8 bits (8 tCYC execution time)
- 24 bits \div 16 bits (12 tCYC execution time)

■Oscillation circuits

- RC oscillation circuit (internal)
- Frequency variable RC oscillation circuit (internal)
- CF oscillation circuit

- : For system clock
- : For system clock : For system clock, with internal Rf
- : For low-speed system clock, with internal Rf
- 1) CF and crystal oscillation circuit have a shared terminal, and it is software selectable.
- 2) When reset, CF and Crystal oscillators stop operation. After reset is released, CF oscillator starts operation.
- ■System clock divider function

• Crystal oscillation circuit

- Capable of running with low current consumption.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2µs, 2.4µs, 4.8µs, 9.6µs, 19.2µs, 38.4µs, and 76.8µs (at a main clock rate of 10MHz).
- ■Internal reset function
 - Power-On-Reset (POR) function
 - 1) POR resets the system when the power supply voltage is applied.
 - 2) POR release level is selectable from 5 levels (1.55V, 1.72V, 2.00V, 2.37V, 2.65V) by option.
 - Low Voltage Detection reset (LVD) function
 - 1) LVD used with POR resets the system when the supply voltage is applied and when it is lowered.
 - 2) LVD function is selectable from enable/disable and the reset level is selectable from 3 levels (1.90V, 2.25V, 2.50V) by option.
- ■Standby function
 - HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) Canceled by a system reset or occurrence of an interrupt
 - HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are three ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) Setting at least one of the INT0, INT1, INT2, and INT4 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer. 1) The CF and RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are four ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INT0, INT1, INT2, and INT4 pins to the specified level
 - (3) Having an interrupt source established at port
 - (4) Having an interrupt source established in the base timer circuit

Note: X'tal HOLD mode can be used only when crystal oscillation is selected.

■Onchip-Debugger

- Supports software debugging with the IC mounted on the target board.
- For a small pin package, two-channel Onchip-Debugger port ((DBGP0(P0), DBGP1(P1)) are equipped.

■Flash data security

- Protects from illegal access to data in flash memory. Note: Flash data security cannot guarantee perfect security.
- ■Package form
 - QFP36 (7×7) : Lead-free type
- ■Development tools
 - Onchip Debugger : TCB87 TypeB + LC87F2416A

■Flash ROM programming boards

Package	Programming boards
QFP36 (7×7)	W87F24Q

■Flash ROM programmer

Maker		Model	Supported version (Note)	Device	
Flash Support	Cingle	AF9708/AF9709/AF9709B	Revision : After 02.60	LC87F2416A	
	Single	(including product of Ando Electric Co.,Ltd)			
	Gang	AF9723 (Main body)			
Group, Inc.		(including product of Ando Electric Co.,Ltd)			
		AF9833 (Unit)			
		(including product of Ando Electric Co.,Ltd)			
			Application Version : 1.03 or later		
Our Company		SKK Type-B(SANTOFWS)	Chip Data Version : 2.03 or later	LC87F2416A	

For information about AF series, please contact the following:

Flash Support Group, Inc.

TEL: 053-459-1030

E-mail: sales@j-fsg.co.jp

■Same package and pin assignment as mask ROM version.

- 1) LC872400 series options can be set by using flash ROM data. Thus the board used for mass production can be used for debugging and evaluation without modifications.
- 2) If the program for the mask ROM version is used, the usable ROM/RAM capacity is the same as the mask ROM version.

