

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVR, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/m0519le3ae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 GENERAL DESCRIPTION

The NuMicro[®] M0519 Series 32-bit microcontroller is embedded with the newest ARM[®] Cortex[®]-M0 core at a cost equivalent to traditional 8-bit microcontroller for industrial control and applications which need high performance.

The NuMicro[®] M0519 Series embedded with the Cortex[®]-M0 core runs up to 72 MHz and supports a variety of industrial control and applications which need high CPU performance. The NuMicro[®] M0519 Series provides 128K/64K bytes embedded flash, 4 Kbytes data flash, 8 Kbytes flash for the ISP, and 16K bytes embedded SRAM. This MCU includes advanced PWM function and input capture timer which are specially designed for motor driving application. It is also equipped with plenty of peripheral devices, such as Timers, Watchdog Timer, UART, SPI, I2C, PWM Timer, GPIO, 12-bit ADC, Low Voltage Detector and Brown-out detector. These useful functions make the NuMicro[®] M0519 Series powerful for a wide range of applications.

In addition, the NuMicro[®] M0519 Series is equipped with ISP (In-System Programming), ICP (In-Circuit Programming) functions and IAP (In-Application Programming) which allow user to update the program memory without removing the chip from the actual end product.

nuvoTon

- Brown-out detector
 - 4 levels: 4.4V/3.7V/2.7V/2.2V
 - Optional brown-out interrupt or reset
- Built-in LDO for Wide Operating Voltage Range: 2.5V to 5.5V
- Low Voltage Reset
- 96-bit unique ID
- Operating Temperature: -40°C ~105°C
- Develop tools: parallel writer or In-Circuit Programming (ICP) writer
- Packages:
 - All Green package (RoHS)
 - LQFP 100/64/48-pin

