

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, QSPI, UART/USART, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	96
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf52258cvn66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Famil	y Configurations
	1.1	Block Diagram
	1.2	Features
2	Electr	rical Characteristics
	2.1	Maximum Ratings
	2.2	Current Consumption
	2.3	Thermal Characteristics
	2.4	Flash Memory Characteristics
	2.5	EzPort Electrical Specifications
	2.6	ESD Protection
	2.7	DC Electrical Specifications
	2.8	Clock Source Electrical Specifications
	2.9	USB Operation

	2.10	Mini-FlexBus External Interface Specifications 32
	2.11	Fast Ethernet Timing Specifications
	2.12	General Purpose I/O Timing 35
	2.13	Reset Timing
	2.14	I2C Input/Output Timing Specifications
	2.15	Analog-to-Digital Converter (ADC) Parameters 38
	2.16	Equivalent Circuit for ADC Inputs
	2.17	DMA Timers Timing Specifications 40
		QSPI Electrical Specifications
		JTAG and Boundary Scan Timing 40
	2.20	Debug AC Timing Specifications
3	Packa	age Information
4	Revis	sion History

Family Configurations

1 Family Configurations

Table 1. MCF52259 Family Configurations

Module	52252	52254	52255	52256	52258	52259
Version 2 ColdFire Core with eMAC (Enhanced multiply-accumulate unit) and CAU (Cryptographic acceleration unit)	•	•	•	•	•	•
System Clock	up to 66 c	or 80 MHz ¹	up to 80 MHz ¹	up to 66 o	r 80 MHz ¹	up to 80 MHz ¹
Performance (Dhrystone 2.1 MIPS)			up to 6	63 or 76		1
Flash	256 KB	512 KB	512 KB	256 KB	512 KB	512 KB
Static RAM (SRAM)	32 KB	64 KB	64 KB	32 / 64 KB	64 KB	64 KB
Two Interrupt Controllers (INTC)	٠	•	•	•	•	•
Fast Analog-to-Digital Converter (ADC)	٠	•	•	•	•	•
USB On-The-Go (USB OTG)	٠	•	•	•	•	•
Mini-FlexBus external bus interface	—	—	—	•	•	•
Fast Ethernet Controller (FEC)	٠	•	•	•	•	•
Random Number Generator and Cryptographic Acceleration Unit (CAU)	_	_	•	_	_	•
FlexCAN 2.0B Module	Varies	Varies	•	Varies	Varies	•
Four-channel Direct-Memory Access (DMA)	٠	•	•	•	•	•
Software Watchdog Timer (WDT)	•	•	•	•	•	•
Secondary Watchdog Timer	٠	•	•	•	•	•
Two-channel Periodic Interrupt Timer (PIT)	2	2	2	2	2	2
Four-Channel General Purpose Timer (GPT)	•	•	•	•	•	•
32-bit DMA Timers	4	4	4	4	4	4
QSPI	٠	•	•	•	•	•
UART(s)	3	3	3	3	3	3
12C	2	2	2	2	2	2
Eight/Four-channel 8/16-bit PWM Timer	٠	•	•	•	•	•
General Purpose I/O Module (GPIO)	•	•	•	•	•	•
Chip Configuration and Reset Controller Module	•	•	•	•	•	•
Background Debug Mode (BDM)	•	•	•	•	•	•
JTAG - IEEE 1149.1 Test Access Port	•	•	•	•	•	•
Package		100 LQFP		144 LQ	FP or 144 N	IAPBGA

¹ 66 MHz = 63 MIPS; 80 MHz = 76 MIPS

- Pre-divider capable of dividing the clock source frequency into the PLL reference frequency range
- System can be clocked from PLL or directly from crystal oscillator or relaxation oscillator
- Low power modes supported
- $2^n (0 \le n \le 15)$ low-power divider for extremely low frequency operation
- Interrupt controller
 - Uniquely programmable vectors for all interrupt sources
 - Fully programmable level and priority for all peripheral interrupt sources
 - Seven external interrupt signals with fixed level and priority
 - Unique vector number for each interrupt source
 - Ability to mask any individual interrupt source or all interrupt sources (global mask-all)
 - Support for hardware and software interrupt acknowledge (IACK) cycles
 - Combinatorial path to provide wake-up from low-power modes
- DMA controller
 - Four fully programmable channels
 - Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for 16-byte (4×32-bit) burst transfers
 - Source/destination address pointers that can increment or remain constant
 - 24-bit byte transfer counter per channel
 - Auto-alignment transfers supported for efficient block movement
 - Bursting and cycle-steal support
 - Software-programmable DMA requests for the UARTs (3) and 32-bit timers (4)
 - Channel linking support
- Reset
 - Separate reset in and reset out signals
 - Seven sources of reset:
 - Power-on reset (POR)
 - External
 - Software
 - Watchdog
 - Loss of clock / loss of lock
 - Low-voltage detection (LVD)
 - JTAG
 - Status flag indication of source of last reset
- Chip configuration module (CCM)
 - System configuration during reset
 - Selects one of six clock modes
 - Configures output pad drive strength
 - Unique part identification number and part revision number
- General purpose I/O interface
 - Up to 56 bits of general purpose I/O on 100-pin package
 - Up to 96 bits of general purpose I/O on 144-pin package
 - Bit manipulation supported via set/clear functions
 - Programmable drive strengths
 - Unused peripheral pins may be used as extra GPIO
 - JTAG support for system level board testing