System Block Diagram

Pin Function Chart

Pin Name I/O Description	Option
V _{SS} 1, V _{SS} 2power supply pins	No
V _{DD} 1 - +power supply pin	No
Port 0 I/O • 8-bit I/O port	Yes
P00 to P07 • I/O specifiable in 4 bit units	
Pull-up resistors can be turned on and off in 4 bit units.	
HOLD reset input	
Port 0 interrupt input	
Pin functions	
P05: System clock output	
P06: Timer 6 toggle output	
P07: Timer 7 toggle output	
P00 (AN0) to P07 (AN7): AD converter input	
Pos (DBGP00) to P07 (DBGP02). On-chip-debugger 0 port	Voo
Polit I //O specifiable in 1 bit units	res
P10 to P17	
Pin functions	
P10: SIO0 data output	
P11: SIO0 data input/bus I/O	
P12: SIO0 clock I/O	
P13: SIO1 data output	
P14: SIO1 data input/bus I/O	
P15: SIO1 clock I/O	
P16: Timer 1PWML output	
P17: Timer 1PWMH output/beeper output	
P15 (DBGP10) to P13 (DBGP12): On-chip-debugger 1 port	
Port 2 I/O • 2-bit I/O port	Yes
P20 to P21 • I/O specifiable in 1 bit units	
 Pull-up resistors can be turned on and off in 1 bit units. 	
Pin functions	
P20: UART transmit	
P21: UART receive	
/timer 0L conture input/timer 0H conture input	
Rising Falling Rising & Hlevel Llevel	
Falling	
INT4 0 0 0 X X	
Port 3 I/O • 2-bit I/O port	Yes
P30 to P31 • I/O specifiable in 1 bit units	
Pull-up resistors can be turned on and off in 1 bit units.	
Pin functions	
P30:PWM4 output	
P31:PWM5 OUTPUT	
/timer 0L conture input/timer 0H conture input	
Interrupt acknowledge type	
Rising &	
Rising Falling H level L level	

Continued on next page.

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P21	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P30 to P31	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable

Note1: Programmable pull-up resistors and selection of low-impedance-pull-up/high-impedance-pull-up for port 0 are controlled on lower four bits and upper four bits (P00 to P03, P04 to P07).

Note: VSS1 and VSS2 should connect to each other and they should also be grounded.

Onchip Debugger pin connection requirements

Refer to the separate documents, "RD87 Onchip Debugger Installation Manual" and "LC87200series pin connection requirements Manual", for the requirements on Onchip Debugger pin connections.

Paramotor	Symbol	Pin/Romarka	Conditions			Specifi	cation	
Parameter	Symbol	PIN/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
Operating	V _{DD} (1)	V _{DD} 1	$0.245 \mu s \leq tCYC \leq 200 \mu s$		2.7		5.5	
supply voltage	V _{DD} (2)		$0.294 \mu s \leq tCYC \leq 200 \mu s$		2.2		5.5	
(Note 2-1)	V _{DD} (3)		$0.735 \mu s \leq tCYC \leq 200 \mu s$		1.8		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1	RAM and register contents sustained in HOLD mode.		1.6			
High level input voltage	V _{IH} (1)	Ports 1, 2, 3 P71 to P73 P70 port input /interrupt side		1.8 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Ports 0		1.8 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (3)	Port 70 watchdog timer side		1.8 to 5.5	0.9V _{DD}		V _{DD}	V
	V _{IH} (4)	CF1, RES		1.8 to 5.5	0.75V _{DD}		V _{DD}	
Low level input voltage	V _{IL} (1)	Ports 1, 2, 3 P71 to P73		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
		P70 port input /interrupt side		1.8 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				1.8 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	Port 70 watchdog timer side		1.8 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (4)	CF1, RES		1.8 to 5.5	V _{SS}		0.25V _{DD}	
Instruction cycle	tCYC			2.7 to 5.5	0.245		200	
time	(Note 2-2)			2.2 to 5.5	0.294		200	μs
(Note 2-1)				1.8 to 5.5	0.735		200	
External system	FEXCF	CF1	CF2 pin open	2.7 to 5.5	0.1		12	
clock frequency			 System clock frequency division ratio = 1/1 External system clock duty = 50±5% 	1.8 to 5.5	0.1		4	
			CF2 pin open	3.0 to 5.5	0.2		24.4	
			 System clock frequency division ratio = 1/2 External system clock duty = 50±5% 	2.0 to 5.5	0.1		8	MHz
Oscillation frequency range	FmCF(1)	CF1, CF2	12MHz ceramic oscillation See Fig. 1.	2.7 to 5.5		12		
(Note 2-3)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation See Fig. 1.	2.2 to 5.5		10		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation See Fig. 1.	1.8 to 5.5		4		
	FmRC		Internal RC oscillation	1.8 to 5.5	0.3	1.0	2.0	
	FmMRC		Frequency variable RC oscillation	2.7 to 5.5		16		
	FsX'tal(1)	XT1, XT2	32.768kHz crystal oscillation See Fig. 2.	1.8 to 5.5		32.768		kHz

