

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, QSPI, UART/USART, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	96
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf52256vn80

Table of Contents

1	Fami	ly Configurations		2.10 Mini-FlexBus External Interface Specifications	32
	1.1	Block Diagram4		2.11 Fast Ethernet Timing Specifications	33
	1.2	Features		2.12 General Purpose I/O Timing	35
2	Elect	rical Characteristics24		2.13 Reset Timing	36
	2.1	Maximum Ratings		2.14 I2C Input/Output Timing Specifications	37
	2.2	Current Consumption		2.15 Analog-to-Digital Converter (ADC) Parameters	38
	2.3	Thermal Characteristics		2.16 Equivalent Circuit for ADC Inputs	39
	2.4	Flash Memory Characteristics		2.17 DMA Timers Timing Specifications	40
	2.5	EzPort Electrical Specifications		2.18 QSPI Electrical Specifications	40
	2.6	ESD Protection		2.19 JTAG and Boundary Scan Timing	40
	2.7	DC Electrical Specifications		2.20 Debug AC Timing Specifications	43
	2.8	Clock Source Electrical Specifications	3	3 Package Information	44
	2.9	USB Operation	4	4 Revision History	45

Family Configurations

- Unused analog channels can be used as digital I/O
- Four 32-bit timers with DMA support
 - 12.5 ns resolution at 80 MHz
 - Programmable sources for clock input, including an external clock option
 - Programmable prescaler
 - Input capture capability with programmable trigger edge on input pin
 - Output compare with programmable mode for the output pin
 - Free run and restart modes
 - Maskable interrupts on input capture or output compare
 - DMA trigger capability on input capture or output compare
- Four-channel general purpose timer
 - 16-bit architecture
 - Programmable prescaler
 - Output pulse-widths variable from microseconds to seconds
 - Single 16-bit input pulse accumulator
 - Toggle-on-overflow feature for pulse-width modulator (PWM) generation
 - One dual-mode pulse accumulation channel
- Pulse-width modulation timer
 - Support for PCM mode (resulting in superior signal quality compared to conventional PWM)
 - Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution
 - Programmable period and duty cycle
 - Programmable enable/disable for each channel
 - Software selectable polarity for each channel
 - Period and duty cycle are double buffered. Change takes effect when the end of the current period is reached (PWM counter reaches zero) or when the channel is disabled.
 - Programmable center or left aligned outputs on individual channels
 - Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies
 - Emergency shutdown
- Two periodic interrupt timers (PITs)
 - 16-bit counter
 - Selectable as free running or count down
- Real-Time Clock (RTC)
 - Maintains system time-of-day clock
 - Provides stopwatch and alarm interrupt functions
 - Standby power supply (Vstby) keeps the RTC running when the system is shut down
- · Software watchdog timer
 - 32-bit counter
 - Low-power mode support
- Backup watchdog timer (BWT)
 - Independent timer that can be used to help software recover from runaway code
 - 16-bit counter
 - Low-power mode support
- Clock generation features
 - Crystal, on-chip trimmed relaxation oscillator, or external oscillator reference options
 - Trimmed relaxation oscillator

1.2.5 On-Chip Memories

1.2.5.1 SRAM

The dual-ported SRAM module provides a general-purpose 64 KB memory block that the ColdFire core can access in a single cycle. The location of the memory block can be set to any 64 KB boundary within the 4 GB address space. This memory is ideal for storing critical code or data structures and for use as the system stack. Because the SRAM module is physically connected to the processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing commands from the debug module.

The SRAM module is also accessible by the DMA, FEC, and USB. The dual-ported nature of the SRAM makes it ideal for implementing applications with double-buffer schemes, where the processor and a DMA device operate in alternate regions of the SRAM to maximize system performance.

1.2.5.2 Flash Memory

The ColdFire flash module (CFM) is a non-volatile memory (NVM) module that connects to the processor's high-speed local bus. The CFM is constructed with four banks of 64 KB×16-bit flash memory arrays to generate 512 KB of 32-bit flash memory. These electrically erasable and programmable arrays serve as non-volatile program and data memory. The flash memory is ideal for program and data storage for single-chip applications, allowing for field reprogramming without requiring an external high voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory controller that supports interleaved accesses from the 2-cycle flash memory arrays. A backdoor mapping of the flash memory is used for all program, erase, and verify operations, as well as providing a read datapath for the DMA. Flash memory may also be programmed via the EzPort, which is a serial flash memory programming interface that allows the flash memory to be read, erased and programmed by an external controller in a format compatible with most SPI bus flash memory chips.