The ADC can be configured to perform a single scan and halt, a scan when triggered, or a programmed scan sequence repeatedly until manually stopped.

The ADC can be configured for sequential or simultaneous conversion. When configured for sequential conversions, up to eight channels can be sampled and stored in any order specified by the channel list register. Both ADCs may be required during a scan, depending on the inputs to be sampled.

During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same time. This configuration requires that a single channel may not be sampled by both S/H circuits simultaneously.

Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures below the low threshold limit or above the high threshold limit set in the limit registers) or at several different zero crossing conditions.

1.2.16 DMA Timers (DTIM0–DTIM3)

There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3) on the device. Each module incorporates a 32-bit timer with a separate register set for configuration and control. The timers can be configured to operate from the system clock or from an external clock source using one of the DTIN*n* signals. If the system clock is selected, it can be divided by 16 or 1. The input clock is further divided by a user-programmable 8-bit prescaler that clocks the actual timer counter register (TCR*n*). Each of these timers can be configured for input capture or reference (output) compare mode. Timer events may optionally cause interrupt requests or DMA transfers.

1.2.17 General Purpose Timer (GPT)

The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable counter driven by a seven-stage programmable prescaler. Each of the four channels can be configured for input capture or output compare. Additionally, channel three, can be configured as a pulse accumulator.

A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter. The input capture and output compare functions allow simultaneous input waveform measurements and output waveform generation. The input capture function can capture the time of a selected transition edge. The output compare function can generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a gated time accumulator.

1.2.18 Periodic Interrupt Timers (PIT0 and PIT1)

The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal processor intervention. Each timer can count down from the value written in its PIT modulus register or it can be a free-running down-counter.

1.2.19 Real-Time Clock (RTC)

The Real-Time Clock (RTC) module maintains the system (time-of-day) clock and provides stopwatch, alarm, and interrupt functions. It includes full clock features: seconds, minutes, hours, days and supports a host of time-of-day interrupt functions along with an alarm interrupt.

1.2.20 Pulse-Width Modulation (PWM) Timers

The device has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty cycle as well as a dedicated counter. Each of the modulators can create independent continuous waveforms with software-selectable duty rates from 0% to 100%. The timer supports PCM mode, which results in superior signal quality when compared to that of a conventional PWM. The PWM outputs have programmable polarity, and can be programmed as left aligned outputs or center aligned outputs. For

Family Configurations

higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit channels.

1.2.21 Software Watchdog Timer

The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown.

1.2.22 Backup Watchdog Timer

The backup watchdog timer is an independent 16-bit timer that, like the software watchdog timer, facilitates recovery from runaway code. This timer is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown. The backup watchdog timer can be clocked by either the relaxation oscillator or the system clock.

1.2.23 Phase-Locked Loop (PLL)

The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL, crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are powered by the normal supply pins, VDD and VSS.

1.2.24 Interrupt Controllers (INTCn)

The device has two interrupt controllers that supports up to 128 interrupt sources. There are 56 programmable sources, 49 of which are assigned to unique peripheral interrupt requests. The remaining seven sources are unassigned and may be used for software interrupt requests.

1.2.25 DMA Controller

The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered by software explicitly setting a DCR*n*[START] bit or by the occurrence of certain UART or DMA timer events.

1.2.26 Reset

The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what caused the last reset. There are seven sources of reset:

- External reset input
- Power-on reset (POR)
- Watchdog timer
- Phase locked-loop (PLL) loss of lock / loss of clock
- Software
- Low-voltage detector (LVD)
- JTAG

Control of the LVD and its associated reset and interrupt are managed by the reset controller. Other registers provide status flags indicating the last source of reset and a control bit for software assertion of the $\overline{\text{RSTO}}$ pin.

1.2.27 GPIO

Nearly all pins on the device have general purpose I/O capability and are grouped into 8-bit ports. Some ports do not use all eight bits. Each port has registers that configure, monitor, and control the port pin.

1.2.28 Part Numbers and Packaging

This product is RoHS-compliant. Refer to the product page at freescale.com or contact your sales office for up-to-date RoHS information.