nuvoTon

4.2 Pin Configuration

4.2.1 LQFP 100-pin

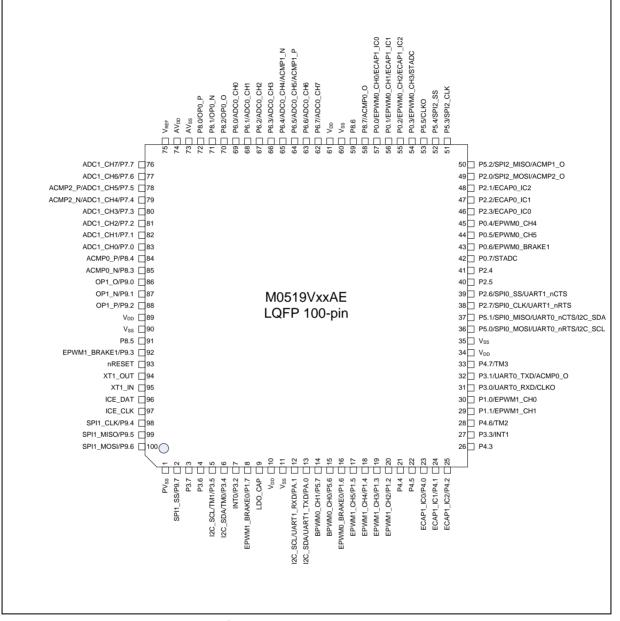


Figure 4-2 NuMicro[®] M0519VxxAE Series LQFP-100 Pin Diagram

4.3 Pin Description

Pi	in Numbe	er	D ' N	Pin	
100- pin	64-pin	48-pin	Pin Name	Type ^[1]	Description
10	6				
34	0	7	V _{DD}	Р	POWER SUPPLY: Supply voltage Digital V _{DD} for operation.
61	21	,	• 00		
89	21				
11	7				
35		8	V _{ss}	Р	GROUND: Digital Ground potential.
60	22	Ū	. 55		
90					
9	5	6	LDO_CAP	Р	LDO: LDO output pin
4				Р	Note: It needs to be connected with a 1uF capacitor.
1	-	-	PVss		PLL GROUND: PLL Ground potential.
74	47	36	AV _{DD}	AP	Power supply for internal analog circuit
73	46	35	AV _{SS}	AP	Ground Pin for analog circuit
75	48	-	V _{REF}	AP	Voltage reference input for ADC Note: It needs to be connected with a 1uF capacitor.
93	60	48	nRESET	I (ST)	RESET: nRESET pin is a Schmitt trigger input pin for hardware device reset. A " Low " on this pin for 768 clock counter of Internal RC 22.1184 MHz while the system clock is running will reset the device. nRESET pin has an internal pull-up resistor allowing power-on reset by simply connecting an external capacitor to GND.
94	61	4	XT1_OUT	о	CRYSTAL OUT: This is the output pin from the internal inverting amplifier. It emits the inverted signal of XT1_IN.
95	62	3	XT1_IN	I (ST)	CRYSTAL IN: This is the input pin to the internal inverting amplifier. The system clock is from external crystal or resonator when FOSC[1:0] (CONFIG3[1:0]) are both logic 1 by default.
96	63	2	ICE_DAT	I/O	Serial Wired Debugger Data pin
97	64	1	ICE_CLK	I	Serial Wired Debugger Clock pin
			P0.0	I/O	General purpose digital I/O pin
57	-	-	PWM0_CH0	0	PWM0 output of PWM Unit 0
			ECAP1_IC0	I	Input 0 of Enhanced Input Capture Unit 1
			P0.1	I/O	General purpose digital I/O pin
56	-	-	PWM0_CH1	0	PWM1 output of PWM Unit 0
			ECAP1_IC1	I	Input 1 of Enhanced Input Capture Unit 1
FF			P0.2	I/O	General purpose digital I/O pin
55	-	-	PWM0_CH2	0	PWM2 output of PWM Unit 0

6 FUNCTIONAL DESCRIPTION

6.1 ARM[®] Cortex[®]-M0 Core

The Cortex[®]-M0 processor is a configurable, multistage, 32-bit RISC processor, which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex[®]-M profile processor. The profile supports two modes -Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.

Figure 6-1 shows the functional controller of processor.

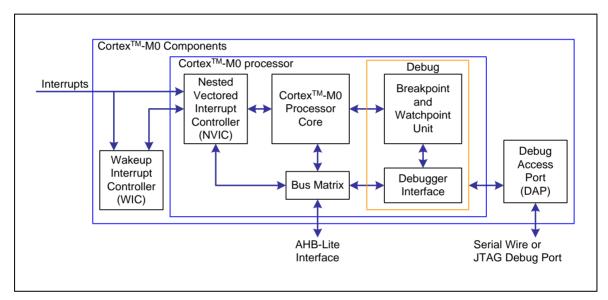


Figure 6-1 Functional Controller Diagram

The implemented device provides the following components and features:

- A low gate count processor:
 - ARMv6-M Thumb[®] instruction set
 - Thumb-2 technology
 - ARMv6-M compliant 24-bit SysTick timer
 - A 32-bit hardware multiplier
 - System interface supported with little-endian data accesses
 - Ability to have deterministic, fixed-latency, interrupt handling
 - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
 - C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
 - Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from interrupt sleep-on-exit feature
- NVIC:

nuvoton

- 32 external interrupt inputs, each with four levels of priority
- Dedicated Non-maskable Interrupt (NMI) input
- Supports for both level-sensitive and pulse-sensitive interrupt lines
- Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep mode
- Debug support
 - Four hardware breakpoints
 - Two watchpoints
 - Program Counter Sampling Register (PCSR) for non-intrusive code profiling
 - Single step and vector catch capabilities
- Bus interfaces:
 - Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory
 - Single 32-bit slave port that supports the DAP (Debug Access Port)

6.2.3 System Power Distribution

In this chip, the power distribution is divided into two segments.

- Analog power from AV_{DD} and AV_{SS} provides the power for analog components operation.
- Digital power from V_{DD} and V_{SS} supplies the power to the I/O pins and internal regulator which provides a fixed 1.8V power for digital operation.

The output of internal voltage regulators, LDO_CAP, requires an external capacitor which should be located close to the corresponding pin. Analog power (AV_{DD}) should be the same voltage level of the digital power (V_{DD}).