1.2.6 Cryptographic Acceleration Unit

The MCF52235 device incorporates two hardware accelerators for cryptographic functions. First, the CAU is a coprocessor tightly-coupled to the V2 ColdFire core that implements a set of specialized operations to increase the throughput of software-based encryption and message digest functions, specifically the DES, 3DES, AES, MD5 and SHA-1 algorithms. Second, a random number generator provides FIPS-140 compliant 32-bit values to security processing routines. Both modules supply critical acceleration to software-based cryptographic algorithms at a minimal hardware cost.

1.2.7 Power Management

The device incorporates several low-power modes of operation entered under program control and exited by several external trigger events. An integrated power-on reset (POR) circuit monitors the input supply and forces an MCU reset as the supply voltage rises. The low voltage detector (LVD) monitors the supply voltage and is configurable to force a reset or interrupt condition if it falls below the LVD trip point. The RAM standby switch provides power to RAM when the supply voltage to the chip falls below the standby battery voltage.

1.2.8 FlexCAN

The FlexCAN module is a communication controller implementing version 2.0 of the CAN protocol parts A and B. The CAN protocol can be used as an industrial control serial data bus, meeting the specific requirements of reliable operation in a harsh EMI environment with high bandwidth. This instantiation of FlexCAN has 16 message buffers.

Family Configurations

higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit channels.

1.2.21 Software Watchdog Timer

The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown.

1.2.22 Backup Watchdog Timer

The backup watchdog timer is an independent 16-bit timer that, like the software watchdog timer, facilitates recovery from runaway code. This timer is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown. The backup watchdog timer can be clocked by either the relaxation oscillator or the system clock.

1.2.23 Phase-Locked Loop (PLL)

The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL, crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are powered by the normal supply pins, VDD and VSS.

1.2.24 Interrupt Controllers (INTCn)

The device has two interrupt controllers that supports up to 128 interrupt sources. There are 56 programmable sources, 49 of which are assigned to unique peripheral interrupt requests. The remaining seven sources are unassigned and may be used for software interrupt requests.

1.2.25 DMA Controller

The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered by software explicitly setting a DCRn[START] bit or by the occurrence of certain UART or DMA timer events.

1.2.26 Reset

The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what caused the last reset. There are seven sources of reset:

- External reset input
- Power-on reset (POR)
- Watchdog timer
- Phase locked-loop (PLL) loss of lock / loss of clock
- Software
- Low-voltage detector (LVD)
- JTAG

Control of the LVD and its associated reset and interrupt are managed by the reset controller. Other registers provide status flags indicating the last source of reset and a control bit for software assertion of the RSTO pin.

1.2.27 GPIO

Nearly all pins on the device have general purpose I/O capability and are grouped into 8-bit ports. Some ports do not use all eight bits. Each port has registers that configure, monitor, and control the port pin.

1.2.28 Part Numbers and Packaging

This product is RoHS-compliant. Refer to the product page at freescale.com or contact your sales office for up-to-date RoHS information.

Table 2. Orderable part number summary

Freescale Part Number	FlexCAN	Encryption	Speed (MHz)	Flash (KB)	SRAM (KB)	Package	Temp range (°C)
MCF52252AF80	_	_	80	256	32	100 LQFP	0 to +70
MCF52252CAF66	•	_	66	250	32	100 LQFF	-40 to +85
MCF52254AF80	_	_	80	512	64	100 LQFP	0 to +70
MCF52254CAF66	•	_	66	512	04	100 LQFP	-40 to +85
MCF52255CAF80	•	•	80	512	64	100 LQFP	-40 to +85
MCF52256AG80	_	_	80		32	- 144 LQFP	0 to +70
MCF52256CAG66	•	_	66	256	64	144 LQFP	-40 to +85
MCF52256CVN66	•	_	66	200	64	144 MAPBGA	-40 to +85
MCF52256VN80	_	_	80		32	144 WARDGA	0 to +70
MCF52258AG80	_	_	80			144 LQFP	0 to +70
MCF52258CAG66	•	_	66	512	64	144 LQFP	-40 to +85
MCF52258CVN66	•	_	66	512	04	1 4 4 MADDO A	-40 to +85
MCF52258VN80	_	_	80	1		144 MAPBGA	0 to +70
MCF52259CAG80	•	•	80	512	64	144 LQFP	-40 to +85
MCF52259CVN80	•	•	60	512	04	144 MAPBGA	-40 to +85

Family Configurations

Figure 2 shows the pinout configuration for the 144 LQFP.