Freescale Part Number	FlexCAN	Encryption	Speed (MHz)	Flash (KB)	SRAM (KB)	Package	Temp range (°C)
MCF52252AF80	—	—	80	256	32	100 LQFP	0 to +70
MCF52252CAF66	•	—	66	250	52		-40 to +85
MCF52254AF80	—	—	80	512	64	100 LQFP	0 to +70
MCF52254CAF66	•	—	66	512	04		-40 to +85
MCF52255CAF80	•	•	80	512	64	100 LQFP	-40 to +85
MCF52256AG80	—	—	80		32	144 LQFP	0 to +70
MCF52256CAG66	•	—	66	256	64		-40 to +85
MCF52256CVN66	•	—	66	250	64	64 144 MAPBGA	
MCF52256VN80	—	—	80		32		0 to +70
MCF52258AG80	—	—	80			144 LQFP	0 to +70
MCF52258CAG66	•	—	66	512	64		-40 to +85
MCF52258CVN66	•	—	66	512	04	144 MAPBGA	-40 to +85
MCF52258VN80	—	—	80				0 to +70
MCF52259CAG80	•	•	80	512	64	144 LQFP	-40 to +85
MCF52259CVN80	•	•	00	512	04	144 MAPBGA	-40 to +85

 Table 2. Orderable part number summary

Figure 4 shows the pinout configuration for the 144 MAPBGA.

	1	2	3	4	5	6	7	8	9	10	11	12	\Box
A	VSS	RSTOUT	RSTIN	FB_D6	FB_D7	IRQ3	IRQ5	FEC_ RXD0	FEC_ RXER	FEC_ TXEN	FEC_ TXD3	VSS	А
в	TEST	FB_A14	FB_D4	FB_D5	FB_OE	FB_A19	FEC_ RXD1	FEC_ RXCLK	FEC_ TXCLK	FEC_ TXD2	FEC_COL	FEC_CRS	в
С	TIN1	FB_A12	FB_A13	FB_A15	FB_A16	FB_A18	FEC_ RXD2	FEC_ RXDV	FEC_ TXD1	URXD2	VDDPLL	EXTAL	с
D	RTC_ EXTAL	TINO	FB_A11	CLKMOD1	CLKMOD0	FB_A17	FEC_ RXD3	FEC_ TXER	FEC_ TXD0	UTXD2	VSSPLL	XTAL	D
E	RTC_ XTAL	UCTS0	FB_A10	RCON	VDD	VDD	VDD	VDD	IRQ1	URTS2	UCTS2	IRQ7	Е
F	UTXD0	URXD0	URTS0	TIN3	VDD	VSS	VSS	VSS	PST3	DDATA0	DDATA1	ICOC0	F
G	QSDO	QSDI	PCS2	PCS3	VDD	VSS	VSS	VSS	DDATA3	PST2	PST1	PST0	G
н	SCL	SDA	SCK	PCS0	VDD	VDD	VDD	VSS	VSSUSB	DDATA2	USB_DM	USB_DP	н
J	FB_A6	FB_A7	FB_A9	FB_A8	FB_D0	FB_A3	VDD	TIN2	VDDUSB	ICOC2	ICOC1	VSTBY	J
к	TMS	TRST	FB_ALE	FB_A5	FB_D2	FB_A4	UCTS1	UTXD1	AN3	AN6	AN4	AN5	к
L	TDI	TDO	ALLPST	FB_D3	FB_D1	FB_A1	FB_A0	URXD1	AN2	VRH	VDDA	AN7	L
М	VSS	JTAG_ EN	TCLK	FB_RW	FB_CS0	FB_A2	ICOC3	URTS1	AN0	AN1	VRL	VSSA	м
	1	2	3	4	5	6	7	8	9	10	11	12	

Figure 4. Pinout Top View (144 MAPBGA)

17

Table 3 shows the pin functions by primary and alternate purpose, and illustrates which packages contain each pin.

Pin Group	Primary Function	Secondary Function (Alt 1)	Tertiary Function (Alt 2)	Quaternary Function (GPIO)	Slew Rate	Drive Strength/Co ntrol ¹	Pull-up/ Pull-down ²	Pin on 144 MAPBGA	Pin on 144 LQFP	Pin on 100 LQFP
ADC	AN[7:0]	_	_	PAN[7:0]	Low	Low	_	L12, K10, K12, K11, K9, L9, M10, M9	74–77; 69, 68, 67 ,66	51–54, 46, 45, 44, 43
	VDDA	—		—	N/A	N/A		L11	73	50
F	VSSA	_	_	—	N/A	N/A	—	M12	70	47
F	VRH	_	_	—	N/A	N/A		L10	72	49
F	VRL	—		—	N/A	N/A		M11	71	48
Clock	EXTAL	—	_	—	N/A	N/A	—	C12	106	73
Generation	XTAL	—		—	N/A	N/A		D12	105	72
F	VDDPLL	—	_	—	N/A	N/A		C11	107	74
F	VSSPLL	—		—	N/A	N/A	_	D11	104	71
RTC	RTC_EXTAL	—		—	N/A	N/A	_	D1	13	7
F	RTC_XTAL	—	_	—	N/A	N/A	_	E1	14	8
Debug	ALLPST	—		—	Low	High	_	L3	42	30
Data	DDATA[3:0]	—	_	PDD[7:4]	Low	High	_	G9, H10, F11, F10	86, 85, 84, 83	_
	PST[3:0]	—	_	PDD[3:0]	Low	High	_	F9, G10, G11, G12	87–90	_