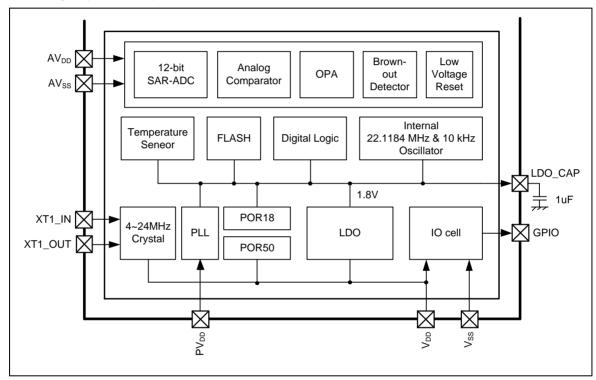


Figure 6-2 NuMicro[®] M0519 Series Power Distribution Diagram

6.2.4 System Memory Map

The NuMicro[®] M0519 Series provides 4G-byte addressing space. The memory locations assigned to each on-chip controllers are shown in Table 6-1. The detailed register definition, memory space, and programming detailed will be described in the following sections for each on-chip peripheral. The NuMicro[®] M0519 Series only supports little-endian data format.

Address Space	Token	Controllers
Flash and SRAM Memory Space		
0x0000_0000 – 0x0001_FFFF	FLASH_BA	FLASH Memory Space (128 KB)
0x2000_0000 – 0x2000_3FFF	SRAM_BA	SRAM Memory Space (16 KB)
AHB Controllers Space (0x5000_00	00 – 0x501F_FFF	F)
0x5000_0000 – 0x5000_01FF	GCR_BA	System Global Control Registers
0x5000_0200 – 0x5000_02FF	CLK_BA	Clock Control Registers
0x5000_0300 – 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF	GPIO_BA	GPIO Control Registers
0x5000_C000 – 0x5000_FFFF	FMC_BA	Flash Memory Control Registers
0x5001_4000 – 0x5001_7FFF	HDIV_BA	Hardware Divider Register
APB1 Controllers Space (0x4000_0	000 ~ 0x400F_FFF	F)
0x4000_4000 – 0x4000_7FFF	WDT_BA	Watchdog Timer Control Registers
0x4000_4100 – 0x4000_7FFF	WWDT_BA	Window Watchdog Timer Control Registers
0x4001_0000 – 0x4001_3FFF	TMR01_BA	Timer0/Timer1 Control Registers
0x4002_0000 – 0x4002_3FFF	I2C0_BA	I ² C0 Interface Control Registers
0x4003_0000 – 0x4003_3FFF	SPI0_BA	SPI0 with master/slave function Control Registers
0x4003_4000 – 0x4003_7FFF	SPI1_BA	SPI1 with master/slave function Control Registers
0x4004_0000 – 0x4004_3FFF	BPWM0_BA	Basic PWM0 Control Registers
0x4005_0000 – 0x4005_3FFF	UART0_BA	UART0 Control Registers
0x400D_0000 – 0x400D_3FFF	ACMP_BA	Analog Comparator Control Registers
0x400E_0000 – 0x400E_3FFF	EADC_BA	Enhanced Analog-Digital-Converter (EADC) Control Registers
0x400F_0000 – 0x400F_3FFF	OPA_BA	Operation Amplifier Control Registers
APB2 Controllers Space (0x4010_0	000 ~ 0x401F_FFF	F)
0x4011_0000 – 0x4011_3FFF	TMR23_BA	Timer2/Timer3 Control Registers
0x4013_0000 – 0x4013_3FFF	SPI2_BA	SPI2 with master/slave function Control Registers
0x4015_0000 – 0x4015_3FFF	UART1_BA	UART1 Control Registers
Reserved	Reserved	Reserved
0x4019_0000 – 0x4019_3FFF	EPWM0_BA	Enhanced PWM0 Control Registers
0x4019_4000 – 0x4019_7FFF	EPWM1_BA	Enhanced PWM1 Control Registers