2. Allowable Operating Conditions at Ta = -40 to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Note 2-1: V_{DD} must be held greater than or equal to 2.2V in the flash ROM onboard programming mode. Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Serial I/O Characteristics at Ta = -40 to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$ 4-1. SIO0 Serial I/O Characteristics (Note 4-1-1)

		Parameter	Symbol	Din/Domarks	Conditions	-		Speci	fication	
	Г	arameter	Symbol	FINALEINAIKS	Conditions	V _{DD} [V]	min.	typ.	max.	unit
		Frequency	tSCK(1)	SCK0(P12)	• See Fig. 5.		2			
		Low level	tSCKL(1)				1			
	×	pulse width Bigh level tSCKH(1)								-
	cloc		tSCKH(1)			4.044.5.5	1			
	put	puise width	tSCKHA(1)		Continuous data	1.6 10 5.5				tCYC
	Ir				transmission/reception		4			
					• See Fig. 5		4			
ock					(Note 4-1-2)					
ial cl		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected		4/3			
Ser		Low level	tSCKL(2)		See Fig. 5.			1/2		
		pulse width						1/2		tSCK
	clock	High level tS pulse width ts	tSCKH(2)				1/2			
	out c		+0.01/11/0)		Cantinuaus data	1.8 to 5.5		1		
Outp		(SCKHA(Z)		Continuous data transmission/recention				tSCKH(2)		
				mode		tSCKH(2)		+(10/3)	tCYC	
					CMOS output selected		+2tCYC		tCYC	
					See Fig. 5.					
	Da	ta setup time	tsDI(1)	SB0(P11),	Must be specified with					
Iput				SI0(P11)			0.05			
ial ir	Da	ta hold time	thDI(1)		SIUCLK.	1.8 to 5.5				
Ser	Da		ume thDI(1) • See Fig. 5.			0.05				
		Output delay	tdD0(1)	SO0(P10),	Continuous data					
	сk	time		SB0(P11)	transmission/reception				(1/3)tCYC	
	ut clo				mode				+0.08	μs
put	Inpı		tdD0(2)		(NOTE 4-1-3)				1+CVC	
l out			(UD0(2)		(Note 4-1-3)	1.8 to 5.5			+0.08	
eria	~		tdD0(3)		(Note 4-1-3)					
0)	cloch								(1/2)+0.10	
	put (+0.08	
	Out								- 0.00	
										1

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SIORUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.

Parameter		Paramatar	Symbol	Din/Domorko	Conditions			Speci	fication	
	F	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
		Frequency	tSCK(3)	SCK1(P15)	See Fig. 5.		2			
	ut clock	Low level pulse width	tSCKL(3)			1.8 to 5.5	1			101/0
clock	Inpi	High level pulse width	tSCKH(3)				1			tCYC
erial	×	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected		2			
Output cloc	Low level pulse width	tSCKL(4)	• See Fig. 5.	1.8 to 5.5	1/2			10.014		
	High level pulse width	tSCKH(4)					1/2		tSCK	
Dat input	ta setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of SIOCLK.		0.05				
Serial	Da	ta hold time	thDI(2)		• See Fig. 5.	1.8 to 5.5	0.05			
Serial output	Ou	itput delay time	tdD0(4)	SO1(P13), SB1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5. 	1.8 to 5.5			(1/3)tCYC +0.08	μs

4-2. SIO1 Serial I/O Characteristics (Note 4-2-1)