Table 3. Pin Functions by Primary and Alternate Purpose

				·····,				· · · · /		
Pin Group	Primary Function	Secondary Function (Alt 1)	Tertiary Function (Alt 2)	Quaternary Function (GPIO)	Slew Rate	Drive Strength/Co ntrol ¹	Pull-up/ Pull-down ²	Pin on 144 MAPBGA	Pin on 144 LQFP	Pin on 100 LQFP
FEC	FEC_COL	—		PTI0	PSRRH[0]	PDSRH[0]	—	B11	109	76
	FEC_CRS	—		PTI1	PSRRH[1]	PDSRH[1]	—	B12	108	75
	FEC_RXCLK	—		PTI2	PSRRH[2]	PDSRH[2]	—	B8	120	87
	FEC_RXD[3:0]	—	_	PTI[6:3]	PSRRH[6:3]	PDSRH[6:3]	_	D7, C7, B7, A8	127, 126, 123, 122	94, 93, 90, 89
	FEC_RXDV	—		PTI7	PSRRH[7]	PDSRH[7]	—	C8	121	88
	FEC_RXER	—		PTJ0	PSRRH[8]	PDSRH[8]	—	A9	119	86
	FEC_TXCLK	—	_	PTJ1	PSRRH[9]	PDSRH[9]	—	B9	117	84
	FEC_TXD[3:0]	_	_	PTJ[5:2]	PSRRH[13:10]	PDSRH[13:1 0]	—	A11, B10, C9, D9	110–113	77, 78, 79, 80
FEC	FEC_TXEN	—	_	PTJ6	PSRRH[14]	PDSRH[14]	—	A10	116	83
	FEC_TXER	—	_	PTJ7	PSRRH[15]	PDSRH[15]	—	D8	118	85
12C0 ³	I2C_SCL0	—	UTXD2	PAS0	PSRR[0]	PDSR[0]	Pull-Up ⁴	H1	28	22
	I2C_SDA0	—	URXD2	PAS1	PSRR[0]	PDSR[0]	Pull-Up ⁴	H2	29	23
Interrupts	IRQ7	—		PNQ7	Low	Low	Pull-Up ⁴	E12	96	63
	IRQ5	FEC_MDC		PNQ5	Low	Low	Pull-Up ⁴	A7	128	95
	IRQ3	FEC_MDIO		PNQ3	Low	Low	Pull-Up ⁴	A6	129	96
	IRQ1	—	USB_ALT CLK	PNQ1	Low	High	Pull-Up ⁴	E9	103	70
JTAG/BDM	JTAG_EN	_	_		N/A	N/A	Pull-Down	M2	44	32
	TCLK/ PSTCLK/ CLKOUT	_	FB_CLK	—	Low	Low	Pull-Up ⁵	М3	43	31
	TDI/DSI	—	—	—	N/A	N/A	Pull-Up ⁵	L1	40	28
	TDO/DSO	—	_	_	Low	Low	—	L2	41	29
	TMS/BKPT	—		—	N/A	N/A	Pull-Up ⁵	K1	38	26
	TRST/DSCLK		—	_	N/A	N/A	Pull-Up ⁵	K2	39	27