nuvoTon

Exception Number	Vector Address	Interrupt Number (Bit In Interrupt Registers)	Interrupt Name	Source Module	Exception Description	Power Down Wake-Up
29	0x74	13	UART1_INT	UART1	UART1 interrupt	Yes
30	0x78	14	SPI0_INT	SPI0	SPI0 interrupt	No
31	0x7C	15	SPI1_INT	SPI1	SPI1 interrupt	No
32	0x80	16	SPI2_INT	SPI2	SPI2 interrupt	No
33	0x84	17	Reserved	Reserved	Reserved	-
33	0x84	17	Reserved	Reserved	Reserved	No
34	0x88	18	I2C0_INT	I ² C0	I ² C0 interrupt	Yes
35	0x8C	19	CKD_INT	CKD	CKD interrupt	No
36	0x90	20	Reserved	Reserved	Reserved	-
36	0x90	20	Reserved	Reserved	Reserved	-
37	0x94	21	EPWM0_INT	EPWM0	Enhanced PWM0 interrupt	No
38	0x98	22	EPWM1_INT	EPWM1	Enhanced PWM1 interrupt	No
39	0x9C	23	ECAP0_INT	ECAP0	Enhanced input capture 0 interrupt	No
40	0xA0	24	ECAP1_INT	ECAP1	Enhanced input capture 1 interrupt	No
41	0xA4	25	ACMP_INT	ACMP	Analog Comparator 0 or 1, or OP Amplifier digital output interrupt	Yes (only by analog comparator)
42	0xA8	26	Reserved	Reserved	Reserved	-
43	0xAC	27	Reserved	Reserved	Reserved	-
42	0xA8	26	Reserved	Reserved	Reserved	-
43	0xAC	27	Reserved	Reserved	Reserved	-
44	0xB0	28	PWRWU_INT	CLKC	Clock controller interrupt for chip wake up from power-down state	-
45	0xB4	29	EADC1_INT	EADC1	EADC1 interrupt	No
46	0xB8	30	EADC2_INT	EADC2	EADC2 interrupt	No
47	0xBC	31	EADC3_INT	EADC3	EADC3 interrupt	No

Table 6-3 System Interrupt Map Vector Table

6.2.6.2 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

Vector Table Word Offset (Bytes)	Description
0	SP_main – The Main stack pointer
Vector Number	Exception Entry Pointer using that Vector Number

Table 6-4 Vector Table

6.2.6.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

6.3 Clock Controller

6.3.1 Overview

The clock controller generates the clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and clock divider. The chip enters Power-down mode when Cortex[®]-M0 core executes the WFI instruction only if the SLEEPDEEP (SCR[2]) bit is set to 1. After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave Power-down mode. In the Power-down mode, the clock controller turns off the 4~24 MHz external high speed crystal oscillator and 22.1184 MHz internal high speed RC oscillator to reduce the overall system power consumption. Figure 6-3 shows the clock generator and the overview of the clock source control.

The clock generator consists of 4 clock sources as listed below:

- 4~24 MHz external high speed crystal oscillator (HXT)
- Programmable PLL output clock frequency (PLL_FOUT), PLL source can be selected from 4~24 MHz external high speed crystal oscillator (HXT) or 22.1184 MHz internal high speed RC oscillator (HIRC)
- 22.1184 MHz internal high speed RC oscillator (HIRC)
- 10 kHz internal low speed RC oscillator (LIRC)

Each of these clock sources has certain stable time to wait for clock operating at stable frequency. When clock source is enabled, a stable counter start counting and correlated clock (OSC22M STB(CLKSTATUS[4]), OSC10K_STB(CLKSTATUS[3]), stable index PLL STB(CLKSTATUS[2]) and XTL12M STB(CLKSTATUS[0])) are set to 1 after stable counter value reach a define value as Table 6-5. System and peripheral can use these clock as its operating clock only when correlate clock stable index is set to 1. The clock stable index will auto (OSC10K EN(PWRCON[3]), clear when user disables the clock source OSC22M_EN(PWRCON[2]), XTL12M_EN(PWRCON[0]) and PD(PLLCON[16])). Besides, the clock stable index of HXT, HIRC and PLL will auto clear when chip enter power-down and clock stable counter will re-counting after chip wake-up if correlate clock is enabled.