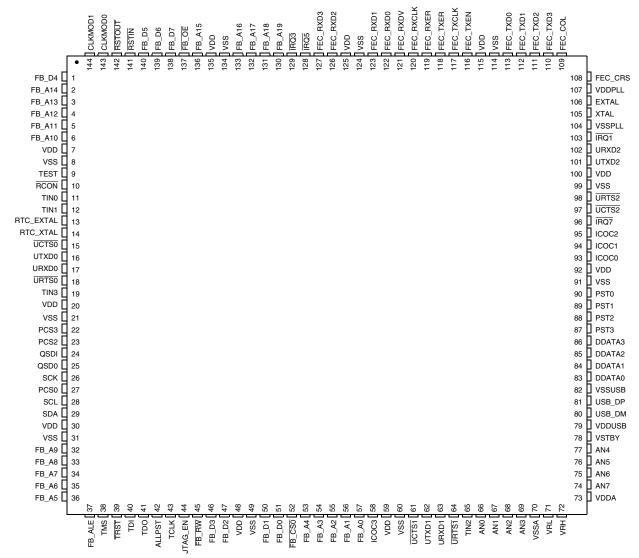


Figure 2. 144 LQFP Pin Assignment

Figure 3 shows the pinout configuration for the 100 LQFP.

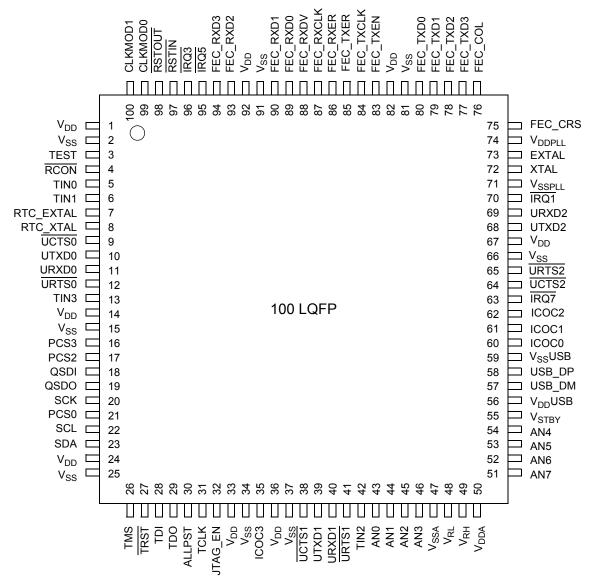


Figure 3. 100 LQFP Pin Assignments

Figure 4 shows the pinout configuration for the 144 MAPBGA.