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Deremeter	Symbol	Din/Domorka	Conditions		Specification			
Parameter	Symbol	PIN/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
High/low level	tPIH(1)	INT0(P70),	 Interrupt source flag can be set. 					
pulse width	tPIL(1)	INT1(P71),	 Event inputs for timer 0 or 1 are 					
		INT2(P72),	enabled.	1.8 to 5.5	1			
		INT4(P20 to P21),						
		INT5(P30 to P31)						
	tPIH(2)	INT3(P73) when	 Interrupt source flag can be set. 					
	tPIL(2)	noise filter time	Event inputs for timer 0 are enabled.	1.8 to 5.5	2			tovo
		constant is 1/1						
	tPIH(3)	INT3(P73) when	 Interrupt source flag can be set. 					
	tPIL(3)	noise filter time	Event inputs for timer 0 are enabled.	1.8 to 5.5	64			
		constant is 1/32						
	tPIH(4)	INT3(P73) when	 Interrupt source flag can be set. 					
	tPIL(4)	noise filter time	• Event inputs for timer 0 are enabled.	1.8 to 5.5	256			
		constant is 1/128						
	tPIL(5)	RES	External reset input mode.	1.0 40 5 5	200			
			 Resetting is enabled. 	1.0 (0 5.5	200			μs

5. Pulse Input Conditions at Ta = -40 to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

			5 at 1a +0 to +05 V	-, '001 '002 '	J v			
						Specif	fication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min.	typ.	max.	unit
POR release	PORR		Select from option.	1.55V	1.38	1.55	1.72	
voltage			(Note 7-1)	1.72V	1.54	1.72	1.90	
				2.00V	1.81	2.00	2.19	
				2.37V	2.12	2.37	2.62	V
				2.65V	2.39	2.65	2.91	
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		Power supply rise time from 0V to 1.4V.				100	ms

7. Power-on reset (POR) Characteristics at Ta = -40 to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Note 7-1: The POR release level can be selected out of 5 levels only when the LVD reset function is disabled. Note 7-2: POR is in an unknown state before transistors start operation.

8. Low voltage detection reset (LVD) Characteristics at Ta = -40 to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

						Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min.	typ.	max.	unit
LVD reset	LVDET		 Select from option. 	1.90V	1.72	1.90	2.08	
Voltage			(Note 8-1)	2.25V	2.03	2.25	2.47	
• See Fig. 8. (Note 8-2)			(NOTE 8-3)	2.50V	2.26	2.50	2.74	
LVD hysteresys width	LVHYS			1.90V		LVDET ×0.054		
			2.25V		LVDET ×0.062		V	
				2.50V		LVDET ×0.065		
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 8-4)			0.7	0.95	
Low voltage detection minimum Width (Reply sensitivity)	TLVDW		• See Fig. 9.		0.2			ms

Note 8-1: The LVD reset level can be selected out of 3 levels only when the LVD reset function is enabled.

Note 8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note 8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note 8-4: LVD is in an unknown state before transistors start operation.

9.	Consum	ption	Current	Characte	ristics at	Ta = -40) to $+85$	°C, VSS	l = VSS2 =	= 0V
									· · · · · · · · · · · · · · · · · · ·	

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	VDD[V]	min.	typ.	Max.	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1	FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal RC oscillation stopped	2.7 to 5.5		8.3	15.1	
(Note 9-2)			Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		4.8	8.7	
	IDDOP(2)		• CF1=24MHz external clock • System clock set to CF1 side • Internal RC oscillation stopped.	3.0 to 5.5		9	16.2	
			Frequency variable RC oscillation stopped. 1/2 frequency division ratio	3.0 to 3.6		5.2	8.7	
	IDDOP(3)		FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side	2.2 to 5.5		7.3	13.8	
			Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.2 to 3.6		4.3	8.3	
	IDDOP(4)		FmCF=4 MHz ceramic oscillation mode System clock set to 4MHz side Internal BC assillation standard	1.8 to 5.5		3.6	7.8	mA
			 Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	1.8 to 3.6		2.5	4.9	
	IDDOP(5)		FsX'tal=32.768kHz crystal oscillation mode System clock set to internal RC	1.8 to 5.5		0.7	2.4	
			 oscillation. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	1.8 to 3.6		0.4	1.2	
	IDDOP(6)		FsX'tal=32.768kHz crystal oscillation mode Internal RC oscillation stopped. System clock set to 1MHz with	1.8 to 5.5		1.3	2.8	
			Frequency variable RC oscillation • 1/2 frequency division ratio	1.8 to 3.6		0.8	1.6	
	IDDOP(7)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal BC assillation standad	1.8 to 5.5		39	139	
			Frequency variable RC oscillation stopped. 1/2 frequency division ratio	1.8 to 3.6		17	66	
	IDDOP(8)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side	5.0		39	101	μΑ
			Internal RC oscillation stopped. Frequency variable RC oscillation stopped	3.3		17	47	
			1/2 frequency division ratio Ta=-10 to +50°C	2.5		10	29	