Clock Source	Clock Stable Count Value
нхт	4096 HXT clock
PLL	6144 PLL source (PLL source is HXT if PLL_SRC(PLLCON[19]) = 0, or HIRC if PLL_SRC(PLLCON[19]) = 1)
HIRC	256 HIRC clock
LIRC	1 LIRC

Table 6-5 Clock Stable Count Value Table

M0519

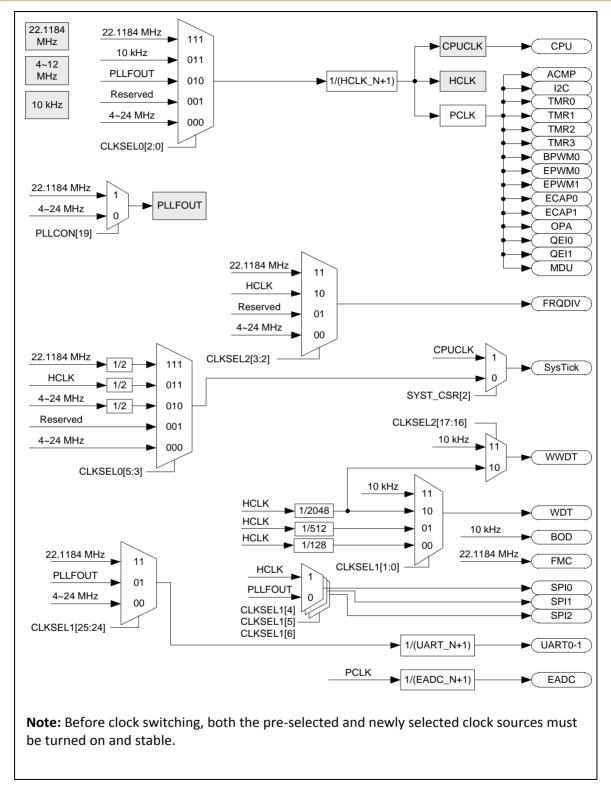


Figure 6-4 Clock Generator Global View Diagram

6.5 General Purpose I/O (GPIO)

6.5.1 Overview

The NuMicro[®] M0519 Series has up to 82 General Purpose I/O pins to be shared with other function pins depending on the chip configuration. These 82 pins are arranged in 10 ports named as P0, P1, P2, P3, P4, P5, P6, P7, P8, P9 and PA. The P0/1/2/3/4/5/6/7/8/9 port has the maximum of 8 pins and PA port has the maximum of 2 pins. Each of the 82 pins is independent and has the corresponding register bits to control the pin mode function and data.

The I/O type of each of I/O pins can be configured by software individually as input, output, opendrain or Quasi-bidirectional mode. After reset, the I/O mode of all pins are stay at input mode. In Quasi-bidirectional mode, I/O pin has a very weak individual pull-up resistor which is about 110~300 K Ω for V_{DD} is from 5.0 V to 2.5 V.

6.5.2 Features

- Four I/O modes:
 - Quasi-bidirectional
 - Push-Pull output
 - Open-Drain output
 - Input only with high impendence
- TTL/Schmitt trigger input selectable by Px_TYPE[7:0] in Px_MFP[23:16]
- I/O pin configured as interrupt source with edge/level setting
- I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode
- Enabling pin interrupt function will also enable the pin wake-up function

6.8 Enhanced PWM Generator (EPWM)

6.8.1 Overview

This device has two built-in PWM units with the same architecture whose function is specially designed for driving motor control applications.

6.8.2 Features

Each unit supports the features below:

- Three independent 16-bit PWM duty control units with maximum 6 port pins:
 - 3 independent PWM output: EPWM0_CH0, EPWM0_CH2 and EPWM0_CH4 for Unit 0 EPWM1_CH0, EPWM1_CH2 and EPWM1_CH4 for Unit 1
 - 3 complementary PWM pairs, with each pin in a pair mutually complement to each other and capable of programmable dead-time insertion: (EPWMx_CH0, EPWMx_CH1), (PWMx_CH2, EPWMx_CH3) and (EPWMx_CH4, EPWMx_CH5) where x=0~1.
 - 3 synchronous PWM pairs, with each pin in a pair in-phase: (EPWMx_CH0, EPWMx_CH1), (EPWMx_CH2, EPWMx_CH3) and (EPWMx_CH4, EPWMx_CH5) where x=0~1
- Group control bits: EPWMx_CH2 and EPWMx_CH4 are synchronized with EPWMx_CH0
- Supports Edge aligned mode and Center aligned mode
- Programmable dead-time insertion between complementary paired PWMs
- Each pin of EPWMx_CH0 to EPWMx_CH5 has independent polarity setting control
- Mask output control for Electrically Commutated Motor operation
- Tri-state output at reset and brake state
- Hardware brake protection
- Two Interrupt Sources:
 - Interrupt is synchronously requested at PWM frequency when up/down counter comparison matched (edge and center aligned modes) or underflow (center aligned mode).
 - Interrupt is requested when external brake pins asserted
- PWM signals before polarity control stage are defined in the view of positive logic. The PWM ports is active high or active low are controlled by polarity control register.
- High Source/Sink current.
- Supports trigger EADC