	1	2	3	4	5	6	7	8	9	10	11	12	
Α	VSS	RSTOUT	RSTIN	FB_D6	FB_D7	ĪRQ3	ĪRQ5	FEC_ RXD0	FEC_ RXER	FEC_ TXEN	FEC_ TXD3	VSS	А
В	TEST	FB_A14	FB_D4	FB_D5	FB_OE	FB_A19	FEC_ RXD1	FEC_ RXCLK	FEC_ TXCLK	FEC_ TXD2	FEC_COL	FEC_CRS	В
С	TIN1	FB_A12	FB_A13	FB_A15	FB_A16	FB_A18	FEC_ RXD2	FEC_ RXDV	FEC_ TXD1	URXD2	VDDPLL	EXTAL	С
D	RTC_ EXTAL	TIN0	FB_A11	CLKMOD1	CLKMOD0	FB_A17	FEC_ RXD3	FEC_ TXER	FEC_ TXD0	UTXD2	VSSPLL	XTAL	D
E	RTC_ XTAL	UCTS0	FB_A10	RCON	VDD	VDD	VDD	VDD	ĪRQ1	URTS2	UCTS2	ĪRQ7	Е
F	UTXD0	URXD0	URTS0	TIN3	VDD	VSS	VSS	VSS	PST3	DDATA0	DDATA1	ICOC0	F
G	QSDO	QSDI	PCS2	PCS3	VDD	VSS	VSS	VSS	DDATA3	PST2	PST1	PST0	G
Н	SCL	SDA	SCK	PCS0	VDD	VDD	VDD	VSS	VSSUSB	DDATA2	USB_DM	USB_DP	Н
J	FB_A6	FB_A7	FB_A9	FB_A8	FB_D0	FB_A3	VDD	TIN2	VDDUSB	ICOC2	ICOC1	VSTBY	J
К	TMS	TRST	FB_ALE	FB_A5	FB_D2	FB_A4	UCTS1	UTXD1	AN3	AN6	AN4	AN5	Κ
L	TDI	TDO	ALLPST	FB_D3	FB_D1	FB_A1	FB_A0	URXD1	AN2	VRH	VDDA	AN7	L
М	VSS	JTAG_ EN	TCLK	FB_RW	FB_CS0	FB_A2	ICOC3	URTS1	AN0	AN1	VRL	VSSA	М
	1	2	3	4	5	6	7	8	9	10	11	12	

Figure 4. Pinout Top View (144 MAPBGA)

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

Pin Group	Primary Function	Secondary Function (Alt 1)	Tertiary Function (Alt 2)	Quaternary Function (GPIO)	Slew Rate	Drive Strength/Co ntrol ¹	Pull-up/ Pull-down ²	Pin on 144 MAPBGA	Pin on 144 LQFP	Pin on 100 LQFP
Mode	RCON/EZPCS	_	_	_	N/A	N/A	Pull-Up	E4	10	4
Selection	CLKMOD[1:0]	_	_	_	N/A	N/A	Pull-Down	D4, D5	144, 143	100, 99
QSPI	QSPI_CS3	SYNCA	USB_DP_ PDOWN	PQS6	PSRR[7]	PDSR[7]	_	G4	22	16
	QSPI_CS2	SYNCB	USB_DM - PDOWN	PQS5	PSRR[6]	PDSR[6]	_	G3	23	17
	QSPI_CS0	I2C_SDA0	UCTS1	PQS3	PSRR[4]	PDSR[4]	Pull-Up ⁶	H4	27	21
	QSPI_CLK/ EZPCK	I2C_SCL0	URTS1	PQS2	PSRR[3]	PDSR[3]	Pull-Up ⁶	H3	26	20
QSPI	QSPI_DIN/ EZPD	I2C_SDA1	URXD1	PQS1	PSRR[2]	PDSR[2]	Pull-Up ⁶	G2	24	18
	QSPI_DOUT/E ZPQ	I2C_SCL1	UTXD1	PQS0	PSRR[1]	PDSR[1]	Pull-Up ⁶	G1	25	19
Reset ⁷	RSTI	_	_	_	N/A	N/A	Pull-Up ⁷	A3	141	97
	RSTO	_	_	_	Low	High	_	A2	142	98
Test	TEST	_	_	_	N/A	N/A	Pull-Down	B1	9	3
Timer 3, 16-bit	GPT3	_	PWM7	PTA3	PSRR[23]	PDSR[23]	Pull-Up ⁸	M7	58	35
Timer 2, 16-bit	GPT2	_	PWM5	PTA2	PSRR[22]	PDSR[22]	Pull-Up ⁸	J10	95	62
Timer 1, 16-bit	GPT1	_	PWM3	PTA1	PSRR[21]	PDSR[21]	Pull-Up ⁸	J11	94	61
Timer 0, 16-bit	GPT0	_	PWM1	PTA0	PSRR[20]	PDSR[20]	Pull-Up ⁸	F12	93	60
Timer 3, 32-bit	DTIN3	DTOUT3	PWM6	PTC3	PSRR[19]	PDSR[19]	_	F4	19	13
Timer 2, 32-bit	DTIN2	DTOUT2	PWM4	PTC2	PSRR[18]	PDSR[18]	_	J8	65	42

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

Pin Group	Primary Function	Secondary Function (Alt 1)	Tertiary Function (Alt 2)	Quaternary Function (GPIO)	Slew Rate	Drive Strength/Co ntrol ¹	Pull-up/ Pull-down ²	Pin on 144 MAPBGA	Pin on 144 LQFP	Pin on 100 LQFP
VSS	VSS	_	1	_	N/A	N/A	I	A1; A12; F6–8; G6–8; H8; M1		2; 15; 25; 34; 37; 66; 81; 91

The PDSR and PSSR registers are part of the GPIO module. All programmable signals default to 2mA drive in normal (single-chip) mode.