MCF52259 ColdFire Microcontroller, Rev. 5

19

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

Family Configurations

e D
=
_
< <
-
0
×
0
_
_
-
8
2
_
ໜ
- a
-
0
<u> </u>
10
••

		Table	e 3. Pin Fu	inctions by	Primary and A	Alternate Pur	pose (conti	nued)		
Pin Group	Primary Function	Secondary Function (Alt 1)	Tertiary Function (Alt 2)	Quaternary Function (GPIO)	Slew Rate	Drive Strength/Co ntrol ¹	Pull-up/ Pull-down ²	Pin on 144 MAPBGA	Pin on 144 LQFP	Pin on 100 LQFP
Mini-	FB_ALE	FB_CS1	—	PAS2	PSRRL[20]	PDSRL[20]		K3	37	—
FlexBus ⁹	FB_AD[7:0]			PTE[7:0]	PSRRL[7:0]	PDSRL[7:0]		J2, J1, K4, K6, J6, M6, L6, L7	34–36; 53–57	
	FB_AD[15:8]	_	_	PTF[7:0]	PSRRL[15:8]	PDSRL[15:8]	_	C4, B2, C3, C2, D3, E3, J3, J4	136, 2–6, 32–33	_
	FB_AD[19:16]	_	_	PTG[3:0]	PSRRL[19:16]	PDSRL[19:16]	_	B6, C6, D6, C5	130–133	_
	FB_CS0	—	—	PTG5	PSRRL[21]	PDSRL[21]	—	M5	52	—
	FB_R/W	—	—	PTG7	PSRRL[31]	PDSRL[31]	—	M4	45	—
	FB_OE	—	—	PTG6	PSRRL[30]	PDSRL[30]	—	B5	137	—
	FB_D7	CANRX	—	PTH5	PSRRL[29]	PDSRL[29]	—	A5	138	—
	FB_D6	CANTX	—	PTH4	PSRRL[28]	PDSRL[28]	_	A4	139	—
	FB_D5	I2C_SCL1	—	PTH3	PSRRL[27]	PDSRL[27]	Pull-Up ⁶	B4	140	—
	FB_D4	I2C_SDA1	—	PTH2	PSRRL[26]	PDSRL[26]	Pull-Up ⁶	B3	1	—
	FB_D3	USB_ VBUSD	_	PTH1	PSRRL[25]	PDSRL[25]	_	L4	46	
	FB_D2	USB_ VBUSE	_	PTH0	PSRRL[24]	PDSRL[24]		K5	47	
	FB_D1	SYNCA	—	PTH7	PSRRL[23]	PDSRL[23]	—	L5	50	—
	FB_D0	SYNCB	—	PTH6	PSRRL[22]	PDSRL[22]		J5	51	—
Standby Voltage	VSTBY	—	—	—	N/A	N/A	—	J12	78	55
VDD ¹⁰	VDD		_		N/A	N/A		E5–E8; F5; G5; H5–7; J7	7; 20; 30; 48; 59; 92; 100; 115; 125; 135	1; 14; 24; 33; 36; 67; 82; 92

22

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

Pin Group	Primary Function	Secondary Function (Alt 1)	Tertiary Function (Alt 2)	Quaternary Function (GPIO)	Slew Rate	Drive Strength/Co ntrol ¹	Pull-up/ Pull-down ²	Pin on 144 MAPBGA	Pin on 144 LQFP	Pin on 100 LQFP
VSS	VSS	_	_	—	N/A	N/A	_	A1; A12; F6–8; G6–8; H8; M1	8; 21; 31; 49; 60; 91; 99; 114; 124; 134	2; 15; 25; 34; 37; 66; 81; 91

The PDSR and PSSR registers are part of the GPIO module. All programmable signals default to 2mA drive in normal (single-chip) mode.
 All signals have a pull-up in GPIO mode.
 I2C1 is multiplexed with specific pins of the QSPI, UART1, UART2, and Mini-FlexBus pin groups.

⁴ For primary and GPIO functions only.

⁵ Only when JTAG mode is enabled.

⁶ For secondary and GPIO functions only.

⁷ RSTI has an internal pull-up resistor; however, the use of an external resistor is strongly recommended.

⁸ For GPIO functions, the Primary Function has pull-up control within the GPT module.

⁹ Available on 144-pin packages only.

¹⁰ This list for power and ground does not include those dedicated power/ground pins included elsewhere, such as in the ADC, USB, and PLL.

Freescale

2.7 DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Supply voltage	V _{DD}	3.0	3.6	V
Standby voltage	V _{STBY}	1.8	3.5	V
Input high voltage	V _{IH}	$0.7 \times V_{DD}$	4.0	V
Input low voltage	V _{IL}	$V_{SS} - 0.3$	$0.35 imes V_{DD}$	V
Input hysteresis ²	V _{HYS}	$0.06 \times V_{DD}$	_	mV
Low-voltage detect trip voltage (V _{DD} falling)	V _{LVD}	2.15	2.3	V
Low-voltage detect hysteresis (V _{DD} rising)	V _{LVDHYS}	60	120	mV
Input leakage current V _{in} = V _{DD} or V _{SS} , digital pins	l _{in}	-1.0	1.0	μA
Output high voltage (all input/output and all output pins) $I_{OH} = -2.0 \text{ mA}$	V _{OH}	V _{DD} – 0.5	—	V
Output low voltage (all input/output and all output pins) $I_{OL} = 2.0 \text{ mA}$	V _{OL}	_	0.5	V
Output high voltage (high drive) I _{OH} = -5 mA	V _{OH}	V _{DD} – 0.5	_	V
Output low voltage (high drive) I _{OL} = 5 mA	V _{OL}	_	0.5	V
Output high voltage (low drive) I _{OH} = -2 mA	V _{OH}	V _{DD} - 0.5	_	V
Output low voltage (low drive) I _{OL} = 2 mA	V _{OL}	—	0.5	V
Weak internal pull Up device current, tested at V_{IL} Max. ³	I _{APU}	-10	-130	μA
Input Capacitance ⁴ All input-only pins All input/output (three-state) pins 	C _{in}		7 7	pF

Table 13. DC Electrical Specifications ¹

¹ Refer to Table 14 for additional PLL specifications.