6.10 Watchdog Timer (WDT)

6.10.1 Overview

The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.

6.10.2 Features

- 18-bit free running up counter for WDT time-out interval
- Selectable time-out interval (2⁴ ~ 2¹⁸) and the time-out interval is 1.6 ms ~ 26.214 s if WDT_CLK = 10 kHz
- System kept in reset state for a period of (1 / WDT_CLK) * 63
- Supports selectable WDT reset delay period, including 1026

 130
 18 or 3 WDT_CLK reset delay period
- Supports to force WDT enabled after chip powered on or reset by setting CWDTEN in Config0 register
- Supports WDT time-out wake-up function only if WDT clock source is selected as 10 kHz

6.16 Enhanced Analog-to-Digital Converter (EADC)

6.16.1 Overview

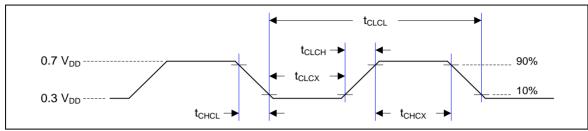
The NuMicro[®] M0519 Series contains two 12-bit successive approximation analog-to-digital converters (SAR A/D converter) with 16 input channels. The two A/D converters ADCA and ADCB can be sampled with Simultaneous or Single Sampling mode. The A/D converters can be started by software, PWM triggers, timer0~3 overflow pulse triggers, ADINT0, ADINT1 interrupt EOC pulse trigger and external STADC pin input signal.

Note: The analog input port pins must be configured as input type before the EADC function is enabled.

6.16.2 Features

- Analog input voltage range: 0~V_{REF}(Max to 5.0V).
- 12-bit resolution and 10-bit accuracy is guaranteed.
- Up to 16 single-end analog input channels.
- Two SAR ADC converters.
- Four EADC interrupts with individual interrupt vector addresses.
- Maximum EADC clock frequency: 16MHz.
- Up to 1.6M SPS conversion rate, each of ADC converter conversion time less than 1.25µs.
- Two operating modes
 - Single sampling mode: two ADC converters run at normal operation.
 - Simultaneous sampling mode: Allow two ADC converters can be sampled simultaneously.
- An A/D conversion can be started by:
 - Writing 1 to ADST(ADSSTR[n]) bit (n = 0~15) through software
 - External pin STADC
 - Timer0~3 overflow pulse triggers
 - ADINT0, ADINT1 interrupt EOC pulse triggers
 - PWM triggers
- Conversion results are held in 16 data registers with valid and overrun indicators.
- SAMPLEA0~7 ADC control logic modules, each of them is configurable for ADCA converter channel AINA0~7 and trigger source.
- SAMPLEB0~7 ADC control logic modules, each of them is configurable for ADCB converter channel AINB0~7 and trigger source.
- Channel AINA0 supports 2 input sources: external analog voltage and internal OP0 Amplifier output voltage.
- Channel AINB0 supports 2 input sources: external analog voltage and internal OP1 Amplifier output voltage.
- Channel AINA7 supports 4 input sources: external analog voltage, internal fixed band-gap voltage, internal temperature sensor output, and analog ground.