All signals have a pull-up in GPIO mode.

I2C1 is multiplexed with specific pins of the QSPI, UART1, UART2, and Mini-FlexBus pin groups.

- ⁵ Only when JTAG mode is enabled.
- ⁶ For secondary and GPIO functions only.
- ⁷ RSTI has an internal pull-up resistor; however, the use of an external resistor is strongly recommended.
- ⁸ For GPIO functions, the Primary Function has pull-up control within the GPT module.
- ⁹ Available on 144-pin packages only.
- ¹⁰ This list for power and ground does not include those dedicated power/ground pins included elsewhere, such as in the ADC, USB, and PLL.

⁴ For primary and GPIO functions only.

2 Electrical Characteristics

This section contains electrical specification tables and reference timing diagrams for the microcontroller unit, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Maximum Ratings

Table 4. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	-0.3 to +4.0	V
Clock synthesizer supply voltage	V _{DDPLL}	-0.3 to +4.0	V
RAM standby supply voltage	V _{STBY}	+1.8 to 3.5	V
USB standby supply voltage	V _{DDUSB}	-0.3 to +4.0	V
Digital input voltage ³	V _{IN}	-0.3 to +4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{4, 5}	I _{DD}	25	mA
Operating temperature range (packaged)	T _A (T _L - T _H)	–40 to 85 or 0 to 70 ⁶	°C
Storage temperature range	T _{stg}	-65 to 150	°C

Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V_{SS} or V_{DD}).

Input must be current limited to the I_{DD} value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

 $^{^4}$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .

The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in the external power supply going out of regulation. Ensure that the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (e.g., no clock).

⁶ Depending on the packaging; see orderable part number summary (Table 2)

2.2 Current Consumption

Table 5. Typical Active Current Consumption Specifications

Characteristic	Symbol	Typical ¹ Active (SRAM)	Typical ¹ Active (Flash)	Peak ² (Flash)	Unit
PLL @ 8 MHz	I _{DD}	22	30	36	mA
PLL @ 16 MHz		31	45	60	
PLL @ 64 MHz		84	100	155	
PLL @ 80 MHz		102	118	185	
RAM standby supply current Normal operation: V _{DD} > V _{STBY} - 0.3 V Standby operation: V _{DD} < V _{SS} + 0.5 V	I _{STBY}	_		5 20	μ Α μ Α
Analog supply current Normal operation	I _{DDA}	2 ³		15	mA
USB supply current	I _{DDUSB}	_		2	mA
PLL supply current	I _{DDPLL}	_	_	6 ⁴	mA

Tested at room temperature with CPU polling a status register. All clocks were off except the UART and CFM (when running from flash memory).

Table 6. Current Consumption in Low-Power Mode, Code From Flash Memory 1,2,3

Mode	8 MHz (Typ)	16 MHz (Typ)	64 MHz (Typ)	80 MHz (Typ)	Unit	Symbol
Stop mode 3 (Stop 11) ⁴		0.1	50			
Stop mode 2 (Stop 10) ⁴		7	.0			
Stop mode 1 (Stop 01) ^{4,5}	9	10	15	17		I _{DD}
Stop mode 0 (Stop 00) ⁵	9	10	15	17	mA	
Wait / Doze	21	32	56	65		
Run	23	36	70	81		

All values are measured with a 3.30 V power supply. Tests performed at room temperature.

² Peak current measured with all modules active, CPU polling a status register, and default drive strength with matching load.

³ Tested using Auto Power Down (APD), which powers down the ADC between conversions; ADC running at 4 MHz in Once Parallel mode with a sample rate of 3 kHz.

⁴ Tested with the PLL MFD set to 7 (max value). Setting the MFD to a lower value results in lower current consumption.