Note 9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note 9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued fro	m preceding pa	age.						
Parameter	Symbol	Pin/remarks	Conditions					
	Cymbol	1 minoritativo		V _{DD} [V]	min.	typ.	max.	unit
HALT mode consumption current (Note 9-1)	IDDHALT(1)	V _{DD} 1	HALT mode FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side	2.7 to 5.5		3.4	6.2	
(Note 9-2)			 Internal RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		1.8	3.1	
	IDDHALT(2)		HALT mode CF1=24MHz external clock System clock set to CF1 side Internal PC oscillation stopped	3.0 to 5.5		4.9	8.6	
			Frequency variable RC oscillation stopped. 1/2 frequency division ratio	3.0 to 3.6		2.3	3.8	
	IDDHALT(3)		HALT mode FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side	2.2 to 5.5		2.9	5.6	
			 Internal RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.2 to 3.6		1.5	2.8	
	IDDHALT(4)		HALT mode FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side	1.8 to 5.5		1.5	3.7	mA
			 Internal RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	1.8 to 3.6		0.7	1.6	
	IDDHALT(5)	-	HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to internal RC	1.8 to 5.5		0.5	1.4	
			oscillation Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	1.8 to 3.6		0.2	0.6	
	IDDHALT(6)		 HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal RC oscillation stopped. 	1.8 to 5.5		T.B.D	T.B.D	
			 System clock set to 1MHz with Frequency variable RC oscillation 1/2 frequency division ratio 	1.8 to 3.6		T.B.D	T.B.D	
	IDDHALT(7)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side	1.8 to 5.5		25	112	
			 Internal RC oscillation stopped Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	1.8 to 3.6		8.5	56	μA

Note 9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note 9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Parameter	Symbol	Din/romarks	Conditions		Specification			
i arameter	Symbol	Timremarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
HALT mode consumption current	IDDHALT(8)	V _{DD} 1	HALT mode FsX'tal=32.768kHz crystal oscillation mode	5.0		25	69	
(Note 9-1) (Note 9-2)			System clock set to 32.768kHz side Internal RC oscillation stopped Frequency variable RC	3.3		8.5	29	
			oscillation stopped. • 1/2 frequency division ratio • Ta=-10 to +50°C	2.5		4.2	15	
HOLD mode	IDDHOLD(1)		HOLD mode	1.8 to 5.5		0.04	30	
consumption current			CF1=V _{DD} or open (External clock mode)	1.8 to 3.6		0.02	21	-
(Note 9-1)	IDDHOLD(2)		HOLD mode	5.0		0.04	2.3	
(Note 9-2)			• CF1=V _{DD} or open	3.3		0.02	1.5	
			• Ta=-10 to 50°C	2.5		0.017	1.2	
	IDDHOLD(3)	-	HOLD mode • CF1=V _{DD} or open	1.8 to 5.5		2.2	34	μA
		-	(External clock mode) • LVD option selected	1.8 to 3.6		1.7	24	
	IDDHOLD(4)		HOLD mode	5.0		2.2	5.4	
			(External clock mode)	3.3		1.7	3.8	
			 Ta=-10 to 50°C LVD option selected 	2.5		1.5	3.3	
Timer HOLD	IDDHOLD(5)		Timer HOLD mode	1.8 to 5.5		22	106	
mode consumption			FsX'tal=32.768kHz crystal oscillation mode	1.8 to 3.6		7.5	45	
current	IDDHOLD(6)		Timer HOLD mode	5.0		22	62	
(Note 9-1)			FsX'tal=32.768kHz	3.3		7.5	23	
(11010 3-2)			• Ta=-10 to 50°C	2.5		2.9	12	

Note 9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note 9-2: The consumption current values do not include operational current of LVD function if not specified.