7 ELECTRICAL CHARACTERISTICS


7.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNIT
DC Power Supply	$V_{DD} - V_{SS}$	-0.3	+6.3	V
Input Voltage	V _{IN}	V _{SS} -0.3	V _{DD} +0.3	V
Oscillator Frequency	1/t _{CLCL}	4	24	MHz
Operating Temperature	ТА	-40	105	°C
Storage Temperature	T _{ST}	-55	+150	°C
Maximum Current into VDD		-	120	mA
Maximum Current out of VSS			120	mA
Maximum Current sunk by a I/O pin			35	mA
Maximum Current sourced by a I/O pin			35	mA
Maximum Current sunk by total I/O pins			100	mA
Maximum Current sourced by total I/O pins			100	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability of the device.

nuvoton

7.3 AC Electrical Characteristics

Note: Duty cycle is 50%.

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
t _{CHCX}	Clock High Time		10	-	-	nS
t _{CLCX}	Clock Low Time		10	-	-	nS
t _{CLCH}	Clock Rise Time		2	-	15	nS
t _{CHCL}	Clock Fall Time		2	-	15	nS

7.3.1 External 4~24MHz Crystal

PARAMETER	CONDITION	MIN.	TYP	MAX.	UNIT
Operation Voltage V _{DD}	-	2.5	-	5.5	V
Temperature	-	-40	-	85	°C
Operating Current	12 MHz at $V_{DD} = 5V$	-	1	-	mA
Clock Frequency	External crystal	4		24	MHz

7.3.1.1 Typical Crystal Application Circuits

CRYSTAL	C1	C2	R
4 MHz ~ 24 MHz	10~20 pF	10~20 pF	without

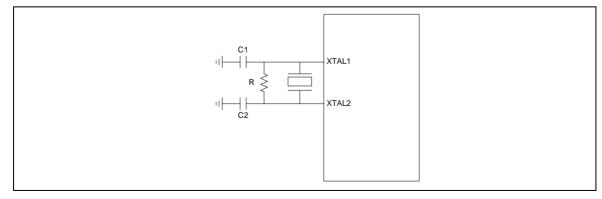
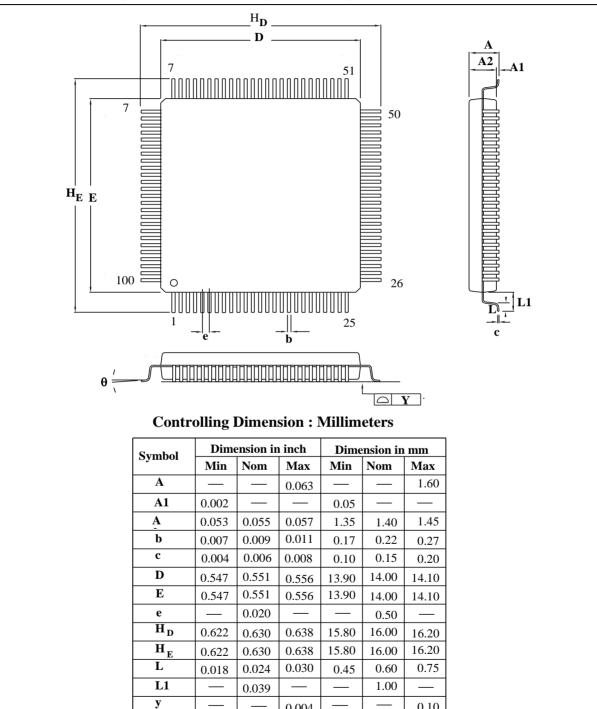


Figure 7–1 Typical Crystal Application Circuit

7.3.2 Internal 22.1184 MHz Oscillator

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply voltage	-	2.5	-	5.5	V
Frequency	-	-	22.1184	-	MHz
	+25°C; V _{DD} = 5V	-1	-	+1	%
(After calibration)	-40 to +105°C; V _{DD} = 2.5V~5.5V	-2	-	+2	%
Operation Current	V _{DD} =5V	-	500	-	uA


7.3.3 Internal 10 kHz Oscillator

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply voltage	-	2.5	-	5.5	V
Center Frequency	-	-	10	-	kHz
Calibrated Internal Oscillator Frequency	+25℃; V _{DD} =5 V	-30	-	+30	%
	-40℃~+85℃; V _{DD} =2.5 V~5.5 V	-50	-	+50	%

nuvoTon

8 PACKAGE DIMENSIONS

LQFP 100V (14x14x1.4 mm footprint 2.0mm) 8.1

0.004

7°

0°

0°

θ

0.10

7°