Refer to the Power Management chapter in the MCF52259 Reference Manual for more information on low-power modes.

CLKOUT, PST/DDATA signals, and all peripheral clocks except UART0 and CFM off before entering low-power mode. CLKOUT is disabled.

See the description of the Low-Power Control Register (LPCR) in the MCF52259 Reference Manual for more information on stop modes 0–3.

Results are identical to STOP 00 for typical values because they only differ by CLKOUT power consumption. CLKOUT is already disabled in this instance prior to entering low-power mode.

Electrical Characteristics

Table 8.	Thermal	Characteristics	(continued)	١
I able 0.	. I III C I IIIai	Ullai autel istius	(COIILIIIU C U	ı

	Characteristic	;	Symbol	Value	Unit
100 LQFP	Junction to ambient, natural convection	Single layer board (1s)	$\theta_{\sf JA}$	53 ^{13,14}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	$\theta_{\sf JA}$	39 ^{1,15}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ_{JMA}	42 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	33 ^{1,3}	°C/W
	Junction to board	_	$\theta_{\sf JB}$	25 ¹⁶	°C/W
	Junction to case	_	θ _{JC}	9 ¹⁷	°C/W
	Junction to top of package	Natural convection	Ψ_{jt}	2 ¹⁸	°C/W
	Maximum operating junction temperature	_	T _j	105	°C

 $[\]theta_{JA}$ and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- ³ Per JEDEC JESD51-6 with the board JESD51-7) horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
- 7 θ_{JA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
- ⁸ Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- ⁹ Per JEDEC JESD51-6 with the board JESD51-7) horizontal.
- ¹⁰ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ¹¹ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ¹² Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
- 13 $_{
 m JA}$ and $_{
 m jt}$ parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of $_{
 m JA}$ and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the $_{
 m Jt}$ parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
- ¹⁴ Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- ¹⁵ Per JEDEC JESD51-6 with the board JESD51-7) horizontal.

The average chip-junction temperature (T_{.I}) in °C can be obtained from:

$$T_{.J} = T_A + (P_D \times \Theta_{.IMA}) (1)$$

Where:

T_A = ambient temperature, °C

Θ_{JA} = package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{INT} + P_{I/O}$

 P_{INT} = chip internal power, $I_{DD} \times V_{DD}$, W

P_{I/O} = power dissipation on input and output pins — user determined, W

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_I + 273 \degree C)$$
 (2)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \, ^{\circ}C) + \Theta_{JMA} \times P_D^2$$
 (3)

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

2.4 Flash Memory Characteristics

The flash memory characteristics are shown in Table 9 and Table 10.

Table 9. SGFM Flash Program and Erase Characteristics

$$(V_{DD} = 3.0 \text{ to } 3.6 \text{ V})$$

Parameter	Symbol	Min	Тур	Max	Unit
System clock (read only)	f _{sys(R)}	0	_	66.67 or 80 ¹	MHz
System clock (program/erase) ²	f _{sys(P/E)}	0.15	_	66.67 or 80 ¹	MHz

¹ Depending on packaging; see the orderable part number summary (Table 2).

Table 10. SGFM Flash Module Life Characteristics

$$(V_{DD} = 3.0 \text{ to } 3.6 \text{ V})$$

Parameter	Symbol	Value	Unit
Maximum number of guaranteed program/erase cycles ¹ before failure	P/E	10,000 ²	Cycles
Data retention at average operating temperature of 85°C	Retention	10	Years

¹ A program/erase cycle is defined as switching the bits from $1 \rightarrow 0 \rightarrow 1$.

MCF52259 ColdFire Microcontroller, Rev. 5

¹⁶ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

¹⁷ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

¹⁸ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

² Refer to the flash memory section for more information (Section 2.4, "Flash Memory Characteristics")