² Only for pins: IRQ1, IRQ3. IRQ5, IRQ7, RSTIN_B, TEST, RCON_B, PCS0, SCK, I2C_SDA, I2C_SCL, TCLK, TRST_B

³ Refer to Table 3 for pins having internal pull-up devices.

⁴ This parameter is characterized before qualification rather than 100% tested.

2.8 Clock Source Electrical Specifications

Table 14. Oscillator and PLL Specifications

$(V_{DD} \text{ and } V_{DDPLL} = 3.0 \text{ to } 3.6 \text{ V},$	', V _{SS} = V _{SSPL}	L = 0 V
---	--	---------

Characteristic	Symbol	Min	Max	Unit
Clock Source Frequency Range of EXTAL Frequency Range • Crystal • External ¹	f _{crystal} f _{ext}	12 0	25.0 ² 66.67 or 80	MHz
PLL reference frequency range	f _{ref_pll}	2	10.0	MHz
System frequency ³ External clock mode On-chip PLL frequency 	f _{sys}	0 f _{ref} / 32	66.67 or 80 ⁴ 66.67 or 80 ⁴	MHz
Loss of reference frequency ^{5, 7}	f _{LOR}	100	1000	kHz
Self clocked mode frequency ⁶	f _{SCM}	1	5	MHz
Crystal start-up time ^{7, 8}	t _{cst}	_	0.1	ms
EXTAL input high voltage External reference 	V _{IHEXT}	2.0	3.0 ²	V
EXTAL input low voltage External reference 	V _{ILEXT}	V _{SS}	0.8	V
PLL lock time ^{4,9}	t _{ipil}	_	500	μS
Duty cycle of reference ⁴	t _{dc}	40	60	% f _{ref}
Frequency un-LOCK range	f _{UL}	-1.5	1.5	% f _{ref}
Frequency LOCK range	f _{LCK}	-0.75	0.75	% f _{ref}
CLKOUT period jitter ^{4, 5, 10,11} , measured at f _{SYS} Max • Peak-to-peak (clock edge to clock edge) • Long term (averaged over 2 ms interval)	C _{jitter}	=	10 .01	% f _{sys}
On-chip oscillator frequency	f _{oco}	7.84	8.16	MHz

¹ In external clock mode, it is possible to run the chip directly from an external clock source without enabling the PLL.

² This value has been updated.

³ All internal registers retain data at 0 Hz.

- ⁴ Depending on packaging; see the orderable part number summary (Table 2).
- ⁵ Loss of Reference Frequency is the reference frequency detected internally, which transitions the PLL into self clocked mode.
- ⁶ Self clocked mode frequency is the frequency at which the PLL operates when the reference frequency falls below f_{LOR} with default MFD/RFD settings.
- ⁷ This parameter is characterized before qualification rather than 100% tested.
- ⁸ Proper PC board layout procedures must be followed to achieve specifications.
- ⁹ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- ¹⁰ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the C_{jitter} percentage for a given interval.
- 11 Based on slow system clock of 40 MHz measured at $\rm f_{sys}$ max.

2.9 USB Operation

Characteristic	Symbol	Value	Unit
Minimum core speed for USB operation	f _{sys_USB_min}	16	MHz

Table 15. USB Operation Specifications

2.10 Mini-FlexBus External Interface Specifications

A multi-function external bus interface called Mini-FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 80 MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used.

All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect to the rising edge of a reference clock, MB_CLK. The MB_CLK frequency is half the internal system bus frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-FlexBus output clock (MB_CLK). All other timing relationships can be derived from these values.

Table 16. Mini-FlexBus AC Timing Specifications

Num	Characteristic	Min	Max	Unit	Notes
	Frequency of Operation	—	80	MHz	
MB1	Clock Period	12.5	—	ns	
MB2	Output Valid	—	8	ns	1
MB3	Output Hold	2		ns	1
MB4	Input Setup	6	—	ns	2
MB5	Input Hold	0	—	ns	2

¹ Specification is valid for all MB_A[19:0], MB_D[7:0], MB_CS[1:0], MB_OE, MB_R/W, and MB_ALE.

² Specification is valid for all MB_D[7:0].