10.	F-ROM	Programming	Characteristics at '	Ta = +10 to	+55°C,	VSS1 = V	$V_{SS2} = 0V$
			•••••••••••		,	· 00-	· bb= •·

Deremeter	Symbol	Din/Domorko	Conditions		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
Onboard	IDDFW	V _{DD} 1	 Only current of the Flash block. 					
programming				2.2 to 5.5		5	10	mA
current								
Programming	tFW(1)		Erasing time	0.044.5.5		20	30	ms
time	tFW(2)		Programming time	2.2 to 5.5		40	60	μs

11. UART (Full Duplex) Operating Conditions at Ta = -40 to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Daramatar	Cumbal	Din/Domorko	Conditions		Specification				
Parameter	Symbol	Fill/Reillaiks	Conditions	V _{DD} [V]	min.	typ.	max.	unit	
Transfer rate	UBR	P20, P21		1.8 to 5.5	16/3		8192/3	tCYC	

Data length	: 7/8/9 bits (LSB first)
Stop bits	: 1 bit(2-bit in continuous data transmission)
Parity bits	: None

Example of Continuous 8-bit Data Transmission Mode Processing (First Transmit Data=55H)

Example of Continuous 8-bit Data Reception Mode Processing (First Receive Data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using our company-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Nominal				Circui	t Constant		Operating Voltage	iting Oscillati age Stabilization		Danaka
Frequency	vendor Name	Oscillator Name	C1	C2	Rf	Rd	Range	Тур	Max	Remarks
			[pF]	[pF]	[Ω]	[Ω]	[V]	[ms]	[ms]	
1010-			(10)	(10)	Open	470	2.7 to 3.6	0.1	0.5	
12IVITI2		CSTCE12M0G52-R0	(10)	(10)	Open	680	3.6 to 5.5	0.1	0.5	
			(10)	(10)	Open	680	2.2 to 3.6	0.1	0.5	Internal C1, C2
10141-		C31CE1000032-R0	(10)	(10)	Open	1.0k	3.6 to 5.5	0.1	0.5	
		CSTLS10M0G53-B0	(15)	(15)	Open	680	2.2 to 3.6	0.1	0.5	
	MURATA		(15)	(15)	Open	680	3.6 to 5.5	0.1	0.5	
			(15)	(15)	Open	2.2k	1.8 to 2.7	0.2	0.6	
		CSTCR4M00G53-R0	(15)	(15)	Open	3.3k	2.7 to 5.5	0.2	0.6	
4IVIHZ			(15)	(15)	Open	2.2k	1.8 to 2.7	0.2	0.6	
		CSTLS4W00G53-B0	(15)	(15)	Open	3.3k	2.7 to 5.5	0.2	0.6	

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using our company-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

|--|

Nominal	Vendor Name	Oscillator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Pomarka	
Frequency			C1	C2	Rf	Rd	Range	Тур	Max	Remarks	
			[pF]	[pF]	[Ω]	[Ω]	[V]	[s]	[s]		
32.768kHz	EPSON TOYOCOM	MC-306	9	9	Open	330k	1.8 to 5.5	1.4	4.0	Applicable CL value = 7.0pF	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

Figure 2 AC Timing Measurement Point

Reset Time and Oscillation Stabilization Time

Figure 5 Serial I/O Output Waveforms

Figure 6 Pulse Input Timing Signal Waveform

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.

Figure 8 Waveform observed when both POR and LVD functions are used (RESET pin: Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.