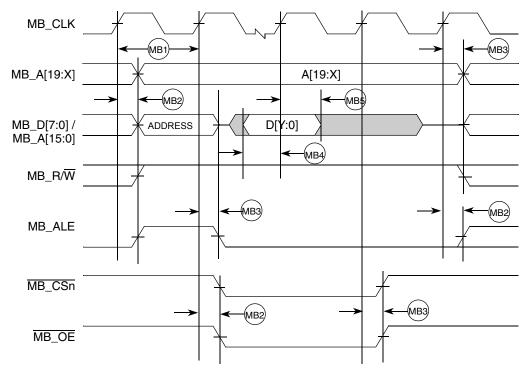


Figure 5. Mini-FlexBus Read Timing

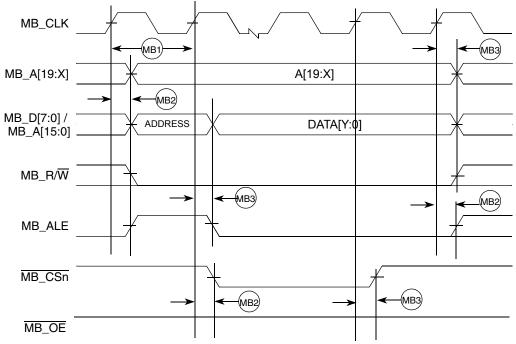


Figure 6. Mini-FlexBus Write Timing

2.11 Fast Ethernet Timing Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

2.11.1 Receive Signal Timing Specifications

The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.

Table 17. Receive Signal Timing

Num	Characteristic	MIIN	/lode	Unit	
	Characteristic	Min	Max		
	RXCLK frequency	_	25	MHz	
E1	RXD[n:0], RXDV, RXER to RXCLK setup ¹	5	_	ns	
E2	RXCLK to RXD[n:0], RXDV, RXER hold ¹	5	_	ns	
E3	RXCLK pulse width high	35%	65%	RXCLK period	
E4	RXCLK pulse width low	35%	65%	RXCLK period	

¹ In MII mode, n = 3

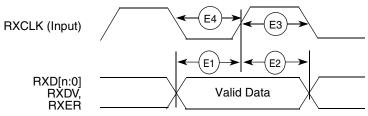


Figure 7. MII Receive Signal Timing Diagram

2.11.2 Transmit Signal Timing Specifications

Table 18. Transmit Signal Timing

Num	Characteristic	MIIN	/lode	Unit	
	Characteristic	Min	Max	Oilit	
_	TXCLK frequency	_	25	MHz	
E5	TXCLK to TXD[n:0], TXEN, TXER invalid ¹	5	_	ns	
E6	TXCLK to TXD[n:0], TXEN, TXER valid ¹	_	25	ns	
E7	TXCLK pulse width high	35%	65%	t _{TXCLK}	
E8	TXCLK pulse width low	35%	65%	t _{TXCLK}	

¹ In MII mode, n = 3

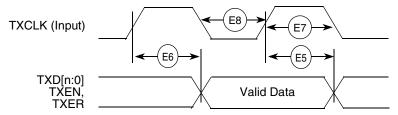


Figure 8. MII Transmit Signal Timing Diagram

• $25 \text{ pF} / 25 \Omega$ for low drive

Table 21. GPIO Timing

NUM	Characteristic	Symbol	Min	Max	Unit
G1	CLKOUT High to GPIO Output Valid	t _{CHPOV}	_	10	ns
G2	CLKOUT High to GPIO Output Invalid	t _{CHPOI}	1.5	_	ns
G3	GPIO Input Valid to CLKOUT High	t _{PVCH}	9	_	ns
G4	CLKOUT High to GPIO Input Invalid	t _{CHPI}	1.5	_	ns

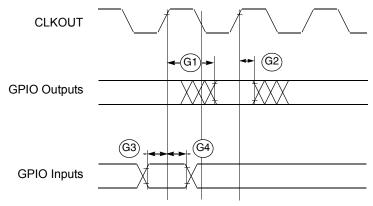


Figure 11. GPIO Timing

2.13 Reset Timing

Table 22. Reset and Configuration Override Timing

$$(V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_A = T_L \text{ to } T_H)^1$$

NUM	Characteristic	Symbol	Min	Max	Unit
R1	RSTI input valid to CLKOUT High	t _{RVCH}	9	_	ns
R2	CLKOUT High to RSTI Input invalid	t _{CHRI}	1.5	_	ns
R3	RSTI input valid time ²	t _{RIVT}	5	_	t _{CYC}
R4	CLKOUT High to RSTO Valid	t _{CHROV}	_	10	ns

 $^{^{1}\,}$ All AC timing is shown with respect to 50% $\rm V_{DD}$ levels unless otherwise noted.