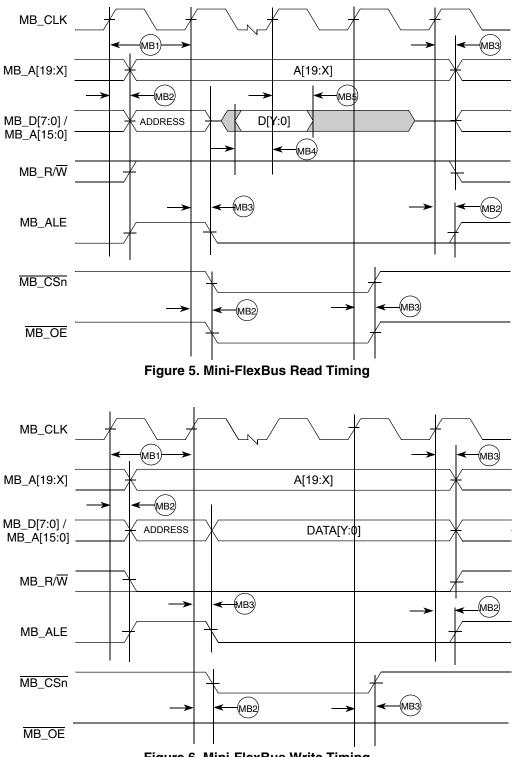


Figure 6. Mini-FlexBus Write Timing

2.11 Fast Ethernet Timing Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

MCF52259 ColdFire Microcontroller, Rev. 5

2.11.1 Receive Signal Timing Specifications

The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.

Table 17. Receive Signal Timing	
---------------------------------	--

Num	Characteristic	MILN	lode	Unit	
Nulli			Max	Ont	
	RXCLK frequency		25	MHz	
E1	RXD[n:0], RXDV, RXER to RXCLK setup ¹	5	_	ns	
E2	RXCLK to RXD[n:0], RXDV, RXER hold ¹	5	_	ns	
E3	RXCLK pulse width high	35%	65%	RXCLK period	
E4	RXCLK pulse width low	35%	65%	RXCLK period	

¹ In MII mode, n = 3

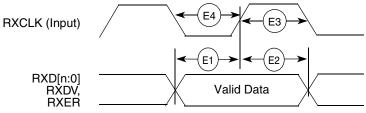


Figure 7. MII Receive Signal Timing Diagram

2.11.2 Transmit Signal Timing Specifications

Table 18. Transmit Signal Timing

Num	n Characteristic		lode	Unit	
NUIT			Max	Onit	
—	TXCLK frequency		25	MHz	
E5	TXCLK to TXD[n:0], TXEN, TXER invalid ¹	5	_	ns	
E6	TXCLK to TXD[n:0], TXEN, TXER valid ¹	—	25	ns	
E7	TXCLK pulse width high	35%	65%	t _{TXCLK}	
E8	TXCLK pulse width low	35%	65%	t _{TXCLK}	

¹ In MII mode, n = 3

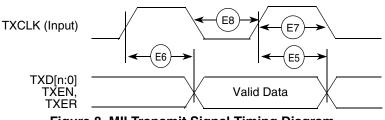


Figure 8. MII Transmit Signal Timing Diagram

2.11.3 Asynchronous Input Signal Timing Specifications

Table 19. MII Transmit Signal Timing

Num	Num Characteristic		Max	Unit
E9	CRS, COL minimum pulse width	1.5	—	TXCLK period

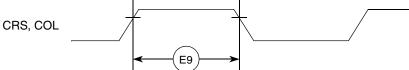


Figure 9. MII Async Inputs Timing Diagram

2.11.4 MII Serial Management Timing Specifications

Table 20. MII Serial Management Channel Signal Timing

Num	Characteristic	Symbol	Min	Мах	Unit
E10	MDC cycle time	t _{MDC}	400	_	ns
E11	MDC pulse width		40	60	% t _{MDC}
E12	MDC to MDIO output valid			375	ns
E13	MDC to MDIO output invalid		25	_	ns
E14	MDIO input to MDC setup		10	_	ns
E15	MDIO input to MDC hold		0	_	ns

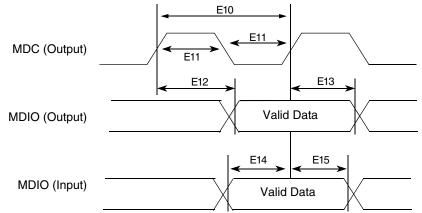


Figure 10. MII Serial Management Channel TIming Diagram

2.12 General Purpose I/O Timing

GPIO can be configured for certain pins of the QSPI, DDR Control, timer, UART, Interrupt and USB interfaces. When in GPIO mode, the timing specification for these pins is given in Table 21 and Figure 11.