² During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the system. Thus, RSTI must be held a minimum of 100 ns.

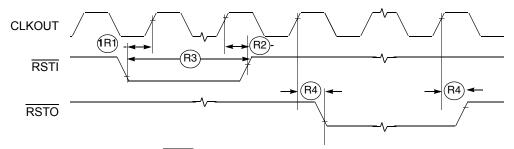


Figure 12. RSTI and Configuration Override Timing

MCF52259 ColdFire Microcontroller, Rev. 5


Table 25. ADC Parameters ¹ (c
--

Name	Characteristic	Min	Typical	Max	Unit
SNR	Signal-to-noise ratio	_	62 to 66	_	dB
THD	Total harmonic distortion	_	-75	_	dB
SFDR	Spurious free dynamic range	_	67 to 70.3	_	dB
SINAD	Signal-to-noise plus distortion	_	61 to 63.9	_	dB
ENOB	Effective number of bits	9.1	10.6	_	Bits

¹ All measurements are preliminary pending full characterization, and made at $V_{DD} = 3.3 \text{ V}$, $V_{REFH} = 3.3 \text{ V}$, and $V_{REFL} = \text{ground}$

2.16 **Equivalent Circuit for ADC Inputs**

Figure 14 shows the ADC input circuit during sample and hold. S1 and S2 are always open/closed at the same time that S3 is closed/open. When S1/S2 are closed and S3 is open, one input of the sample and hold circuit moves to $(V_{REFH}-V_{REFL})/2$, while the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended analog input is switched to a differential voltage centered about $(V_{REFH}-V_{REFL})/2$. The switches switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). There are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides isolation during the charge-sharing phase. One aspect of this circuit is that there is an on-going input current, which is a function of the analog input voltage, V_{REF} and the ADC clock frequency.

- Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8 pF
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04 pF
- Equivalent resistance for the channel select mux; 100Ω
- Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1.4 pF
- Equivalent input impedance, when the input is selected = (ADC Clock Rate) × (1.4×10⁻¹²)

Figure 14. Equivalent Circuit for A/D Loading

INL measured from $V_{IN} = V_{REFL}$ to $V_{IN} = V_{REFH}$

³ LSB = Least Significant Bit

⁴ INL measured from $V_{IN} = 0.1V_{REFH}$ to $V_{IN} = 0.9V_{REFH}$

Includes power-up of ADC and V_{REF}

⁶ ADC clock cycles

Current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC

Electrical Characteristics

Table 28. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK frequency of operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK cycle period	t _{JCYC}	4 × t _{CYC}	_	ns
J3	TCLK clock pulse width	t _{JCW}	26	_	ns
J4	TCLK rise and fall times	t _{JCRF}	0	3	ns
J5	Boundary scan input data setup time to TCLK rise	t _{BSDST}	4	_	ns
J6	Boundary scan input data hold time after TCLK rise	t _{BSDHT}	26	_	ns
J7	TCLK low to boundary scan output data valid	t _{BSDV}	0	33	ns
J8	TCLK low to boundary scan output high Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI input data setup time to TCLK rise	t _{TAPBST}	4	_	ns
J10	TMS, TDI Input data hold time after TCLK rise	t _{TAPBHT}	10	_	ns
J11	TCLK low to TDO data valid	t _{TDODV}	0	26	ns
J12	TCLK low to TDO high Z	t _{TDODZ}	0	8	ns
J13	TRST assert time	t _{TRSTAT}	100	_	ns
J14	TRST setup time (negation) to TCLK high	t _{TRSTST}	10	_	ns

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

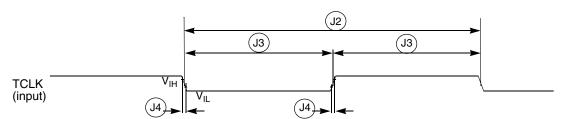


Figure 16. Test Clock Input Timing

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Freescale Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products berein. Freescale makes no warranty representation or quarantee regarding the

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or integrated

Information in this document is provided solely to enable system and software

herein. Freescale makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale, Inc. All other product or service names are the property of their respective owners.

© Freescale, Inc. 2011, 2012. All rights reserved.

Document Number: MCF52259

Rev. 5 5/2012