The GPIO timing is met under the following load test conditions:

• 50 pF / 50 Ω for high drive

Name	Characteristic	Min	Typical	Max	Unit
SNR	Signal-to-noise ratio	_	62 to 66	_	dB
THD	Total harmonic distortion		-75	_	dB
SFDR	Spurious free dynamic range	_	67 to 70.3	_	dB
SINAD	Signal-to-noise plus distortion	_	61 to 63.9	_	dB
ENOB	Effective number of bits	9.1	10.6		Bits

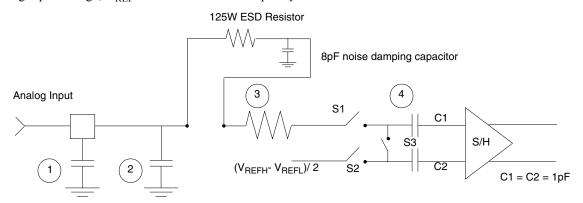
 Table 25. ADC Parameters¹ (continued)

¹ All measurements are preliminary pending full characterization, and made at V_{DD} = 3.3 V, V_{REFH} = 3.3 V, and V_{REFL} = ground

 $^2\,$ INL measured from V_{IN} = V_{REFL} to V_{IN} = V_{REFH}

³ LSB = Least Significant Bit

 $^4~$ INL measured from V_{IN} = 0.1 V_{REFH} to V_{IN} = 0.9 V_{REFH}


 5 Includes power-up of ADC and V_{REF}

⁶ ADC clock cycles

⁷ Current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC

2.16 Equivalent Circuit for ADC Inputs

Figure 14 shows the ADC input circuit during sample and hold. S1 and S2 are always open/closed at the same time that S3 is closed/open. When S1/S2 are closed and S3 is open, one input of the sample and hold circuit moves to $(V_{REFH}-V_{REFL})/2$, while the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended analog input is switched to a differential voltage centered about $(V_{REFH}-V_{REFL})/2$. The switches switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). There are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides isolation during the charge-sharing phase. One aspect of this circuit is that there is an on-going input current, which is a function of the analog input voltage, V_{REF} and the ADC clock frequency.

- 1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8 pF
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04 pF
- 3. Equivalent resistance for the channel select mux; 100Ω
- 4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1.4 pF
- 5. Equivalent input impedance, when the input is selected = 1

(ADC Clock Rate) \times (1.4 \times 10⁻¹²)

Figure 14. Equivalent Circuit for A/D Loading

MCF52259 ColdFire Microcontroller, Rev. 5

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK frequency of operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK cycle period	t _{JCYC}	$4 \times t_{CYC}$	—	ns
J3	TCLK clock pulse width	t _{JCW}	26	—	ns
J4	TCLK rise and fall times	t _{JCRF}	0	3	ns
J5	Boundary scan input data setup time to TCLK rise	t _{BSDST}	4	—	ns
J6	Boundary scan input data hold time after TCLK rise	t _{BSDHT}	26	—	ns
J7	TCLK low to boundary scan output data valid	t _{BSDV}	0	33	ns
J8	TCLK low to boundary scan output high Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI input data setup time to TCLK rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input data hold time after TCLK rise	t _{TAPBHT}	10	—	ns
J11	TCLK low to TDO data valid	t _{TDODV}	0	26	ns
J12	TCLK low to TDO high Z	t _{TDODZ}	0	8	ns
J13	TRST assert time	t _{TRSTAT}	100	—	ns
J14	TRST setup time (negation) to TCLK high	t _{TRSTST}	10	—	ns

Table 28. JTAG and Boundary Scan Timing

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

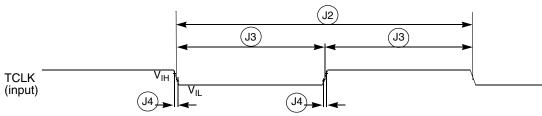
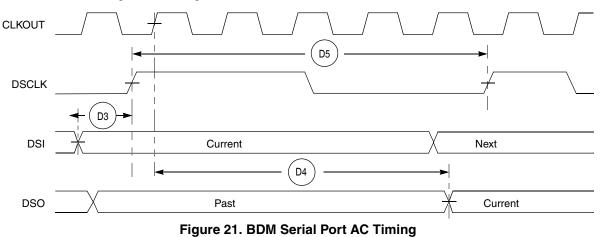



Figure 16. Test Clock Input Timing

Package Information

Figure 21 shows BDM serial port AC timing for the values in Table 29.

3 Package Information

The latest package outline drawings are available on the product summary pages on http://www.freescale.com/coldfire. Table 30 lists the case outline numbers per device. Use these numbers in the web page's keyword search engine to find the latest package outline drawings.

Device	Package Type	Case Outline Numbers
MCF52252		
MCF52254	100 LQFP	98ASS23308W
MCF52255		
MCF52256	144 LQFP	98ASS23177W
MCF52258	or	
MCF52259	144 MAPBGA	98ASH70694A

Table 30. Package Information